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3.3 Quantum mechanics in multiply connected spaces

3.3.1 Introduction

Quantum mechanics conventionally deals with the evolution of a particle in & sim-
ply connected coufiguration space, whose topology ie Buclidean R”. The Buclidean
space R has a simple topology, in the sense that paths in this space are contractible
to 2 point, and so the fundamental howmotopy group is trivial, ie. m{R™") = {0},
In Appendix I} we outline the theory of homotopy groups. However, novel {eatures
can arise from configuration spaces that exhibit = nontrivial topology (Tsham (31978),
Avis and Isham (1978)). In a maltiply connected space, the nature of the Schrédinger
wave function may depend on the topological structure of the configuration space.
On the other hand, multiply connected configurational spaces have also been shown
4o play an important rele in field theory and particle physics, where stable solutions
to field equations can cxist for appropriste topolagies of the configuration spaces
{Balachandran et al. {1981}, Ryder (18853},

In this section we analyse guantem mechanics in muliiply connected configura-
tion spaces, emphasising the possible influences of the space topology on the nature
of wavefunctions in the quanium theory. 14 is assumed that a physical system is
described by a complex wavefunction ¥ defined on a configuration space M, and
the time evolution of the system is deiermined by the Schrédinger equation

. 0%
ihope = HY, (3.27)

where H is the Hamiltorian of the system. According to the orthodex interpreta-
tion of the wavefunction in guanium mechenics, all of the physical informalion is

contzined in the square of the modulus of the wavefunciion, therefore, ell complex



wavefunctions that differ from one another by a phase can be used to describe the
same quantum state of the physical system. Consequently, the absolute phase is re-
garded as unobservable and the phase of a wavefunction can be defined globally as
a U(1)-valued function in the configuration space M, when M is simply connected.
In terms of a fiber bundle structure, this result can be seen as an admission of a
global section of a principal fibre bundle, since nonrelativistic quantum mechanics
can be associated with the trivial complex line bundle M x C and the wavefunction
is simply a global section of the line bundle. The quantum state of a physical system
is regarded as an equivalence class {e®¥} of normalised wave functions defined on
the principal U(1)-bundle M x § 1 on M. Because physical observables correspond
only to the squared modulus of a wave function, wave functions on the U(1)-bundle
must satisfy the condition ¥(x, e(@+#)) = ¥(x,e*)e'” (Balachandran et al. (1991),
Morandi (1992), Nakahara (1990)).

When the topological structure of the configuration space is nontrivial, ambigui-
ties may arise when attempts are made to specify a value for the phase of a wavefunc-
tion for the whole configuration space. In this case the fiber bundle representation
of the system is not trivial and so it does not admit a global section. However, since
physical observables related to ¥*¥ are considered as functions on the configuration
space, wavefunctions which are functions on a fiber bundle over the configuration
space are allowed, provided they satisfy the requirement U(xe') = U(x)e". This
problem is related to the problem of formulating quantum mechanics on the uni-
versal covering space of a multiply connected configuration space (see Appendix
D).

After giving a brief review of quantum mechanics on universal covering spaces,
we focus on the application of these methods to quantum mechanics in multiply
connected spaces. This provides a framework for discussing the nature of quantum
observables such as angular momentum. In particular, when quantum mechanics in
compactified Kaluza-Klein spaces is examined, it is shown that the system gives rise
to an additional angular momentum quantum number which can take half-integer

values, and therefore may be identified with the intrinsic spin ofa particle.



