Title: Golden Pattern Author: Gabriel Martin Zeolla

Teacher, Writer and Independent researcher from Argentina

Comments: 7 pages, 6 figures Subj-class: Theory number gabrielzvirgo@hotmail.com

<u>Abstract</u>: This paper develops the divisibility of the so-called **Simple Primes numbers** (1 to 9), the discovery of a pattern to infinity, the demonstration of the Inharmonics that are 2,3,5,7 and the harmony of 1. The discovery of infinite harmony represented in fractal numbers and patterns. This is a family before the prime numbers.

Simple Prime Number

In order to understand how simple Primes numbers work in this text, the approach is partial, only use divisible digits from 1 to 9. For a number to be considered Simple Prime by dividing it by 2, 3, 4, 5, 6, 7, 8, 9 must give a decimal result.

Prime numbers are those that are only divisible by themselves and by unity. Those that can be divided by other numbers from (2 to 9) are called Simple Compounds

Simple Prime Number $\in \mathbb{Z}$

The simple prime numbers maintain equivalent proportions in the positive numbers and also in the negative numbers.

In this paper the demonstrations are made with numbers $\in \mathbb{N}$

The Golden Pattern

The Pattern discovered is from 1 to 630. It repeats itself to infinity respecting that proportion. The Golden Pattern consists of a rectangle of 6 columns x 105 lockers.

The Prime numbers fall into only two columns in that of 1 (Column A) and 5 (column B) They are yellow. The compounds are red.

The Golden Pattern is divided into three Sectors. From 1 to 210, from 211 to 420 and from 421 to 630 proportional. These are identical, the only variable being their reductions. Each sector is divided into two separate portions. So there are 6 parts in the pattern.

The Golden Pattern have so many amazing equivalences that dazzle by their order, harmony, beauty and balance. The quantities are divided into two similar columns. Their quantities are the same, their proportions as well. Adding the Primal Simple Numbers from each column we get perfect equality to infinity.

Pattern (1 to 630)	Sector 1 (1 to 210) Sector. 2 (211 to 420) Sector. 3 (421 to 630).	Portion 1 (1 to 105) Portion 2 (106 to 210) Portion 3 (211 to 315) Portion 4 (416 to 420)
		Portion 5 (421 to 525)
		Portion 6 (526 to 630)

In each Portion there are 24 simple Prime numbers, in each Sector there are double, 48 prime numbers. And in the Total Pattern there is the triple, Then there are 144 Simple Primes.

Nps= Simple Prime Numbers

Portion 1 $\sum_{Nps \ge 1}^{105} = 24$ Simple Prime Numbers	Portion 2 $\sum_{Nps \ge 106}^{210} = 24$ Simple Prime Numbers
Portion 3 $\sum_{Nps \ge 211}^{315} = 24 Simple Prime Numbers$	Portion 4 $\sum_{Nps \ge 316}^{420} = 24 Simple Prime Numbers$
Portion 5 $\sum_{Nps \ge 421}^{525} = 24 Simple Prime Numbers$	Portion 6 $\sum_{Nps \ge 526}^{630} = 24 Simple Prime Numbers$

Golden Pattern
$$\sum_{Nps\geq 1}^{630} = 144$$
 Simple Prime Numbers

In each Pattern there are two columns A and B, in each column there are 72 prime numbers per Pattern, there are also 24 by Sector and 12 by Portion. Columns A and B work as if they were complementary opposites since their total results generate an equilibrium to infinity.

The table on the right shows the reductions of the Simple Primary Numbers in orange, the reductions complement each other between each Sector.

Graph of the two Portions of the Sector 1of the Golden Pattern

Α				В	
1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36
37	38	39	40	41	42
43	44	45	46	47	48
49	50	51	52	53	54
55	56	57	58	59	60
61	62	63	64	65	66
67	68	69	70	71	72
73	74	75	76	77	78
79	80	81	82	83	84
85	86	87	88	89	90
91	92	93	94	95	96
97	98	99	100	101	102
103	104	105	106	107	108
109	110	111	112	113	114
115	116	117	118	119	120

121	122	123	124	125	126
127	128	129	130	131	132
133	134	135	136	137	138
139	140	141	142	143	144
145	146	147	148	149	150
151	152	153	154	155	156
157	158	159	160	161	162
163	164	165	166	167	168
169	170	171	172	173	174
175	176	177	178	179	180
181	182	183	184	185	186
187	188	189	190	191	192
193	194	195	196	197	198
199	200	201	202	203	204
205	206	207	208	209	210

Characteristics of the Pattern

The values in column **(A)** are always reduced to combinations of 1, 4 and 7. The right column **(B)** is always reduced to combinations of 2, 5 and 8.

