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Abstract: In this paper the author gives a simplest elementary mathematics method to solve the
famous Fermat's Last Theorem (FLT), in which let this equation become a one unknown number
equation, in order to solve this equation the author invented a method called “Order reducing
method for equations” where the second order root compares to one order root and with some
necessary techniques the author successfully proved Fermat's Last Theorem.

1. Some Relevant Theorems

There are some theorems for proving or need to be known. All symbols in this paper represent
positive integers unless they are stated to be not.

Theorem 1.1. In the equation of

Xn + yn — Zn
ged(x,y,z) =1 (1-1)
n>2
X, Y,Z meet
X#£Y;
X+y>z;
if
X>Yy
then
Z>X>Y.
Proof: Let
X=Y,
we have
2x"=7"
and

2x =1
Where”\/E is not an integer and X, Z are all positive integers, so X # y . Since

(X+y) =x"+CX" 'y +..+CIxy" 4+ y" > 2",

so we get
X+Yy> 2z



Since

so we have
2">x",z2">y"

and get
Z>X>Y

when
X>Y.

Theorem 1.2. In the equation of (1-1), X,Y,Z meet

ged(x, y) =ged(y, z) =ged(x,z) =1.
Proof: Since X" +y"=z", if gcd(x,y)>1 then we have (X1” + ynl)X[ng(X, y)I =2"
which causes gcd(x, Y, Z)>1 since the left side contains the factor of [gcd(x, y)]n then the

right side must also contains this factor but contradicts against (1-1) in which gcd(X,y,z) =1,

so we have gcd(x, y) =1. Using the same way we have gcd(X,z)=gcd(y,z)=1.

Theorem 1.3. Function f(x)=A"and g(x)=A* +B* are all monotonically increasing

“Convex functions”, where A, B are all positive real numbers and X is a real number.

Proof: Since monotonically increasing “Convex functions” meets
df (x
f'(x) = e o,
dx
d?f (x)

="

>0,

for f (xX) = A%and g(x)=A* +B*, we have

f'(x)=A*InA>0,
f'(x)=A"In* A>0,

g'(xX)=A"InA+B*InB>0,
g"(x)=A"In> A+B* In?B >0,

so f(x)=A%and g(x)=A"+B* are all monotonically increasing “Convex functions”.

This theorem means that functions g(n) = x"+y", f(n)=2z" are all monotonically increasing
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“Convex functions” when n is a real number.

Theorem 1.4. In the equation of (1-1), X,Y,Z meet

Xn—i + yn—i > Zn—i

Xn-f-i + yn+i > Zn+i

where
n>i>1.
Proof: From equation (1-1), since

Xn_'_yn:Zn,

from Theorem 1.1, since Z > X> Y, we have

n—i n—i (in n—i ( yjl n—i n—i
X7y s = [ XM Sy ="
z z

Xn-f-i + yn+i < (Zixn—i + Ziyn—i — Zn+i),
so we have

Xn—i + yn—i > Zn—i

Xn+i + yn+i < Zn+i
This theorem means given X,Y, z if equation (1-1) has one positive integer solution then this
solution is the only one.

Theorem 1.5. In Figure 1-1, X, Y,Z of equation (1-1) meet

N yn—l _ gt

Xn—2 + yn—z _ Zn— Sl'

2

N

X
)

n-2 n-1 n

Figure 1-1 Graphfor X"+y"=2"



N yn—l _ gt

n-2

—— <1 is the slope of AB is not greater
X" T+y "=z

Proof: Obviously the meaning of

n-1 n-1

+y"t -z

than that of CD and if Xy 2

=1 then the slope of AB equals to that of CD.

