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Abstract

As a generalization of Dempster-Shafer theory, the theory of D numbers is a

new theoretical framework for uncertainty reasoning. Measuring the uncer-

tainty of knowledge or information represented by D numbers is an unsolved

issue in that theory. In this paper, inspired by distance based uncertainty

measures for Dempster-Shafer theory, a total uncertainty measure for a D

number is proposed based on its belief intervals. The proposed total uncer-

tainty measure can simultaneously capture the discord, and non-specificity,

and non-exclusiveness involved in D numbers. And some basic properties

of this total uncertainty measure, including range, monotonicity, generalized

set consistency, are also presented.
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1. Introduction

Uncertainty exists extensively in the real world, and many theories have

been developed for representing and dealing with uncertainty, such as proba-
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bility theory, imprecise probabilities, fuzzy logic, possibility theory, Dempster-

Shafer theory, set-membership approach, and so on. For any theory of un-

certainty reasoning, the quantification of uncertainty degree to a piece of

information is a crucial issue [1, 2]. Regarding this issue, different branches

of theories have given different solutions. For example, the Shannon entropy

is widely accepted to be the uncertainty measure of probabilities. However, in

many other uncertainty reasoning theories, there are not well acknowledged

and satisfactory measures that can effectively quantify the uncertainty of

information.

In this paper, we put our attention on a special theory for uncertainty

reasoning which is called D numbers theory (DNT) [3, 4]. This theory is

a recently proposed theoretical framework that has generalized Dempster-

Shafer theory (DST) [5, 6]. In DST, every piece of knowledge or information

is abstracted as a mass function or basic probability assignment (BPA), and

each BPA is defined on a mutually exclusive and collectively exhaustive set

which is called frame of discernment (FOD). In contrast, DNT generalizes

the DST to a set with non-exclusive elements and does not strictly require

the knowledge or information is complete. For more details about DNT and

its differences with DST, please refer to references [4, 7, 8] and introductions

given in the next section. As for this new theory DNT, how to measure the

uncertainty of D numbers has not been studied yet.

Since DNT is a generalization of DST, previous studies about uncertainty

measures in DST would be useful for the design of uncertainty measures in

DNT. In DST, measuring the uncertainty degree of a BPA is still an open

issue. Some representative total uncertainty measures are aggregated uncer-

tainty (AU) [9], ambiguity measure (AM) [10], and other entropies discussed

in [11–13], and recently proposed belief interval based uncertainty measures

[14–16], to name but a few. These uncertainty measures have studied the

uncertainty quantification of BPAs from different perspectives for example
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axiomatization, desirable properties and behaviour, consistency with proba-

bilities or only taking into account the framework of DST. These perspectives

and existing uncertainty measures for DST are also valuable for the design

of an uncertainty measure for D numbers. However, different from DST that

only contains two types of uncertainty factors which are discord and non-

specificity [17], in DNT there exists a new type of uncertainty caused by the

non-exclusiveness among elements. In addition, since a D number can be

information-incomplete which means that the knowledge or information is

incomplete, a rational uncertainty measure for D numbers must be able to

deal with the case of incomplete information or knowledge.

In this paper, inspired by distance-based uncertainty measures [14, 15]

for BPAs in DST, a total uncertainty measure for D numbers, denoted as

TU , is proposed based on the belief intervals of D numbers. The proposed

TU can simultaneously capture the discord, and non-specificity, and non-

exclusiveness involved in a D number. Meanwhile, the possible incomplete-

ness of information or knowledge is also considered in TU by introducing a

new notation X representing unknown event. Moreover, some basic prop-

erties of TU including range, monotonicity, generalized set consistency, are

presented.

The rest of this paper is organized as follows. Section 2 gives a brief

introduction about DST and DNT. In Section 3, a total uncertainty measure

for D numbers TU is proposed and basic properties of TU is presented.

Finally, Section 4 concludes the paper.