The yellow ones are the primes, the red ones are Numbers Compounds. The reduction comes from the sum of their digits.

The N° 2, 3, 5, 7 Special Simple Primes Numbers

If these numbers were primes would destroy the proportions, the beauty and the harmony found to infinity, in fact the numbers Simple Primes have an exact equivalence between the amount that are distributed in column A and the column B, 72 N° Simple Primes of Each side, adding 144 in the Golden Pattern.

These two opposing but complementary columns have a perfect balance.

In turn the Three Sectors of the Golden Pattern are Triplets, this validates the fact that they are not Primes.

The 2, 3, 5 and 7 are divisible by themselves and by one and the other, but do not meet a fundamental aspect, which is to be in harmony like the rest of the numbers to infinity. The 7 is not Prime because in the first pattern from 1 to 630 it is reduced to 7 but in the following pattern its place would be 637, which is a multiple of 7 (7x91). The same thing happens to infinity every 630 numbers.

With the 5. In the following pattern his place occupies the 635, which is multiple of 5. (5x127)

The 2 is in another column, the place of 2 is occupied by 632 which is even and multiple of 2.

In 3 it is not within the reduction of values. (1, 4, 7 or 2, 5, 8) and in the following pattern 633 is formed instead, which is a multiple of 3.

This shows that Simple N Primes are Always Odd.

N ° 1 Special Simple Prime Numbers.

The 1 is Simple Prime Number, since the subsequent reductions in the Patterns to infinity in its place always reduce to 1 and maintain a precise equivalence and proportions.

631 = 1 This is the first Number of Pattern 2

1261 = 1 This is the first Number of Pattern 3

1891= 1 This is the first Number of Pattern 4

Golden Pattern complete divided into its three identical Sectors

Each Sector operates every 210 numbers, their positions match in triplicate, the only variable are their reductions,

We can see in the graph that the reductions are combined in the same position and locker on the left in reductions 147 and on the right in 258

Example

1=1, 211=4, 421=7 (Left) 11=2, 221=5, 431=8 (right)

