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Abstract
Using Planck’s postulates for black body radiation and wave particle duality relation of de Broglie
we can get a relation between mass of a phonon and emission frequency of a body at different
temperatures. Using boundary condition lower limit of mass of a phonon is calculated which is
7.36× 10−51kg.
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1 Introduction
German physicist Max Planck initiated to explain the black body radiation [1, 2, 3] with the help of
few assumptions which leads to the formation of quantum theory. Planck assume that every radiator
has numbers of resonator which vibrate with a finite frequency. Vibrational frequency of a resonator
increases with increase of temperature and hence energy maximum shifted to words higher energy
region on heating of a black body. According to Planck, emission frequency of a black body is same
as the frequency of its resonator. Hence, we can say that a Gaussian type distribution of energy
density of a black body with respect to wave length at a fixed temperature implies that vibrational
frequency of every resonator is not unique. It follows some distribution law. But, here the question
arises why resonators of a homogeneous body vibrate with different frequencies? There are two
different possibilities. First possibility is that mass of the resonators are different from one another.
The second possibility is that every resonator has same mass but their energy levels are quantized
and hence at a fixed temperature number of resonators in different quantized states are different and
follow the Boltzmann distribution law.

At present day science resonators are termed as phonon [4, 5, 6]. According to Planck, phonon
has finite mass. Now, if we consider condition one is true which means different phonon has different
mass, it could be possible to calculate mass of a phonon knowing the value of temperature. From
the spectra we should get the value of frequency, ν, which would enable to calculate the mass of a
phonon. From the intensity measurement of the spectra one may get the number of phonon present
in a system with same mass. On the other hand, if second condition is true, i.e. all resonators
have same mass, then also we should be able to calculate the mass of a phonon using Boltzmann
distribution [7].

In 1925, French physicist Louis de Broglie proposed that every moving particle has a wave nature
[8]. Wave length(λ) of a moving particle is related to its momentum (p) as

p =
h

λ
(1.1)

Thus, wave length (λ) and hence the frequency (ν) of the resonator of a black body should be
calculated using de Broglie’s relation. Comparing theoretical and experimental frequency we can
calculate the mass of a phonon.
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In this article, I have applied wave particle duality relation in Planck’s black body equation and
get a relation between mass of a resonator and frequency of its corresponding radiation. Using this
relation we can get exact frequency of a radiation of a particular resonator at different temperature
which is not possible using Planck’s equation for black body radiation. Using boundary conditions,
lower limit of mass of a phonon is calculated and presented here. Lower limit of emission frequency
of a body at room temperature (300K) is also calculated using the lower limit of mass of a phonon.
It is also observed that if the wave nature of a resonator due to its vibration is not its trajectory then
Planck’s equation for black body would not valid. Or, in the other way we can say that de Broglie’s
wave of a particle is due to the wave nature of its trajectory.

2 Theory
In Planck’s theory of electromagnetic radiation [9] frequency of radiation depends on the monochromatic
vibrations of the resonators of the body which is absorbing or emitting electromagnetic radiation. Let
p is the momentum of a resonator and m is the rest mass of that resonator. Thus, kinetic energy
of that resonator is p2

2m
. From equipartition principle we know that at any temperature T ◦K kinetic

energy of one mode of vibration is 1
2
kT where k is Boltzmann constant. Thus, comparing kinetic

energy from equipartition principle and from Newton’s laws of motion we get

1

2
kT =

p2

2m

or,

kT =
p2

m
(2.1)

As every vibrational degrees of freedom has two modes, at T ◦K temperature total vibrational kinetic
energy (U ) of a resonator is kT . From equation 2.1 we get

U = kT

=
p2

m
(2.2)

Now, from de Broglie’s wave particle duality relation we get

p =
h

λ

=
hν

c
(2.3)

where h is Planck’s constant, λ is wave length of that resonator due to vibration, ν is vibrational
frequency corresponds to λ and c is the velocity of light in vacuum. Putting the value of p from
equation 2.3 in equation 2.1 we get

kT =
h2ν2

mc2
(2.4)