2. Preliminaries

2.1. Basics of Dempster-Shafer theory

Dempster-Shafer theory (DST) [5, 6], also called belief function theory

or evidence theory, is a popular tool for uncertainty reasoning because of

its advantages in expressing uncertainty. As a theory of reasoning under
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the uncertain environment, DST has an advantage of directly expressing the

“uncertainty” by assigning the basic probability to a set composed of multiple

objects, rather than to each of the individual objects. For completeness of

the explanation, a few basic concepts in DST are introduced as follows.

Let Ω be a set of N mutually exclusive and collectively exhaustive events,

indicated by

Ω = {q1, q2, · · · , qi, · · · , qN} (1)

where set Ω is called a frame of discernment (FOD). The power set of Ω is

indicated by 2Ω, namely

2Ω = {∅, {q1}, · · · , {qN}, {q1, q2}, · · · , {q1, q2, · · · , qi}, · · · ,Ω}. (2)

The elements of 2Ω or subsets of Ω are called propositions.

Definition 1. Let a FOD be Ω = {q1, q2, · · · , qN}, a mass function defined

on Ω is a mapping m from 2Ω to [0, 1], formally defined by:

m : 2Ω → [0, 1] (3)

which satisfies the following condition:

m(∅) = 0 and
∑

A⊆Ω

m(A) = 1. (4)

In DST, a mass function is also called a basic probability assignment (BPA).

The assigned basic probability m(A) measures the belief exactly assigned to

A and represents how strongly the evidence supports A. If m(A) > 0, A is

called a focal element, and the union of all focal elements is called the core

of the mass function.

Given a BPA, its associated belief measure Belm and plausibility measure

P lm express the lower bound and upper bound of the support degree to each

proposition in that BPA, respectively. They are defined as

Belm(A) =
∑

B⊆A

m(B), (5)
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P lm(A) =
∑

B∩A 6=∅

m(B), (6)

Obviously, P lm(A) ≥ Belm(A) for each A ⊆ Ω, and [Belm(A), P lm(A)] is

called the belief interval of A in m.

2.2. D numbers theory

D numbers theory (DNT) is a new theoretical framework for uncertainty

reasoning which generalizes the DST from two aspects: on one hand, the

elements within FOD are not required to be mutually exclusive in DNT;

on the other hand, the providing information in DNT can be incomplete in

contrast to
∑

m(·) = 1 in DST. For more theoretical details about DNT and

its recent advances, please refer to literatures [3, 4, 7]. Furthermore, some

applications of DNT can be found in references [8, 18–22]. A few of basic

concepts in DNT are introduced as follows [4].

Definition 2. Let Θ be a nonempty finite set Θ = {θ1, θ2, · · · , θN}, a D

number is a mapping formulated by

D : 2Θ → [0, 1] (7)

with

∑

B⊆Θ

D(B) ≤ 1 and D(∅) = 0 (8)

where ∅ is the empty set and B is a subset of Θ.

It is worthy noting that a D number can be defined on a set with non-

exclusive elements, which means that any pair of elements in Θ, for example

θi, θj ∈ Θ, are not required to be strictly exclusive, i.e. θi ∩ θj 6= ∅. Here, we

still call Θ as a FOD, but should note that a FOD in DNT is a set consisting

of non-exclusive elements. Besides, according to Definition 2, in a D number
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the information is not required to be complete. If
∑

B⊆Θ

D(B) = 1, we say that

the D number is information-complete. By contrast, if
∑

B⊆Θ

D(B) < 1 the D

number is information-incomplete. In order to transform a D number with

incomplete information to the information-complete case, a new notation X

is imported to represent the unknown event, and there is not any restriction

for the relationship between X and Θ. So, a new definition about D numbers

is given as below.