Red.	Sector 1	Red. F	Red.	Sector 2	Red.	Red.	Sector 3	Red.
1	1 2 3 4 5	6	4 21	11 212 213 214 215	216	7 421	422 423 424 425	426
	7 8 9 10 11	12 2	21	17 218 219 220 221	222 5	427	7 428 429 430 431	432 8
4	13 14 15 16 17	7 18 8	7 22	23 224 225 226 227	228 2	1 433	434 435 436 437	438 5
1	19 20 21 22 23	24 5	4 22		234 8	7 439	440 441 442 443	444 2
	25 26 27 28 29	30 2	23	35 236 237 238 239	240 5	445	446 447 448 449	450 8
4	31 32 33 34 35	36	7 24	11 242 243 244 245	246	1 451	452 453 454 455	456
1	37 38 39 40 41	42 5	4 24	17 248 249 250 <u>251</u>	252 8	7 457	7 458 459 460 461	462 2
7	43 44 45 46 47	<mark>7 48</mark> 2	1 25	53 254 255 256 <u>257</u>	258 5	4 463	3 464 465 466 467	468 8
	49 50 51 52 53	5 <mark>4</mark> 8	25	59 260 261 262 <mark>263</mark>	264 2	469	470 471 472 473	474 5
	55 56 57 58 59	60 5	26	55 266 267 268 <mark>269</mark>	270 8	475	476 477 478 479	480 2
7	61 62 63 64 65	66	1 27	<mark>71</mark> 272 273 274 275	276	4 481	482 483 484 485	486
4	67 68 69 70 71	<mark>72</mark> 8	7 27	77 278 279 280 281	282 2	1 487	7 488 489 490 49 1	492 5
1	73 74 75 76 77	7 78	4 28	33 284 285 286 287	288	7 493	494 495 496 497	498
7	79 80 81 82 83	84 2	1 28	39 290 291 292 293	294 5	4 499	500 501 502 503	504 8
	85 86 87 88 89	<mark>90</mark> 8	29	95 296 297 298 299	300 2	505	5 506 507 508 509	510 5
	91 92 93 94 95	96	30	01 302 303 304 305	306	511	1 512 513 514 515	516
7	97 98 99 100 101	1 <mark>02</mark> 2	1 30	0 <mark>7 308 309 310 311</mark>	312 5	4 517	7 518 519 520 <u>521</u>	522 8
4	103 104 105 106 107	<mark>7 108</mark> 8	7 31	13 314 315 316 317	318 2	1 523	3 524 525 526 <u>527</u>	528 5
1	109 110 111 112 113	3 114 5	4 31	<mark>19</mark> 320 321 322 323	324 8	7 529	530 531 532 533	534 2
	115 116 117 118 119	120	32	25 326 327 328 329	330	535	5 536 537 538 539	540
4	121 122 123 124 125	126	7 33	31 332 333 334 335	336	1 541	542 543 544 545	546
1	127 128 129 130 131	132 5	4 33	37 338 339 340 341	342 8	7 547	7 548 549 550 551	552 2
	133 134 135 136 137	<mark>7 138</mark> 2	34	13 344 345 346 <u>347</u>	348 5	553	554 555 556 557	558 8
4	139 140 141 142 143		7 34		354 2	1 559	560 561 562 563	564 5
	145 146 147 148 149		35	55 356 357 358 359	360 8	565	5 566 567 568 569	570 2
7	151 152 153 154 155	156	1 36	51 362 363 364 365	366	4 571	L 572 573 574 575	576
4	157 158 159 160 161	162	7 36		372	1 577		582
1	163 164 165 166 167		4 37		378 8	7 583		588 2
7	169 170 171 172 173		1 37		384 5	4 589		594 8
	175 176 177 178 179		38		390 2	595		600 5
1	181 182 183 184 185		4 39		396	7 601		606
7	187 188 189 190 191		1 39		402 5	4 607		612 8
4	193 194 195 196 197		7 40		408 2	1 613		618 5
1	199 200 201 202 203		4 40		414	7 619		624
	205 206 207 208 <mark> 209</mark>	210 2	41	15 416 417 418 419	420 5	625	6 626 627 628 629 629 629 629 629 629 629 629 629 629	630 8

The units of each number of the 3 sectors are equal and occupy the same position.