n-2

It is necessary to point out that there is a positive real number R that meets equation
dx" +_dyN _dz"
dN  dN dN

where

xX*Inx+y®Iny=z"Inz,
Obviously the “Slope” of X" + y" equals to that of z" when N =R . There are three cases
for R inFigure 1-1when R<n-2n—-2<R<n-1 and R>n-1.1f R<n-2 thenit

n-1 yn—l _ gt n-1 yn—l _ gt

- <1;1f n—-2<R<n-1then

is very clear that —<1is

anz + yn—z _ zn anz + yn—z -7

N yn—l _ gt

— — >1 is also possible; If R>n-1 then
X"yt -z

possible  and

2

X"ty yn—l _ gt .
n-2 n-2 n-2 > 1.
X"y -2
1 yn—l _ gt

When

— > 1, there are three cases have to be considered. The first case (Case 1)

"2 4 y"*Z _7

is there is a positive real number O0<r <1 for n—r between Nn—1 and n whose slope
equals to that of AB which means
R L L B (Zl—r _l)zn—l

Xn—l+ n—l_Xn— _ — —
y y 1-r 1-r

that can be explained by Figure 1-2 where AB// DF .



N yn—l _ gt

Xn—2 + yn—2 _ an

n

Figure 1-2 Graphof X" +y"=2z" when >1

2

and point F is between n-1 and n for Case |

The second case (Case Il) is there is a positive real number O<r <1 for n—r between
n—1 and n—2 whose slope equals to that of AB which means
, o, ZViogr _ (1_ Z—r)zn—l

"ty yn—l _x"2 y" 2 = ,
r r

that can be explained by Figure 1-3 where AB// DF //CD".

A

X




N yn—l _ gt

anz + yn—z _ an

Figure 1-3 Graphof X" +y"=2z" when >1

2

and point F is between n-2 and n-1 for Case Il

The third case (Case I11) is there is a tangent line of curve z" at D thatis D'DF whose slope
equals to that of AB which means

dz"
n-1 n-1 n-2 n-2
X +y =X "=y :dN|N:n—l

that can be explained by Figure 1-4 where AB// D'DF .

Y

n-2 ri-1 n

N yn—l _ gt

anz + yn—Z _ an >1

Figure 1-4 Graphof X" +y"=2z" when

2
and D'DF isatangent line of curve z" for Case Il

Case | : In Figure 1-2 we have

1-r
Xn—l + yn—l _ Xn—2 _ yn—2 _ [ /A _lJznl

and

anl N yn71 B anl B Xn72 _ yn72 _ ( Zl—l‘ —1jzn1 . Zn,l _ (MJznl. (1_2)

1-r 1-r
1-r
77" +r-2 . . : : I
If we treat r as constantthen f(z)= B is a “Monotonically increasing function™; if
—-r



1-r
77 +r-2 : . .
we treat Z as constant then f(r)= 1— is a “Monotonically decreasing function” that

can be explained by Figure 1-5.
S

1-r
zZ7+r-2
Figure 1-5 Graphof f(r)= 1— when z=2,3,4,5
77T +r=2
The reason why f(r) = 1 is a “Monotonically decreasing function” is because:

dr @-ry
727" Inz(l-r)+2" -1 [(r-1)Inz+1)"" -1

@-ry ey

(z“+r—2j
_ ir _ r .
f(r) = 1-r ) (=2 Inz+1)i-r)+ 2" +r-2

For function

N [(r=1)Inz+1]z"" -1
9(2) i1y

it is a “Monotonically decreasing function” since

[(r-Dinz+1-1] (r_q) .
g-(z)d{ o }_(Zl)z -z -1z +1]

dz - @-ry

=-7"Inz<0.



For function

N [(r=1)inz+1]z"" -1
g( ) (1_ r)z !

we give the plot of it in Figure 1-6, in which it shows that g(r) =0, g(r) <0 that is because

imiote) - (Rt [tz 2

r—oo

where
liml-r)z" =0

r—oo

lim[(r —1)Inz +1]z = o,

and
d[(r-1)inz+1z
Iim[(r—l)lnz+1]z im dr im zInz o
e (1-rfz" e (1-rfzf e [1-r)inz-2J1-r)"

dr

which means g(r) has no finite value to intersect axis r and g(r)=0,g(r)<0, since when
0<r<1 thevalueof g(r) islessthanOand g(z) isa“Monotonically decreasing function”,

so f(r) is a “Monotonically decreasing function” when O <r <1(we have to say because we

can not solve “Exponent equation” where the “Exponent” is the unknown number, so the
solutions have to be found in numerical way, which is just “Function plot™ does).