Definition 3. AD number defined on a nonempty finite set Θ = {θ1, θ2, · · · , θN}

and unknown event X is a mapping D : 2Θ∪X → [0, 1] satisfying

∑

B⊆Θ∪X

D(B) = 1 and D(∅) = 0 (9)

In the latter definition of D numbers, i.e. Definition 3, X represents the

unknown (or incomplete) part in a D number. Regarding the requirement of

non-exclusiveness in DNT, a membership function is developed to measure

the non-exclusive degrees in Θ ∪X .

Definition 4. Given Bi, Bj ∈ 2Θ∪X , the non-exclusive degree between Bi

and Bj is characterized by a mapping u¬E:

u¬E : 2Θ∪X × 2Θ∪X → [0, 1] (10)

with

u¬E(Bi, Bj) =

{

1, Bi ∩Bj 6= ∅

p, Bi ∩ Bj = ∅
(11)

and

u¬E(Bi, Bj) = u¬E(Bj , Bi) (12)

where 0 ≤ p ≤ 1. If letting the exclusive degree between Bi and Bj be

denoted as uE, then uE = 1− u¬E.
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According to Definition 4, the non-exclusive degree between Bi and Bj is

1 if Bi and Bj have intersections, otherwise u¬E(Bi, Bj) is p taking a value

from [0, 1]. Obviously, if u¬E(Bi, Bj) = 0 for any Bi ∩Bj = ∅, the FOD Θ in

DNT is degenerated to classical FOD in DST.

In order to express the bound of uncertainty in a D number, in a very

recent study [4] we have developed a belief measure and a plausibility measure

for D numbers.

Definition 5. Let D represent a D number defined on Θ ∪ X where X

represents unknown event, for any proposition A ⊆ Θ∪X , its belief measure

Bel : 2Θ∪X → [0, 1] is defined as

Bel(A) =
∑

B⊆A

D(B), (13)

and its plausibility measure P l : 2Θ∪X → [0, 1] is defined as

P l(A) =
∑

B∩A 6=∅

D(B) +
∑

B∩A=∅

u¬E(B,A)D(B), (14)

where B ⊆ Θ ∪X .

For the above definition, because u¬E(B,A) = 1 for B ∩ A 6= ∅, the

plausibility measure P l can also be written as

P l(A) =
∑

B⊆Θ∪X

u¬E(B,A)D(B). (15)

As same as DST, [Bel(A), P l(A)] is called the belief interval of A in D-

NT, which expresses the lower bound and upper bound of support degree to

proposition A. And it is easy to find that the Bel and P l for D numbers will

degenerate to classical belief measure and plausibility measure in DST if the

associated D number is a BPA in fact.

7



3. Proposed total uncertainty measure for D numbers

How to measure the uncertainty of information is an important issue in

the theories of uncertainty reasoning. Up to now, uncertainty measure for

D numbers is an unsolved problem in DNT. With respect to this problem,

there are two considerable aspects, as graphically shown in Figure 1. At first,

since a D number consists of two parts, Θ called known part and X called

unknown part, a rational uncertainty measure must be able to model the

total uncertainty that contains known uncertainty caused by known part and

unknown uncertainty from unknown part. This is the first difference between

DNT and DST in the design of uncertainty measure. At second, in DST the

uncertainty consists of discord and non-specificity [17], in DNT, however,

the non-exclusiveness among elements in Θ ∪X becomes a new source of

uncertainty. Therefore, a rational uncertainty measure for D numbers should

simultaneously capture discord, non-specificity, and non-exclusiveness.

Total uncertainty 

(TU)

Known uncertainty

(KU)

Unknown uncertainty

(UU)

Non-specificityDiscord Non-exclusiveness

Dempster-Shafer theory

D numbers theory

Figure 1: Uncertainty in D numbers

In this paper, a belief interval based total uncertainty measure, called TU ,
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is proposed for D numbers. This idea of TU is inspired by distance-based

uncertainty measures [14, 15] for mass functions in DST.