Red.= Sum of digits and reduction of digits

Both patterns are equal to infinity

Red.		Gol	den l	<u>ם</u> Patter		allei	Red.	re equ Red			wina	Patt	ern		Red.
1	1 7	2	3	10	 5 11	6 12	2	1	631 637	632	633	634	635 641	636 642	2
4	13	14	15	16	17	18	8	4	643	644	645	646	647	648	8
1	19 25	20 26	21 27	22 28	23 29	24 30	5 2	1	649 655	650 656	651 657	652 658	653 659	654 660	5 2
4	31 37	32	33 39	34 40	35 41	36 42	5	1	661 667	662 668	663 669	664 670	665 671	666 672	5
7	43 49	44 50	45 51	46 52	47 53	48 54	2 8	7	673 679	674 680	675 681	676 682	677 683	678 684	2 8
7	55 61	56	57	58	59 65	60	5	7	685 691	686	687 693	688	689 695	690	5
7 4	67	62 68	63 69	64 70	71	66 72	8	7 4	697	692 698	699	694 700	701	696 702	8
7	73 79	74 80	75 81	76 82	77 83	78 84	2	7	703 709	704 710	705 711	706 712	707 713	708 714	2
	85 91	86 92	87 93	88 94	89 95	90 96	8		715 721	716 722	717 723	718 724	719 725	720 726	8
7	97 103	98 104	99 105	100 106	101 107	102 108	2 8	7	727 733	728 734	729 735	730 736	731 737	732 738	2 8
1	109	110	111	112	113	114	5	1	739	740	741	742	743	744	5
4	115 121	116 122	117 123	118 124	119 125	120 126		4	745 751	746 752	747 753	748 754	749 755	750 756	
1	127 133	128 134	129 135	130 136	131 137	132 138	5 2	1	757 763	758 764	759 765	760 766	761 767	762 768	5 2
4	139 145	140 146	141 147	142 148	143 149	144 150	8 5	4	769 775	770 776	771 777	772 778	773 779	774 780	8 5
7	151	152	153	154	155	156		7	781	782	783	784	785	786	J
1	157 163	158 164	159 165	160 166	161 167	162 168	5	1	787 793	788 794	789 795	790 796	791 797	792 798	5
7	169 175	170 176	171 177	172 178	173 179	174 180	2 8	7	799 805	800 806	801 807	802 808	803 809	804 810	2 8
1 7	181 187	182 188	183 189	184 190	185 191	186 192	2	1 7	811 817	812 818	813 819	814 820	815 821	816 822	2
4	193	194	195	196	197	198	8	4	823	824	825	826	827	828	8
1	199 205	200 206	201 207	202	203 209	204 210	2	1	829 835	830 836	831 837	832 838	833 839	834 840	2
4	211 217	212 218	213 219	214 220	215 221	216 222	5	4	841 847	842 848	843 849	844 850	845 851	846 852	5
7	223 229	224 230	225 231	226 232	227 233	228 234	2 8	7	853 859	854 860	855 861	856 862	857 863	858 864	2 8
7	235	236	237	238	239	240 246	5	7	865 871	866 872	867 873	868 874	869 875	870 876	5
4	247	248	249	250	251	252	8	4	877	878	879	880	881	882	8
1	253 259	254 260	255 261	256 262	257 263	258 264	5 2	1	883 889	884 890	885 891	886 892	887 893	888 894	5 2
1	265 271	266 272	267 273	268 274	269 275	270 276	8	1	895 901	896 902	897 903	898 904	899 905	900 906	8
7	277 283	278 284	279 285	280 286	281 287	282 288	2	7	907 913	908 914	909 915	910 916	911 917	912 918	2
1	289	290	291	292	293	294	5	1	919	920	921	922	923	924	5
	295 301	296 302	297 303	298 304	299 305	300 306	2		925 931	926 932	927 933	928 934	929 935	930 936	2
7	307 313	308 314	309 315	310 316	311 317	312 318	5 2	7	937 943	938 944	939 945	940 946	941 947	942 948	5 2
4	319 325	320 326	321 327	322 328	323 329	324 330	8	4	949 955	950 956	951 957	952 958	953 959	954 960	8
7	331 337	332 338	333 339	334 340	335 341	336 342	8	7	961 967	962 968	963 969	964 970	965 971	966 972	8
	343	344	345	346	347	348	5		973	974	975	976	977	978	5
7	349 355	350 356	351 357	352 358	353 359	354 360	2 8	7	979 985	980 986	981 987	982 988	983 989	984 990	2 8
1 7	361 367	362 368	363 369	364 370	365 371	366 372		1 7	991 997	992 998	993 999	994 1000	995 1001	996 1002	
4	373 379	374 380	375 381	376 382	377 383	378 384	8 5	4	1003 1009	1004 1010	1005 1011	1006 1012	1007 1013	1008 1014	8 5
	385	386	387	388	389	390	2		1015	1016	1017	1018	1019	1020	2
1	391 397	392 398	393 399	394 400	395 401	396 402	5	1	1021 1027	1022 1028	1023 1029	1024 1030	1025 1031	1026 1032	5
7 4	403 409	404	405 411	406 412	407 413	408 414	2	7 4	1033 1039	1034 1040	1035 1041	1036 1042	1037 1043	1038 1044	2
7	415 421	416 422	417 423	418 424	419 425	420 426	5	7	1045 1051	1046 1052	1047 1053	1048 1054	1049 1055	1050 1056	5
1	427	428	429 435	430	431 437	432 438	8 5	1	1057 1063	1058 1064	1059 1065	1060 1066	1061 1067	1062 1068	8 5
7	439	440	441	442	443	444	2	7	1069	1070	1071	1072	1073	1074	2
1	445 451	446 452	447 453	448 454	449 455	450 456	8	1	1075 1081	1076 1082	1077 1083	1078 1084	1079 1085	1080 1086	8
7	457 463	458 464	459 465	460 466	461 467	462 468	2 8	7 4	1087 1093	1088 1094	1089 1095	1090 1096	1091 1097	1092 1098	2 8
	469 475	470 476	471 477	472 478	473 479	474 480	5 2		1099 1105	1100 1106	1101 1107	1102 1108	1103 1109	1104 1110	5 2
4	481 487	482 488	483 489	484 490	485 491	486 492	5	4	1111 1117	1112 1118	1113 1119	1114 1120	1115 1121	1116 1122	5
7	493	494	495	496	497	498		7	1123	1124	1125	1126	1127	1128	
4	499 505	500 506	501 507	502 508	503 509	504 510	8 5	4	1129 1135	1130 1136	1131 1137	1132 1138	1133 1139	1134 1140	8 5
4	511 517	512 518	513 519	514 520	515 521	516 522	8	4	1141 1147	1142 1148	1143 1149	1144 1150	1145 1151	1146 1152	8
1 7	523 529	524 530	525 531	526 532	527 533	528 534	5 2	1 7	1153 1159	1154 1160	1155 1161	1156 1162	1157 1163	1158 1164	5 2
	535	536	537	538	539	540			1165 1171	1166	1167	1168	1169	1170	
7	541 547	542 548	543 549	550	545 551	546 552	2	7	1177	1172	1173 1179	1174 1180	1175	1176 1182	2
1	553 559	554 560	555 561	556 562	557 563	558 564	8 5	1	1183 1189	1184 1190	1185 1191	1186 1192	1187 1193	1188 1194	8 5
4	565 571	566 572	567 573	568 574	569 575	570 576	2	4	1195 1201	1196 1202	1197 1203	1198 1204	1199 1205	1200 1206	2
1 7	577 583	578 584	579 585	580 586	581 587	582 588	2	1 7	1207 1213	1208 1214	1209 1215	1210 1216	1211 1217	1212 1218	2
4	589	590	591	592	593	594	8	4	1219	1220	1221	1222	1223	1224	8
7	595 601	596 602	597 603	598 604	599 605	600 606	5	7	1225 1231	1226 1232	1227 1233	1228 1234	1229 1235	1230 1236	5
4	607 613	608 614	609 615	610 616	611 617	612 618	8 5	4 1	1237 1243	1238 1244	1239 1245	1240 1246	1241 1247	1242 1248	8 5
7	619 625	620 626	621 627	622 628	623 629	624 630	8	7	1249 1255	1250 1256	1251 1257	1252 1258	1253 1259	1254 1260	8
				020											