g()
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L]

[(r=1)Inz+1]z"" -1

@-ry

Figure 1-6 Graphof g(r)= when z=2,3,4,5100

From (1-2) we know if z (a positive real number) increases then the left side decreases and the



right side also decreases. The minimum value for the right side is

(2 +r-2)
lim z74r-2 71— lim dr 7 — lim —27nz+1 Zk-1
r—l 1-r r—l w r-1 -1 ’
dr
= Iin?(zl‘r Inz-1)z*" = (Inz-1)z**
since
- 1-r _
Irlgll(z +r—2)_0
lim(1-r)=0

From Theorem 1.8 we know Z >4, so we get

1-r _
{anijfl—f)f4=(mz—nz“ﬂ>(m4—nx42>9.
r— —-r

From (1-2) we have
(Xn—l i yn—l . Zn—l)_ (Xn—2 n yn—2 _ Zn_z): [ Zl—r +r— ZJZn_l " Zn_z

where both sides plus 2" in Figure 1-2 we know

Xn—l + yn—l _ Zn—l — BD,

Xn—2 + yn—2 _ Zn—2 — AC ,

there must exist a situation in Figure 1-2 when we increase z (a positive real number) that
causes

BD —» AC,BD > AC,r <1,

so the left side is almost O but the right side is bigger than 9+ z"* Z(9+4:13), that is a

contradiction which means there are no positive integer solutions of equation (1-1) at Case 1.

Case Il : In Figure 1-3 we have

- - - ~ (1_Zfl’)znfl -
an+ynl_xn2_yn2: <an|nZ,

(1-3)



-r

1-z27-r | . : . . .
If we treat r as constant then f(z) =————— is a “Monotonically increasing function”; if
r

-7 -r . : : :
we treat z as constant then f(r)=——— is a “Monotonically decreasing function” that
r

can be explained by Figure 1-7.
J)

1000000000000
z=10

—1—-0.3 -

-r

1-77 -
Figure 1-7 Graphof f(r)=———
r

r when 7 = 2.3.4.5.50.1 (1000000000000

-r

1-z . . . .
The reason why f (r) =———— is a “Monotonically decreasing function” is because:
r

-r

d(1—2 —rj
f(r) = r :rz’rInz—r—(l—z*r—r)_(rlnz+1)z’r—1.

dr r? r
For function

rinz+1)z7" -1
0(2) =" +rz) ,

it is a “Monotonically decreasing function” since

d{(r Inz +§)Zir _1} [r_ r(rinz +1)j|z_r
9'(2)= r -2 <0,

dz r

r r
in which from Theorem 1.8 we know Z>4, so we have ——r(rinz+1)<0 where —<r
z z

10



and r’lnz>0.

(rinz+1)z" -1

r.2

For function g(r)= , we plot the graph of it in Figure 1-8, in which it shows

that g(r)=0 and g(r) <O thatis because:

. rinz+1)z7" -1 . (rInz+1
Ilm{g(r):( 2) =|Im¥
r—o r r—ow r<z"
where
lim(rinz+1)=o0
r—o
limr?z" = o,
r—oo
and
d(rinz+1)
i (rinz+1) i ar Inz o
N roo  rfz" - 2rz" +r?z"Inz
dr

which means g(r) has no finite value to intersect axis r and g(r)=0,g(r)<0, since when
0<r<1 thevalueof g(r) islessthan0Oand g(z) isa “Monotonically decreasing function”,

so f(r) isa “Monotonically decreasing function” when 0<r <1.

g()

Lk
Il
EENE N

—_ L

oS
=]

L L |

(rinz+1)z" -1

Figure 1-8 Graph of g(r)= 5 when z=2,3,4,5100
r
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From Figure 1-3 we know if z (a positive real number) increases then r also increases. From
(1-3) we have

