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According to the Planck’s theory of black body radiation, a black body is a collection of oscillators which
are responsible for its radiation. There are no results available in the literature about the mass and vibrational
ground state energy of the oscillator. In the present research, ground state energy and mass of the oscillator are
calculated from Planck’s theory of black body radiation and de Broglie’s wave particle duality relation. It is
observed that the mass of the oscillator is 1.6×10−39kg and vibrational ground state energy is 3.587×10−23J
subject to the constraint that the minimum temperature for radiation of a black body is 2.598K.
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I. INTRODUCTION

Black body radiation [1–3] is one of the most important
problems which are unable to explain properly with classical
mechanics. Between 1984 and 1900, German physicist Max
Planck worked on this problem which leads to the founda-
tion of quantum theory. He assumes that a black body is a
collection of numbers of oscillators. Different oscillator has
a different frequency. An oscillator emits or absorbs energy
proportional to its oscillation frequency. Thus, emission or
absorption of energy of a black body is discrete rather con-
tinuous which he terms as quantization of energy. He used
this concept of quantization of electromagnetic radiation to
explain the energy distribution nature of a black body.

Louis de Broglie, a French physicist, proposed in 1925 that
every object has a wave-particle dual character [4]. Accord-
ing to the de Broglie, wavelength (λ ) of a particle having mo-
mentum p is h

p , where h is Planck’s constant. So far, no one
implies the de Broglie’s duality condition, ie. λ = h

p , on the vi-
brating oscillator. In present research, it is observed that if we
impose de Broglie’s duality relation on the vibrating oscilla-
tor, we get different equations for the mass and the vibrational
ground state energy of the oscillator. We also get an equation
for the minimum temperature for radiation of a black body.

II. THEORY

According to Planck [5], monochromatic vibrations of res-
onators of a black body are responsible for its absorption or
emission of electromagnetic radiation. Let the number of
identical resonators having oscillation frequency ν is N at
thermal equilibrium of temperature T . If U is the thermal en-
ergy of a single resonator then the total energy of the body will
be NU . It is known that entropy S is related to its vibrational
energy and temperature as -

dS
dU

=
1
T

(1)
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Applying the equipartition principle, we get kinetic energy of
one mode of vibration at a temperature T is 1

2 kT where k is
Boltzmann constant. Thus, total kinetic energy of a complete
vibration is kT as every vibration has two modes. Now we get

U = kT

or,

dU = kdT (2)

From equation 1 and equation 2 we get

dS = kd(lnT )

and

S = klnT +A (3)

where A is integration constant. If we consider that at the
critical temperature Tc, entropy of the oscillator is 0 then we
get from Equation 3,

klnTc +A = 0

or,

A =−klnTc (4)

Putting the value of A in Equation 3 we get

S = kln(
T
Tc

) (5)

Now we may impose de Broglie’s relation. Let, p is the
momentum and m is the mass of a resonator. From the kinetic
theory of gas it is known that at a temperature T kinetic energy
of a gas particle is 1

2 kT . This is applicable for our oscillator.
Thus, we get

1
2

kT =
p2

2m

or,

kT =
p2

m
(6)
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From de Broglie’s duality relation we get

p =
h
λ

=
hν

c
(7)

where h is Planck’s constant, λ is the de Broglie wavelength
of the resonator, ν is corresponding frequency and c is the
velocity of light in vacuum. From equation 6 and equation 7
we get

kT =
h2ν2

mc2

or,

T =
h2ν2

mkc2 (8)

Putting the value of T taken from Equation 8 in Equation 5
we get

S = kln
(

h2ν2

mkc2Tc

)
(9)

Following Planck’s derivation [5] of entropy of an oscillator
we get

S = k
{(

1+
U
hν

)
ln
(

1+
U
hν

)
− U

hν
ln

U
hν

}
(10)

where ν is the frequency of the oscillator. Equation 10 may
be rearranged as

S = kln
{(

1+
U
hν

)(
1+

hν

U

) U
hν
}

(11)

Comparing equation 9 and equation 11 we get(
h2ν2

mkc2Tc

)
=
{(

1+
U
hν

)(
1+

hν

U

) U
hν
}

(12)

Now from equation 2 and equation 8 we get

U
hν

=
hν

mc2 (13)

Putting the value of U
hν

in equation 12 we get(
h2ν2

mkc2Tc

)
=
(

1+
hν

mc2

)(
1+

mc2

hν

) hν

mc2
(14)

Using the value of T from equation 8 we get from equation 14

T
Tc

=
(

1+
hν

mc2

)(
1+

mc2

hν

) hν

mc2
(15)

Considering our oscillator as harmonic oscillator, energy of
its nth vibrational state would be

En = (2n+1)
h

4π
ω (16)

where, ω is angular frequency of the oscillator. ω = 2πν

where ν is linear frequency. At temperature T , energy of the
oscillator is kT . Thus, from Equation 16 we get

kT = (2n+1)
hν

2
(17)

Comparing Equation 8 and Equation 17 we get

(2n+1)
hν

2
=

h2ν2

mc2

hν

mc2 =
(2n+1)

2
(18)

Now replacing the value of hν

mc2 by (2n+1)
2 in Equation 15 we

get

T
Tc

=
1
2

√
(2n+3)(2n+3)

(2n+1)(2n+1) (19)

From Equation 19 we get T
Tc

for different vibrational states.
Variation of T

Tc
with vibrational states is presented in Figure 1.

FIG. 1: Variation of T
Tc

with vibrational states of the oscillator of a
black body

III. DISCUSSIONS

The plot of T
Tc

against the vibrational states of the oscillator
presented in Figure 1 is very interesting. The value of T

Tc
for

n = 0 is 2.598 and T is greater than Tc for all n. As at the
lowest vibrational state T > Tc, we can say that the oscillator
has positive entropy at its ground state of vibration which is
not obvious. At present it is not clear. But, we may assume
that this entropy is not a thermal entropy. There may be an-
other contribution to the total entropy of a system which may
be very small in quantity. So far, there is no idea about the ex-
act value of Tc. But, if Tc is very small, T would also be small.
For example, for Tc = 0.1K, T = 0.2598K; Tc = 0.0001K,
T = 0.0002598K; and so on. Thus, we can say, when Tc→ 0,
T → 0. This is valid if A 6= 0 in Equation 3. If we consider
A = 0, we get T = 2.598K for n = 0. Then we can say 2.598K
is the lower limit of temperature of a black body to emit any
radiation.

From Equation 17 and 18 we get

kT
mc2 =

(2n+1
2

)2
(20)

From Equation 20 we get for n = 0,

m =
4kT
c2 (21)
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For, n = 0, T = 2.598K (for A = 0). Thus, from Equation 21
we get, mass of the oscillator is 1.6×10−39kg.

We can calculate the ground state vibrational energy of the
oscillator which is kT . If we consider A = 0, then for the
ground state (ie. n = 0) T = 2.598K. Thus, the ground state
vibrational energy of the oscillator is 3.587×10−23J.

IV. CONCLUSIONS

The wave particle duality relation is applied to Planck’s
black body theory to measure different properties of the os-
cillator. It is observed that if we consider the integration con-
stant (A) = 0, then the lower limit of temperature of a black

body to emit any energy is 2.598K, the mass of the oscilla-
tor is 1.6×10−39kg and the ground state vibrational energy is
3.587×10−23J.
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