Addition Simple Primes Numbers by Portion in (A + B)

Nps= Simple Prime Numbers

$$\sum_{Nps \ge 1}^{105} = 1248$$

$$\sum_{Nps \ge 106}^{210} = 3792$$
 Diff. 2544

$$\sum_{Nps \ge 211}^{315} = 6288$$
 Diff. 2496

$$\sum_{Nps \ge 316}^{420} = 8832$$
 Diff. 2544

$$\sum_{\text{News}=321}^{525} = 11328$$
 Diff. 2496

$$\sum_{Nps \ge 526}^{630} = 13872$$
 Diff. 2544

Golden Pattern
$$\sum_{Nps \ge 1}^{630} = 45360$$

The reduction of 2544 = 2 + 5 + 4 + 4 = 15 = 1 + 5 = 6

The reduction of 2596 = 2 + 4 + 9 + 6 = 21 = 2 + 1 = 3

The reduction of totals always gives **9** in all cases if we add 630 numbers

The differences are repeated to infinity if we add 105 numbers

Addition Simple Primes Number by **Sector** in (A+B):

$$\sum_{Nps \ge 1}^{210} = 5040$$
 48 Simple Prime numbers

$$\sum_{Nps \ge 211}^{420} = 15120$$
 Diff. 10080, 48 Simple Prime numbers

$$\sum_{Nps \ge 421}^{630} = 25200 \qquad \text{Diff. } 10080, \qquad 48 \, Simple \, Prime \, numbers$$

$$\sum_{N=-2.1}^{630} = 45360$$
 144 Simple Prime numbers

Each SECTOR is multiple x3, x5 with respect to the first. Also to infinity if we are adding 210 next numbers (x7, x9, x11, etc.) Although Prime numbers only increase by 48. (Multiply x2, x3, x4, etc.) 45360= 5040 x9.