1-z7"—r
(Xn—l + yn—l _ Zn—l)_ (Xn—z + yn—Z _ Zn—z): Zn—l + Zn—Z
r

where both sides plus "% in Figure 1-3 we know

Xn—l + yn—l _ Zn—l — BD,

Xn—2 + yn—2 _ Zn—2 — AC

there must exist a situation when we increase z (a positive real number) that causes
BD - AC,BD> AC,r »>1r<1,

so the left side is
(Xn—l + yn—l _ Zn—l)_ (Xn—Z + yn—2 _ Zn—2)= O > O,

when r =1 the right side is

H%}z”‘l + z”‘z} = (— 2"+ z”‘z): 0,

. 1-z7"-r | . . . .
since f(r)=———— s a “Monotonically decreasing function”, so when r <1, the right
r

side is greater than 0, we do not have contradiction as Case | does. But Case 11 is still impossible,
since there are some ways to explain why it is impossible, and at last we will give a proof.

Explanation 1. In Figure 1-3. It is obvious that

n

0 Z _Zn_l l 0
/CDE =360" —arctan 1 —arctan| ———— |-90",
2" -z
/CDE < ZABE ,

from Theorem 1.9 we know if z <100 then there are no positive integer solutions for equation
(1-1), when n =3 (which is the worst case) we have

n_ ,n-1
/CDE = 270° —arctan| =—%— |~ arctan %
l Zn 1 Zn 2

= 270° — arctan(100° —100% )~ arctan[ j >179.99°

100% =100

and

/ABE > Z/CDE >179.99°,

which means ZABE, /CDE —180° with z>100,n>3,s0 ABE,CDE are almost lines.
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Explanation 2. For function

n _ n-1
f (z) = ZCDE = 270° —arctan 277 | aretan| — 1
1 Zn—l _ Zn—2

3 2" —z" 1
=— 7 —arctan| ———— |—arctan| ———
2 1 yAR A

we give the function plot for it in Figure 1-9.

f(2)

180 -

|-178

176

174

172

170

I i i i i i I i i -

n n-1
Figure 1-9 Graphof f(z)=«CDE =270° - arctan(%} - arctan(ﬁj
AN

where we take 7 =3.1415926535897932

Obviously f(z)=~ZCDE is a “Monotonically increasing function” when z >3, and with the

increasing of z the value of f(z)=~ZCDE iscloseto 180°.

It is very clear that ZABE — ZCDE is decreasing with the increasing of Z , since

(£ABE — ZCDE = #D'CD + /BED)<180° - ZCDE

where /CDE is increasing. When n=3 since ~/CDE >179.99°, so we have

(«D'CD + #BED)<180° — ZCDE <180° -179.99° < 0.01°,

which means

13



/BED, /D'CD <0.01°,
andwhen z or n isbig enough, we have
ZABE — ZCDE = (£/BED + /D'CD)— 0,

which means BD < AC .

Explanation 3. In Figure 1-3 we have

ZABE

n n n-1 n-1
:E;;_arctan X+y -X y —arctan| — ) ! - )
2 1 Xn + yn _ Xn _ yn

n-1 n-1
=3 2 _arctan (=D +(y -1y —arctan _ L — |,
2 1 (x=2)x"% +(y ~2)y"?

from Theorem 1.9 we know X >>1, so we have
(Xx=1)x" ™ = X" >>1,
(x—Dx" 2= X"t >>1,

and

n n-1
ZABE ~ §7z _arctan| > (y=1)y —arctan !
2 1 X" (y—1)y"?

n n n-1 n n-1
~| 3 7 _arctan| =Y +(y=1)y _3 o arctan| 2V ,
2 1 2 1

since ZABE > ZCDE , so we get

3 Zn_yn—l 3 Zn_zn—l l
— g —arctan| ———— |>— 7 —arctanl —— |[—arctan — |
2 1 2 1 Zn-1_Zn

since Z> X>>1, so we have

70 _ "t 7" _ 7"t
arctan(Ty] < arCtan[T =

(Zn _ yn—l < Zn _ Zn—l):>

(yn—l > Zn—l):>
y >z,

that is impossible. So we have the conclusion of there are no positive integer solutions of equation
(1-1) at Case Il when X >>1, which is true in order to have positive integer solutions for
equation (1-1) in which X >>1 must be met.