Equation 2.4 would valid if and only when de Broglie’s wave length of the resonator is identical
with the wave length of vibration in real sense. Else, every resonator would have two different
vibrational frequency - one for the thermal excitation and another for its momentum i.e. frequency
corresponds to its de Broglie wave length. But, in real case we get only one radiation from one
resonator. Thus, we can say equation 2.4 is a valid relation and hence, de Broglie wave nature of
a particle is due to the wave nature of its trajectory. Similar conclusion is made by Bag in a very
recent work [10] where wave nature of a moving particle is derived from Newtonian mechanics similar
to de Broglie’s equation except the proportionality constant.
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In equation 2.4, m is the rest mass of the resonator. Hence, mc2 is the energy equivalence of
the resonator following Einstein’s E = mc2 equation [11]. Again, we know, E = hν. Thus, we get

mc2 = E

= hν0

or,

mc2

h
= ν0 (2.5)

In equation 2.5, ν0 is different from ν. ν is the vibrational frequency of the resonator while, ν0 appears
for mass energy conversion of the resonator. Replacing mc2

h
by ν0 in equation 2.4, we get

kT =
hν2

ν0
(2.6)

If we consider that for an emitter mass of all resonators are same i.e. ν0 is constant then we get a
direct relation between temperature (T ) and frequency (ν) of emission as

ν =
√
T (2.7)

In Planck’s equation ν and T are related through energy density and no direct relation. Thus, equation
2.7 has some advantage; we can calculate frequency of emission at any temperature of a body exactly
if we know the frequency of emission at any one temperature or mass of the resonator. In other words,
if we know ν for any temperature then ν0 and hence mass of the resonator would be calculated. In this
context we can say that where we get a distribution plot rather a monochromatic radiation, resonators
of different masses are present there.
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Figure 1: Variation of emission frequency (ν) with heating temperature (T )
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3 Results and discussions

3.1 Calculation of lowest mass of phonon
If we put T = h

k
in equation 2.6 we get

ν0 = ν2 (3.1)

Now, putting the value of h = 6.6207 × 10−34JS and k = 1.3806 × 10−23JK−1 we get T =
4.8× 10−11K. This temperature is very near to 0K. Hence, at this temperature all resonators would
be in ground state. Frequency at this temperature would be the lowest energy radiation. Now, let
us consider the lowest possible frequency of an electromagnetic radiation is xHz. Hence, for the
smallest resonator i.e. resonator with lowest mass, ν0 would be xHz. Again, lowest value of ν is also
xHz. So, for smallest resonator at its lowest energy state we can get a solution from equation 3.1 as

x = x2

or,

x = 1 (3.2)

From equation 3.2 we get lowest value of ν0 is 1Hz. Putting the value of ν0 = 1 in Equation 2.5 we
get the mass of the smallest phonon as 7.36× 10−51kg.

3.2 Temperature dependence of emission frequency
In theory section it is discussed that in the present approach it is possible to calculate the emitted
frequency of a monochromatic hot body from its temperature if we know the mass of the resonator. In
previous subsection it is proved that lowest possible mass of a resonator is 7.36×10−51kg and lowest
value of ν and ν0 is 1Hz. At very low temperature when T → 0K for the lightest resonator ν = 1Hz.
From equation 2.7 we know that with increase of temperature ν will increase if ν0 remains constant.
In figure 1 change of ν is plotted against temperature (T ) for ν0 = 1Hz and ν0 = 10Hz. It is observed
that for higher value of ν0, rate of change of ν with temperature would be high which is obvious from
equation 2.6 subject to the condition that ν0 remains constant with change of temperature. If mass of
the resonator changes with temperature we can’t get such simple variation of ν with temperature.

3.3 Lowest value of emission frequency at room temperature
From equation 2.4 we get the expression for mass of a resonator as

m =
h2ν2

kTc2
(3.3)

Using the standard values of h, k, and c and lowest value of mass of phonon i.e. m = 7.36×10−51kg,
we get the lowest value of emission frequency(ν) at 300K temperature as ν = 2.5 × 106Hz or
2.5MHz.

4 Conclusions
In this article a relationship is derived from Planck’s equation for black body radiation and de Broglie’s
wave of a particle to calculate the mass of a resonator (phonon). It is also shown that de Broglie’s
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weave of a particle with finite mass implies the wave nature of its trajectory. Thus, a tiny particle
shows wave nature due to its wave like motion not for its mass to energy conversion. Lower limit of
mass of a phonon and lowest value of emission frequency of a phonon at 300K is calculated and
reported here. If mass of a phonon changes with change of temperature we should be able to predict
its mass at different temperature using this approach.
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