The last theorem of Fermat. Correct proof

In Memory of my MOTHER

The contradiction:

In the equation $A^n = A^n + B^n$ [...=(A+B)R], the number R has two values.

All calculations are done with numbers in base n, a prime number greater than 2.

Notations:

A', A", $A_{(t)}$ – the first, the second, the t-th digit from the end of the number *A*; A₂, A₃, A_[t] is the 2-, 3-, t-digit ending of the number *A* (i.e. $A_{[t]} = A \mod n^t$); nn=n*n=n^2=n^2.

Definitions:

<u>The "power" ending</u> $A_{[t]}$ of t (t>1) digits is the ending $A^{n^{t-1}}_{[t]}$ of some natural number $A=A^{n^{t-1}}+Dn^{t}$, where A' is the last digit of A. <u>The "one" ending</u> $r_{[t]}$ is the t-digits ending of a number r, equal to 1.

The FLT is proved for the **base** case (see: <u>http://vixra.org/abs/1707.0410</u>):

L1°) Lemma. The digit $A^{n}_{(t+1)}$ is determined by the ending $A_{[t]}$ in a unique way (this is a consequence of the Newton binomial). Which means that the endings A^{n}_{2} , $A^{n^{2}}_{3}$, and so on do not depend on the digit A" and are only a function of the digit A'.

L1.1°) Corollary: if $A_{[t+1]}=d^{n^{A_t}}_{[t+1]}$, where $d_2=e^n_2$, then $A_{[t+2]}=e^{n^{A_{\{t+1\}}}}_{[t+2]}$ and $A^{n^{-1}}_{[t+2]}=A^{n^{-1}}_{[t+2]}=1$.

L1.2°) Moreover, $g^{n-1}_{[t+2]}=1$, where g is any factor of the number A and g' is any factor of the number A'.

L1.3°) If $C_{[t]}=C^{\circ}_{[t]}$, $A_{[t]}=A^{\circ}_{[t]}$, $B_{[t]}=B^{\circ}_{[t]}$ and $C^{n}_{[t+1]}=A^{n}_{[t+1]}+B^{n}_{[t+1]}$, then $C^{\circ n}_{[t+1]}=A^{\circ n}_{[t+1]}+B^{\circ n}_{[t+1]}$ (a consequence of **L1.1**° and Newton's binomial).

L2°) <u>**The lemma**</u>. t-digits ending of any prime factor of the number R in the equality $(A^n+B^n)_{[t+1]}=[(A+B)R]_{[t+1]}$ is equal to 1.

(where $A_{[t]}=A^{n^{t-1}}_{[t]}$, $B_{[t]}=B^{n^{t-1}}_{[t]}$, $(A^{n^{t}}+B^{n^{t}})_{[t+1]}=C^{n^{t}}_{[t+1]}$, t>1, the numbers A and B are coprime and the number A+B is not divisible by the prime n>2)

This is the consequence of:

a) the equality $(CC^{n-1})_{[t+1]} = [(A+B)R]_{[t+1]}$, where $C_{[t]} = (A+B)_{[t]} = 0$, and b) definition of degree, and c) L1.2°.

Hypothetical Fermat's equality has three equivalent forms:

1°) $C^n = A^n + B^n$ [...=(A+B)R=cⁿrⁿ], $A^n = C^n - B^n$ [...=(C-B)P=aⁿpⁿ] and $B^n = C^n - A^n$ [...=(C-A)Q=bⁿqⁿ], where, for (ABC)' $\neq 0$, the numbers in the pairs (c, r), (a, p), (b, q) are co-prime.

1.1°) The numbers R, P, Q (without a possible factor n) have "one" endings with their shortest length of k digits. If, for example, k=2, then the shortest ending is 01.

1.2°) Therefore, the smallest "one" ending for the numbers r, p, q has k-1 digits.

1.3°) The number U=A+B-C [...=un^k] ends with k zeroes, even if A', B' or C'=0.

1.4 °) If, for example, C'= 0 then the number C ends with exactly k zeroes. In that case, its special factor R ends exactly by one zero, which is not included in the number r.

1.5 °) Therefore, in this case the number A+B ends with nk-1 [>k] zeroes.

L3°) **Lemma**. If the shortest length of a "one" ending of the numbers r, p, q is k-1 (and for the numbers R, P, Q is k), then the k-digits "power" endings of the numbers A and C-B, B and C-A, C and A+B (not multiples of n) are equal to: $A^{n^{k-1}}$, $B^{n^{k-1}}$, $C^{n^{k-1}}$.

<u>Proof of Lemma</u>. Let start with k=2. Then from the equality $A+B-C=un^{k}$ (1.3°), taking into account 1° and L1°, we find the equalities for the two-digit endings:

 $C=c'^{n}$, $A=a'^{n}$, $B=b'^{n} \mod n^{2}$, or $C_{2}=c'^{n}_{2}$, $A_{2}=a'^{n}_{2}$, $B_{2}=b'^{n}_{2}$.

Then, if k>2, we substitute these values of the numbers A, B, C in the left parts of the equalities 1°, then we take into account the property L1.1° and solve the system of equations $C^{n}=A+B$, $A^{n}=C-B$, $B^{n}=C-A$, with respect to A, B, C.

And we continue the process until we reach the values $A^{n^{k-1}}$, $B^{n^{k-1}}$, $C^{n^{k-1}}$.

Proof of the FLT

2°) Let the shortest length of the "one" ending among the numbers r, p, q be for the number r and equal to k-1 (in this case C' \neq 0). Then the shortest length of the "one" ending for the numbers R, P, Q not multiples of n, will be equal to k. And, consequently, the number U=A+B-C=un^k.

Then, according to $L3^{\circ}$, in the equalities $C^{n}=A^{n}+B^{n}=(A+B)R=c^{n}r^{n}=CC^{n-1}$ (see: 1°) and

3°) $D=(A+B)^{n}_{[k+1]}=[(C-B)^{n}+(C-A)^{n}]_{[k+1]}=\{[(C-B)+(C-A)]T\}_{[k+1]}$ k-digit endings of numbers in the pairs C and A+B, A and C-B, B and C-A, C^{n-1} (=1) and $(A+B)^{n-1}$ (=1), R (=1) and T (=1) will be equal and power. According to Lemma L2°, every prime (and composite) factor of T has a "one" ending of at least k digits.

However among the factors of the number T there is also a number r, strictly in the first degree (since the number [(C-B)+(C-A)] is not divisible by r, and the numbers r and D/r are co-prime)!

And we arrived to a contradiction: in the Fermat's equality, the "one" ending of r has a length of strictly k-1 digits, but in the number T it has k digits. Thus, the FLT is proved.

Mézos, December 1, 2017