The proof for Case Il to have no positive integer solutions is to draw the function plot for
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functions

n n-1
f(z)= ZCDE =270° — arctan[ . 12 ] - arctan(ﬁj *
YA A

g(x) = ZABE

n-1 n-1
=270° —arctan (=D + (y Dy ) arctan - !
(x—1)x"2

1 +(y-1)y"? j

h(x) = ZABE — /CDE = g(x) - f (2).

For h(x) = ZABE — ZCDE = g(x) — f(z), we “Imagine” its plot as showed in Figure 1-10,

where there are two “Intersections” with axial X, Z , but one of themisat X,Z — 0.

h(x) = ZABE — Z/CDE

This value may be very small. ]

Figure 1-10 Graph of h(x) = ZABE — ZCDE = g(x) — f(2)

For g(x)=ZABE,wetake y=4 and y=Xx-1, the plot is showed in Figure 1-11.

J(2).g(x)

180

f(2

gx).y=4

g(x). y=x-1
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n n-1
Figure 1-11 Graphof f(z)=ZCDE =270° - arctan[%} — arctan(ﬁj :
2" -2

1

+(y-1)y"? J

n-1 n-1
g(x) = ZABE =270° —arctan (x=2x""+(y-1)y —arctan _
1 (x—1)x"2

when n=3

In Figure 1-11 if X,Z>3 when Xx:z=1:1, the value of ZABE — ZCDE = g(x)— f(z) is

“Monotonically decreasing”, since Z < ”\/EX, so the actual value is around 3. From Figure 1-10,

we know there are two intersection of f(z),g(X), but one of them is at X,Z — o, so the
“First point” we find g(Xx)— f(z) —» 0 is the “First intersection”, since when x =100,
Z/ABE — ZCDE =g(x)- f(z) >0,
o : o BD _
so we treat X =100 as the “First intersection”, in this case we have A—C<l, and with the

BD
increasing of X (which means x >100), A—C<1 will be more certain to be satisfied but it
contradicts against BD > AC . From Section 2 we will know in order to have positive integer
BD BD
solutions for equation (1-1), A_C must satisfy A—C>4O, so this is a contradiction which

means when X >100 there are no positive integer solutions for equation (1-1) ( Or we can say
in order to have positive integer solutions for equation (1-1), we have to increase X,Zz, that

BD BD
causes —— decrease and the contradiction is that —— must increase to have positive integer
AC AC
solutions for equation (1-1) ). Using the same way we can prove when n> 3, the value of X
meets X <100, so there are no positive integer solutions of equation (1-1) at Case I1.
Case 111 : In Figure 1-4 we have

dz"
n-1 n-1 n-2 n-2
X +y =X "=y :dN|N:n—1:

n—

z"Inz,

and

n-1

X'yt o =" iz =2 e Xy P = (Inz - 1) X 4y

that is impossible since for any positive integer solutions of equation (1-1) when 2z increases
then the left side is becoming smaller but the right side is becoming bigger(since from Theorem

1.8 we know z>4, so (In VA —1)> 0) which is a contradiction, so there are no positive integer

solutions of equation (1-1) at Case 1.
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n-1

"yl _
y —>1is

N yH _7

So from Case I, Case Il and Case Ill we have the conclusion of -

N yn—l _ gt

Xn—2 + yn—2 _ an

impossible and <1l

2

Theorem 1.6. There are no positive integer solutions for
1"+y"=12".

Proof: Since
1=2"—y" = (z-y\2" + 2" 2y + .t 2y" 2 4y )

where

z-y=1
(2" + 2" 2y ok 2y 2y ) =1
that causes z, Y to be non positive integers, so there are no positive integer solutions for

1"+y"=12".