Definition 6. Let D represent a D number defined on Θ ∪ X where Θ =

{θ1, θ2, · · · , θN} and X expresses the unknown part in D, the total uncer-

tainty of D is

TU(D) = KU(D) + UU(D) (16)

with

KU(D) =
∑

θi∈Θ

[

1− dIE ([Bel(θi), P l(θi)], [0, 1])
]

(17)

UU(D) = P l(X) · U(X) (18)

where

dIE ([Bel(θi), P l(θi)], [0, 1]) =

√

[Bel(θi)− 0]2 + [P l(θi)− 1]2 (19)

and U(X) is a function associated with the cardinality ofX and expresses the

overall uncertainty in X , Bel and P l are the belief measure and plausibility

measure of D numbers, respectively.

The underlying assumption of this total uncertainty measure is that an

element in Θ ∪ X has the largest uncertainty degree if its belief interval is

[0, 1]. Let us analyze the TU :

• It separately calculates the known uncertainty and unknown uncertain-

ty involved in a D number.

• For the known uncertainty, KU employs the Euclidean distance func-

tion dIE to calculate the distance between belief interval of each sin-

gleton θi (i.e., [Bel(θi), P l(θi)]) and the most uncertain interval [0, 1],

then expresses the contribution of θi to the total uncertainty of D by

using 1− dIE ([Bel(θi), P l(θi)], [0, 1]).
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• For the unknown uncertainty, a fictitious function U(X) is assumed to

represent the overall uncertainty of X , and U(X) is only associated

the the size of X . Since X is an unknown set, we suppose |X| ≥ 2

and u¬E(xi, B) = u¬E(X,B) for any xi ∈ X and B ⊆ Θ ∪ X . Then,

the belief interval of xi is calculated to be [0, P l(X)], so in D the

contribution of xi to the total uncertainty is P l(X) and the overall

unknown uncertainty is positively correlated with P l(X) · |X|, namely

UU(D) = P l(X) · U(X). The principle behind UU is logically consis-

tent with that of KU .

• Discord, and non-specificity, and non-exclusiveness, are all considered

in constructing belief intervals of singletons and simultaneously cap-

tured in TU .

Based on the above analysis, for the sake of simplicity the total uncer-

tainty of a D number, TU , can be represented by a tuple (KU,UU), as

graphically shown in Figure 2, where UU is a coefficient with respect to

U(X). Some basic properties of the proposed TU are given as follows.

Theorem 3.1. Range. Given a D number D defined over Θ ∪ X, the

total uncertainty of D, denoted as (KU(D), UU(D)), is limited by ranges

0 ≤ KU(D) ≤ |Θ| and 0 ≤ UU(D) ≤ 1.

Theorem 3.2. Monotonicity. Let D1 and D2 be two arbitrary D numbers

defined on Θ ∪X, if

∀A ⊆ Θ ∪X : [BelD1
(A), P lD1

(A)] ⊆ [BelD2
(A), P lD2

(A)]

then

KU(D1) ≤ KU(D2) and UU(D1) ≤ UU(D2)
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0
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UU  

( U(X))

|Ɵ| 

(maximum 

of KU)

Pl(X)

TU: (KU, UU)

1 

(maximum of UU)

Maximum of TU

Figure 2: Graphical representation of TU

Theorem 3.3. Generalized set consistency. When a set A, A ⊆ Θ

exists such that D(A) = 1 then

KU(D) = |A|+
∑

θi∈Θ\A

u¬E(θi, A)

namely

KU(D) ∝ |A|

where Θ\A is the difference between Θ and A.

4. Conclusion

This paper has studied the issue of uncertainty quantification of knowl-

edge or information in DNT. At first, three types of uncertainty factors,

namely discord, and non-specificity, and non-exclusiveness, are identified for

D numbers. Then, on the basis of our previous defined belief intervals for

D numbers and distance based uncertainty measures for DST, a total un-

certainty measure TU is proposed in the framework of D numbers theory.
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At last, some basic properties of TU are presented. In the future study, on

one hand other properties of TU will be investigated, on the other hand the

applications of the proposed TU are given more attention.
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