Addition Simple Primes Numbers by column (A and B) and Sector

Nps= Simple Prime Numbers

$$Column \ A \sum_{Nps \ge 1}^{210} = 2520 \quad 24 \ Simple \ Prime \ Numbers$$

$$Column \ B \sum_{Nps \ge 1}^{210} = 2520 \quad 24 \ Simple \ Prime \ Numbers$$

$$Column \ A \sum_{Nps \ge 211}^{420} = 7560 \quad 24 \ Simple \ Prime \ Numbers$$

$$Column \ B \sum_{Nps \ge 211}^{420} = 7560 \quad 24 \ Simple \ Prime \ Numbers$$

$$Column \ B \sum_{Nps \ge 211}^{630} = 12600 \quad 24 \ Simple \ Prime \ Numbers$$

$$Column \ B \sum_{Nps \ge 421}^{630} = 12600 \quad 24 \ Simple \ Prime \ Numbers$$

$$Column \ B \sum_{Nps \ge 421}^{630} = 12600 \quad 24 \ Simple \ Prime \ Numbers$$

144 Simple Primes **Total= 45360** Each column is multiple x3, x5. Etc.

Simple Prime Numbers by Pattern

Golden Pattern
$$\sum_{Nps \ge 1}^{630} 144$$
 Simple Prime numbers

Pattern 2
$$\sum_{Nps \ge 1}^{1260}$$
 288 Simple Prime numbers

Pattern 3
$$\sum_{Nps \ge 1}^{1890} 432$$
 Simple Prime Numbers

It is repeated to infinity every 630 numbers. The pattern is multiplied by x2, x3, x4, x5, etc.

Addition Simple Primes Numbers by Pattern

Golden Pattern
$$\sum_{Nps\geq 1}^{630} 144$$
 Simple Prime numbers = 45360

Pattern 2
$$\sum_{Nps \ge 631}^{1260} 144$$
 Simple Prime numbers = 136080

Difference with the Golden Pattern is x3

Pattern 3
$$\sum_{Nps \ge 1261}^{1890}$$
 144 Simple Prime numbers = 226800

Difference with the Golden Pattern is x5

The model continues to multiply and is repeated to infinity every 630 numbers. (Odd Multiples for totals, x3, x5, x7, etc.). Difference with the previous value in all cases is 90720.

Addition of Compounds numbers per Pattern

Nc= Compounds Numbers

Pattern 1
$$\sum_{Nc>1}^{630}$$
 486 Compounds numbers = 153405

Pattern 2
$$\sum_{Nc>631}^{1260}$$
 486 Compounds numbers = 459585

Difference 306180

Pattern 3
$$\sum_{Nc>1261}^{1890}$$
 486 Compounds numbers = 765765

Difference 306180

Total sums of Compounds numbers in columns (A and B) separately in the Golden Pattern

630	630
Pattern 1, Column A $\sum_{Nc \ge 1}$ 33 Compounds = 10185	Pattern 1, Column B $\sum_{Nc \ge 1}$ 33 Compounds = 10605
Pattern 2, Column A $\sum_{i=0}^{1260}$ 33 Compounds = 30975	Pattern 2, Column B $\sum_{i=0}^{1260}$ 33 Compounds = 31395
Nc≥631 1890	Nc≥631 1890
Pattern 3, Column A $\sum_{i=0}^{1890}$ 33 Compounds = 51765	Pattern 3, Column B $\sum_{n=1}^{1890}$ 33 Compounds = 52185

1 to 630 Column A 33 compounds = 10185

Column B 33 compounds = 10605

Total 2079

631 to 1260 Column A 33 compounds = 30975 Diff. with the first 20790 in A Column B 33 compounds = 31395 Diff. with the first 20790 in B

Total 62370

1261 to 1890 Column A 33 compounds = 51765 Diff. with the first 20790 in A Column B 33 compounds = 52185 Diff. with the first 20790 in B

Total 103950

Odd Multiples for totals, x3, x5, etc.