Theorem 1.7. There are no positive integer solutions for
2"+y"=2".
Proof: Since

2n — Zn _ yn — (Z _ y)(zn—l + Zn_2y+...+ Zyn—2 + yn—l),

z-y=1
anl + Zn72y+”'+ zyn—z + yn—l — 2”
then taking the least value for y =2,z =3, we have

M 2x3 24 42" 20

when N> 2 thatisimpossible. If
7—y=2'

n-1

"y Yy iy =2

i+j=n
i>1

then z>2 and taking the least value of y=2,Z =3, we get
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I 42x3 442" > 2]
with n>2 that is also impossible, so there are no positive integer solutions for

2"+y"=2".

Theorem 1.8. There are no positive integer solutions for equation (1-1) when n — oo and
X,Y,Z inequation (1-1) meet

2y <z <¥2x,
X> 2,
y>1,
z>3.

Proof: Since X"+y"=2z",let x>V, we get

SRb

since
Z>X>Y,

so we have

Z<Q/§X,

Iim(iJ —(lj —oo>1
n—o X X

which means there are no positive integer solutions for equation (1-1) when n—oo. And

and

according to Theorem 1.1, 1.6 we have Xx>2,y>12>3.

z" _
If y”z? then since X >y, so we have

X"+y">z",
that is impossible so we have

V2y<z.

Theorem 1.9. There are no positive integer solutions for equation (1-1) when X, Y,z <100.

Proof: From Theorem1.8, we know Q/Ey <Z< Q/EX , SO we have

18



y < 100
V2

when n =3, we have the smallest values for X, so we get

<X,

(y<%<xj:>(y<79<x),

since from Theorem 1.10 we know X or Y is nota prime number. When n=4 we have

100
y<—=<X|=>(y<84<Xx).
( V2 j ( )
From Theorem 1.10 we only consider the not prime numbers for X, Y. There are below

combinations of X, Y,z when X,Yy,z<100:
(80~99)" +(4~78)" =(81~100)".

Here we take 7" +9" =10" for example to explain how to prove. We plot the graph for this

equation as showed in Figure 1-10.

f(n)

) =T"+9" -10"

Figure 1-10 Graphof f(n)=7"+9"-10"

Obviously for equation f(n)=7"+9" —10" in Figure 1-10, we have 3<n<4 isnotan

integer so there are no positive integer solutions, using this method we have the conclusion of
there are no positive integer solutions for equation (1-1) when z <100.
Using the method of which we prove Theorem 1.6, 1.7 we can prove when X,y <100, there are

no positive integer solutions for equation (1-1).
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Theorem 1.10. There are no positive integer solutions for equation (1-1) when X or Yy isa

prime number .
Proof: When X isa prime number, since

n-1

X=2"—y" = (2= y N2+ 2Ry b 2y Py,

so we have
ged(z -y, x)=x,

which means
Z—-y=>X,
we have
X+y<z,
that contradicts against Theorem 1.1 in which X+ Yy >z .Soitiswith Y.

2. Proving Method

In equation (1-1), let

a= Xn—2

b — yn72

C= Zn—2
we have

ax® +by® =cz’
[ = S = (2-1)
a"?x+bn?y=c"?z

Since we reduce the order of equation so the method is called “Order reducing method for
equations”.

Let X>Vy and

{yzx_f. 2-2)

Z=X+¢

From (2-1) and (2-2) we have

[N =
an?x+b"2(x—f)=c

ax’ +b(x— f F =c(x+ef
n-1
=c"2(x+e)

and

(a+b—c)x® —2(bf +ce)x+(bf 2 —ce?)=0
n-1 n-1 n-1 ’
am2x+bm2(x—f)-c2(x+e)=0

20



the roots are

(bf +ce)/(bf +cef —(a+b—c)bf2—ce?)
X= Xn—2 + yn—2 _ Zn—2 ! (2_3)

and

n-1 n-1

ch-2e+hn2 f bfy + cez
X= n-1 n-1 n-1 = n-1 n-1 n-1" (2_4)
X +Yy A

an? 4z _ g2

There are two cases for bf 2, ce? when bf 2 >ce® and bf? <ce?.

