Three sequences of palindromes obtained from squares of primes

Marius Coman email: mariuscoman130gmail.com

Abstract. In this paper I make the following two conjectures: (I) There exist an infinity of squares of primes p^2 such that $(p^2 + 4*196) + R(p^2 + 4*196)$, where R(n) is the number obtained reversing the digits of n, is a palindromic number; note that I wrote 4*196 instead 784 196 is a number known related because to be with palindromes: is the first Lychrel number, which gives the name to the "196-algorithm"; (II) For every square of odd prime p^2 there exist an infinity of primes q such that the number $(p^2 + 16*q^2) + R(p^2 + 16*q^2)$ is a palindrome. The three sequences (presumed infinite by the conjectures above) mentioned in title of the paper are: (1) Palindromes of the form $(p^2 + 4*196) + R(p^2 + 4*196)$, where p² is a square of prime; (2) Palindromes of the form $(p^2 + 16*q^2)$ + $R(p^2 + 16*q^2)$, where p^2 is a square of prime and q the least prime for which is obtained such a palindrome; (3) Palindromes of the form $(13^2 + 16^{+}q^{-}2) + R(13^2 + 16^{+}q^{-}2)$, where q is prime.

Conjecture I:

There exist an infinity of squares of primes p^2 such that $(p^2 + 4*196) + R(p^2 + 4*196)$, where R(n) is the number obtained reversing the digits of n, is a palindromic number.

Note: I wrote 4*196 instead 784 because 196 is a number known to be related with palindromes: is the first Lychrel number (a Lychrel number is a natural number that cannot form a palindrome through the iterative process of repeatedly reversing its digits and adding the resulting numbers, process sometimes called the 196-algorithm, 196 being the smallest such number - see the sequence A023108 in OEIS).

Note: it may seem contradictory that a Lychrel number (196) can help to obtain both palindromes and Lychrel numbers (because, if you take Lychrel primes - sequence A135316 in OEIS - you see that 8 from the first 38 Lychrel primes can be written as p + k*196, where p is also a Lychrel prime: 887 = 691 + 196; 4349 = 1997 + 12*196; 8179 = 4259 + 20*196; 8269 = 1997 + 32*196; 8719 = 4799 + 20*196; 10883 = 691 + 52*196); 12763 = 3943 + 45*196; 13597 = 11833 + 9*196).

Conjecture II:

For every square of odd prime p^2 there exist an infinity of primes q such that the number $(p^2 + 16*q^2) + R(p^2 + 16*q^2)$ is a palindrome.

Three sequences of palindromes

(presumed infinite by the two conjectures above):

Sequence 1:

Palindromes of the form $(p^2 + 4*196) + R(p^2 + 4*196)$, where p^2 is a square of prime:

:	4774	(17^2	+	4*196	=	1073;	1073	+	3701	=	4774);
:	6556	(19^2	+	4*196	=	1145;	1145	+	5411	=	6556);
:	4444	(23^2	+	4*196	=	1313;	1313	+	3131	=	4444);
:	6886	(29^2	+	4*196	=	1625;	1625	+	5261	=	6886);
:	5665	(37^2	+	4*196	=	2153;	2153	+	3512	=	5665);
:	5995	(43^2	+	4*196	=	2633;	2633	+	3362	=	5995);
:	9889	(59^2	+	4*196	=	4265;	4265	+	5624	=	9889);
:	9559	(61^2	+	4*196	=	4505;	4505	+	5054	=	9559);
:	8998	(67^2	+	4*196	=	5273;	5273	+	3725	=	8998);
:	9229	(73^2	+	4*196	=	6113;	6113	+	3116	=	9229);
	()										

Note that palindromes were obtained for ten from the first twenty odd primes!

Sequence 2:

Palindromes of the form $(p^2 + 16*q^2) + R(p^2 + 16*q^2)$, where p^2 is a square of odd prime and q the least prime for which is obtained such a palindrome:

:	5885	$(3^2 + 16*13^2 = 2713; 2713 + 3172 = 5885);$
:	949	$(5^2 + 16*5^2 = 425; 425 + 524 = 949);$
:	67876	$(7^2 + 16*31^2 = 15425; 15425 + 52451 = 67876);$
:	646	$(11^2 + 16^{+}5^2 = 521; 521 + 125 = 646);$
:	626	$(13^{2} + 16^{3}^{2} = 313; 313 + 313 = 626);$
:	767	$(17^{2} + 16^{3}^{2} = 433; 433 + 334 = 767);$
:	6556	$(19^{2} + 16^{7})^{2} = 5411; 5411 + 1145 = 6556);$
:	4444	$(23^2 + 16^{*}7^2 = 1313; 1313 + 3131 = 4444);$
:	2662	$(29^{2} + 16^{5})^{2} = 1241; 1241 + 1421 = 2662);$
:	6116	$(31^2 + 16^{*}3^2 = 1105; 1105 + 5011 = 6116);$
:	4664	$(37^2 + 16^{*}3^2 = 1513; 1513 + 3151 = 4664);$
:	3883	$(41^2 + 16^{+}5^2 = 2081; 2081 + 1802 = 3883);$
	()	

Note that for the first twelve odd primes p is obtained a palindrome for a prime q less than or equal to 31!

Sequence 3:

Palindromes of the form $(13^2 + 16^*q^2) + R(13^2 + 16^*q^2)$, where q is prime: $(13^2 + 16^{*}3^2 = 313; 313 + 313 = 626);$: 626 7117 $(13^{2} + 16^{11^{2}} = 5012; 5012 + 2105 = 7117);$: 59095 (13² + 16³7² = 22073; 22073 + 37022 = : 59095); 76267 (13² + 16*53² = 45113; 45113 + 31154 = : 76267); 620026 (33² + 16*79² = 100025; 100025 + 520001 = :

620026); : 467764 (13² + 16*97² = 150713; 150713 + 317051 = 467764); (...)