20790*3=62370

20790*5=103950

Total compounds numbers in columns (A + B) of the Golden Pattern1 up to 630

Golden Pattern,
$$Column\ A + B \sum_{Nc \ge 1}^{630} 66\ Compounds\ numbers = 20790$$

Pattern 2, Column
$$A + B \sum_{Nc \ge 631}^{1260} 66 \text{ Compounds } numbers = 62370$$

Diff. with the first X3

Pattern 3, Column
$$A + B \sum_{Nc \ge 1261}^{1890} 66 \text{ Compounds } numbers = 103950$$

Diff. with the first X5

There is also a difference between each Pattern of 41580 We could keep multiplying, x7, x9, x11, etc. To infinity every 630 more numbers.

Sum of compounds numbers and Simple Primes Numbers

We add every 210 numbers all the values.

The sum of each SECTOR gives us a total:

n= numbers

$$\sum_{n \ge 1}^{210} = 22155$$
 (210 Numbers)

$$\sum_{n\geq 211}^{420} = 66255$$
 (210 Numbers) Difference with the former of 44100

$$\sum_{n>421}^{630} = 110355$$
 (210 Numbers) Difference with the former of 44100

Golden Pattern
$$\sum_{n>1}^{630} = 198765$$

The reduction of 22155, 66255 and 110355 in all three cases is reduced to 6.

210 is reduced to 3

The difference of 44100 is also reduced to 9 and this is repeated to infinity every 210 subsequent numbers

Lockers in A and B for Simple Primes Numbers

The three sectors are identical only vary their reductions

The pattern, column A, Sector 1 (from 1 to 210) has 24 Primes which are grouped by column of one, of to two, of to three or of four.

Forming the following sequence.

Column A 1,2,3,4,3,2,1,4,4.

The pattern, column B, Sector 1 (from 1 to 210) has 24 Primes which are grouped by column of one, of to two, of to three or of four.

Forming the following sequence

Column B 4,4,1,2,3,4,3,2,1

If we now observe and compare these frequencies we will realize that they are mirrored.

1,2,3,4,3,2,1,4,4 4,4,1,2,3,4,3,2,1

This detail is impressive. This is repeated in the three sectors of the Golden Pattern.

Reductions of the N° Simple Primes

Golden Pattern Reduction Values for Column A (1 to 630)

Presented in three rows (although it is only 1 row of 72 digits)

The funny thing is that each row coincides with the bottom one in the order 1, 4, 7 the values are never repeated per unit, ten, hundred, or unit thousand. These are combined. The pattern matches the location format every 210 numbers but to be exact it must be up to 630. In this way all reductions coincide to infinity.

Presentation of the reductions in the 3 Sectors of Pattern in column A

1	41	417	7417	741	41	4	7417	1741
4	74	741	1741	174	74	7	1741	4174
7	17	174	4174	417	17	1	4174	7417

There are 9 combinations. We see how 1, 4 and 7 are combined not only horizontally but also very accurately vertical without repeating. We can also observe that (1, 4, 7) is repeated 9 times, while (4, 7, 1) is repeated 8 times and (7, 1, 4) is repeated 7 times

The same happens in column B.

2852	5285	8	28	285	5285	528	28	2
5285	8528	2	52	528	8528	852	52	5
8528	2852	5	85	852	2852	285	85	8

Both graphics are mirrored

There are 9 combinations. 2 of a digit, 2 of two digits, 2 of three digits and three of four digits. We see how 2, 5 and 8 combine not only horizontally but also very accurately vertical without repeating. We can also observe that (2, 5, 8) is repeated 9 times, while (8, 2, 5) is repeated 8 times and (5, 8, 2) is repeated 7 times.

Adding both reductions (1, 4, 7 and 2, 5, 8) on each side gives us: 147 + 258 = 405 = 9

Formula

Get Simple Primes number

We must add 630 to each simple prime number of the Golden Pattern to obtain others.