Case A: If bf %> ce?, from (2-3) when

(bf +ce)++/(bf +cef —(a+b—c)bf2—ce?)
Xn—Z + yn—2 _ Zn—Z !

From Theorem 1.4 we knowa+b—c=x"?+y"?—-2"%>0, so we have

2(bf +ce)
anz + yn*2 _ Zn*

2

and also from Theorem 1.4 we have X"+ y" ™" —z"" >0, compare to (2-4) we get

bfy+cez  _  2(bf +ce)
anl + yn—l _ anl - anz + yn72 _ Zn*

7

n-1 n-1

5 <1, so we have

+y"t -z
n-2 + yn—2 _ Zn—

From Theorem 1.5 we know

X
bfy + cez < 2(bf +ce)

that is impossible since from Theorem 1.8 we know y>2 and z>3.

When

(bf +ce)—+/(of +ce) —(a+b—c)bf > —ce?)
Xn—2 + yn—2 _ Zn—Z !

we have

bf +ce
Xn—2 + yn—2 _ an

2

compare to (2-4) we get
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bfy + cez < bf +ce

Xn—l + yn—l _ Zn—l - Xn—2 + yn—2 _ Zn—2 '

From Theorem 1.5 we have

bfy + cez <bf +ce

that is impossible since from Theorem 1.8 we have already known y>2 and z>3.

Case B: If bf % <ce?, from (2-3) when

(bf +ce)++/(bf +cef +(a+b—c)ce’—bf?)
Xn—2 + yn—Z _ Zn—2 !

we can prove (bf +ce)’ >(a+b— C)(Ce2 —bf 2) since if not we have

(bf +ce)’ <(a+b—c)(ce’ —bf?)
and

[(2b+a)—c]bf 2 + 2bfce + [2c — (a+ b)|ce? < 0
that is impossible since a+b—-c>0 and c¢c>a,c>b,2c— (a + b)> 0. Sowe have

(of + ce)(1+ V2 )

X<
X2 4 yn—z _ g2

compare to (2-4) we get

bfy +cez_ (bf +ce)1++2)

Xn—l + yn—l _ Zn—l Xn—2 + yn—2 _ Zn—2 '

From Theorem 1.5 we have

bfy +cez < (bf + ce)(1+ \/E)< 2.5(bf +ce)
and

bf (x— f) +ce(x +e) < 2.5(bf +ce)
that leads to

2 2 2 2
_| 2:50f +ce)+bf® —ce? . ce’—bf }2.5

bf +ce " bf +ce

where possible values for X are 1, 2 but according to Theorem 1.6, 1.7 we know there are no
positive integer solutions.

When
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(bf +ce)—/(of +cef +(a+b—c)ce’—bf?)

Xn—Z + yn—2 _ Zn—Z
is not possible since X <0.
Obviously we have
XLy yn—l _ g0t
bfy +cez < 2.5 — (bf +ce),

X"P 4yt -z

from Theorem 1.9 we know X, Y,z <100 there are no positive integer solutions for equation

(1-1), so we have

BD B Xn—l + yn—l _ Zn—l

= >40,
AC X" 24 yH _ "2

which must be satisfied to have positive integer solutions for equation (1-1).

Now we have completely solved no positive integer solutions for equation (1-1) when n> 2
using “Order reducing method for equations”.

3. Conclusion

Through the above contents we can see clearly that the proving of Fermat's Last Theorem is just a
problem of elementary mathematics. “Order reducing method for equations” that the author
invented is a very effective method in the proving of Fermat's Last Theorem and the author’s
technique in which lety = x - fand z = x + e is a very important step for solving.

Fermat's Last Theorem is a problem that has lasted for about 380 years. Proving methods are not
important but the theorem’s correctness is very necessary because many useful inferences can be
deduced that are obviously better than “conjectures”.

The author has been working on proving of Fermat's Last Theorem for quite some times (253 days)
without any reference and many methods have been thought about, for example “Method of prime
factorization” but not work. So the author has already known that there are no ways to solve

except “Solving high order equations” which is also an important aspect in solving other
mathematic problems.
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