Nps=x+630*p

x= (1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209, 211, 221, 223, 227, 229, 233, 239, 241, 247,....,629.)

p= Pattern Number

Nps= Simple Primes number

Example whit Pattern 1 and simple prime 11

Nps=11+630*1=**641**

Example whit Pattern 2 and simple prime 11

Formula

Calculation of Simple Primes number

The formula for calculating how many prime numbers there is, is very simple. We use a simple three rule since having the Master everything becomes very simple

Example how many prime numbers there are up to 6300?

630 = 144 Simple Primes Numbers

6300 = x

X= (6300 . 144)/630= 1440

Calculate Simple Prime Numbers to determine where the pattern is located

N° or= would be the order number in which it would be located in the Pattern

N° p = would be the Pattern number.

X = would be the number of which we want information

Formula N°or= x +-630*(N°p-1) Formula N°p = $\frac{x}{630}$

Example: 126

N°p = $\frac{1261}{630}$ = 2.0015. (We round up, 3)

 $N^{\circ}p$ = This number is in Pattern 3

 N° or = x+ -630*(N° p-1)

 N° or = 1261 + -630* (3-1)

N° or = 1261 + -630*2 =

N° or = 1261+ 1260 = 2522 This out of the values 1 to 630

 N° or = 1261-1260 = 1 This would be the location of the pattern

Graphic

Cropped graph of comparison between simple prime numbers and prime numbers. We note that all prime numbers are always Simple Prime numbers.

		Simp	le Pr	ime	numb	ers		Prime Numbers								
								,								
7	421	422	423	424	425	426			7	421	422	423	424	425	426	
	427	428	429	430	431	432	8			427	428	429	430	431	432	8
1	433	434	435	436	437	438	5		1	433	434	435	436	437	438	
7	439	440	441	442	443	444	2		7	439	440	441	442	443	444	2
	445	446	447	448	449	450	8			445	446	447	448	449	450	8
1	451	452	453	454	455	456				451	452	453	454	455	456	
7	457	458	459	460	461	462	2		7	457	458	459	460	461	462	2
4	463	464	465	466	467	468	8		4	463	464	465	466	467	468	8
	469	470	471	472	473	474	5			469	470	471	472	473	474	
	475	476	477	478	479	480	2			475	476	477	478	479	480	2
4	481	482	483	484	485	486				481	482	483	484	485	486	
1	487	488	489	490	491	492	5		1	487	488	489	490	491	492	5
7	493	494	495	496	497	498				493	494	495	496	497	498	
4	499	500	501	502	503	504	8		4	499	500	501	502	503	504	8
	505	506	507	508	509	510	5			505	506	507	508	509	510	5
	511	512	513	514	515	516				511	512	513	514	515	516	
4	517	518	519	520	521	522	8			517	518	519	520	521	522	8
1	523	524	525	526	527	528	5		1	523	524	525	526	527	528	
7	529	530	531	532	533	534	2			529	530	531	532	533	534	
	535	536	537	538	539	540				535	536	537	538	539	540	

The product of 7 consecutive integers is divisible by 7.

Conclusion

The Golden Pattern is the confirmation of an order to infinity in equilibrium, each column is in harmony and balance with the other, the demonstration of the inharmony of 2, 3, 5 and 7 is very great. The number 1 is necessary and generates balance. Simple Prime Numbers are a family prior to the Classical Prime Numbers.

All Prime Numbers are in this family of Simple Primal Numbers, although each time with less presence towards infinity. This generates that as the Simple Primes increase towards infinity the Primal Numbers approach 0 towards infinity. Both are infinite but in opposite directions. The simple prime numbers maintain equivalent proportions also in the negative numbers.

This Paper is extracted from my book The Golden Pattern ISBN 978-987-42-5202-9, Buenos Aires, Argentina.

References

Elementary arithmetic Enzo R. Gentile (1985) OEA.

Theory of numbers Burton W. Jones.

Fundamentals of Number Theory Iván Vinográdov

Introduction to the theory of numbers Niven y Zuckermann

Dickson L. E., History of the Theory of Numbers, Vol. 1