3.3.2 Quantum mechanics on universal covering spaces

Consider the case where the configuration space M of a physical system is a topo-
logical space which may be multiply connected, so that its fundamental homotopy
group m (M) # {0}. If the space M satisfies the conditions of arcwise and local
connectedness, then it is possible to construct a covering space M which is sim-
ply connected with the property WI(M ) = {0}. The covering space M is called a
universal covering space of M. The space M is a bundle space over the space M
with a covering projection 7 : M — M so that the homotopy group of the bundle
space M is a factor group of the fundamental homotopy group of the base space M
(Steenrod (1951), Singer and Thorpe (1967), Hilton (1961)). It is always possible
to formulate quantum mechanics on the universal covering space M, because it is
simply connected. However, how do we relate quantum mechanics on M to quan-
tum mechanics on the multiply connected space M? This question does not have
an obvious answer. Consider a single-valued wavefunction (%) on M. If the point
x = m(%) on M is taken around a loop 7, then when the loop 1 lifts to a curve ¥ in
the space M with the initial point %, the wave function 1/: will take its value at the
end point X’ of the curve 7, obtained from the point X by the action of the homotopy
class [7]; that is, $(X') = ¥([7]X). Therefore, if quantum mechanics on the bundle
space M is projectable to quantum mechanics on the multiply connected space M,
in the sense that the squared modulus of the wave function ¥ on M depends only

on x = m(X), then the wavefunction + must satisfy the boundary conditions

a((r])$(%) (3.28)
1 (3.29)

P((}%)
la(()]

for all ¥ € M and for all homotopy classes [y] € m(M). Furthermore, because the
wavefunction 1, is defined on a simply connected space, and is single-valued, the
phase a([y]) must also satisfy the condition a([v])a([7]) = a([7][7])- The conditions
imposed on the phase a([y]) show that the map a : (M) — U(1) defined by [y] —
a([y]) is a one-dimensional unitary representation of the fundamental homotopy
group m1(M) (Morandi (1992)).

To illustrate how quantum mechanics on a multiply- connected space can be



realised in physics, let us consider the simple example of the quantum dynamics
of a particle moving in a one-dimensional lattice with a periodic potential V(z +
nd) = V(z). Assume the dynamics is governed by a Hamiltonian of the form
H = p?/2m + V(z), where m and p are the mass and the momentum of the par-
ticle, respectively. The system in this case has translational symmetry, since the
Hamiltonian is invariant under the transformation z — z + nd. Let T'(n) be an op-
erator that corresponds to this transformation in the vector space of physical states
of the system; then it can be shown that the set {¢t.(0) = e™™; —7 < § < 7},
forms a one-dimensional unitary representation of the translation group T'(n). It
follows that the Schrodinger wavefunctions of the particle, known as Bloch func-
tions, must satisfy the boundary condition ¥ni(z + d) = exp(ikd)Ynr(z). Now if
the endpoints of a unit cell of the lattice are identified, so that the cell has the
topology of a circle S, the fundamental homotopy group is isomorphic to Z, in
which the characters are a([y]) = exp(ikd), —7 < kd < w. Another illustration of
quantum mechanics on multiply connected space is that of the hydrogen atom in the
Euclidean plane R%. The time-independent wavefunction for the system is written
in the form v¥(r, ¢) = exp(im$)R(r), where R(r) is the radial solution. When the
configuration space of the system is simply connected, the wavefunction 1 must be
single-valued, which imposes the requirement that the quantum number m must be
an integer. However, if the electron of the system can not penetrate the nucleus,
it is reasonable to reduce the space to R? \ {0}, which is now multiply connected,
and whose fundamental homotopy group is isomorphic to m(S!). Therefore, the
wavefunction on the original space R? is projectable even if the quantity m takes
half-integer values; in this case the wavefunction satisfies the boundary condition
¥(r, [7]¢) = ¥(r,n¢) = exp(inm) exp(im@)R(r) and hence a([7]) = a(n) = exp(inw).
This problem will be discussed in more detail shortly.

Having discussed the construction of a projectable quantum mechanics on a
universal covering space M of a multiply connected configuration space M, there
still remains the question: what is the nature of the wavefunction on M? The
universal covering space M is the union of fundamental domains each of which is

isomorphic to the configuration space M. If quantum mechanics on the universal



covering space M is restricted to a particular domain, then the wavefunction ¥ can
be projected down to a well-defined wavefunction 3 on the space M. However,
since a point x € M corresponds to many different points X = =~!(x) € M, which
are connected by the action of the fundamental homotopy group m1(M) on M, the
projection of the wave function % on M to a wave function % on M will make the
wavefunction ¢ multivalued. The construction of a projectable quantum mechanics
on universal covering spaces requires that the multiple valuedness of a wavefunction
on the original configuration space (obtained by the projection of a wave function
on a universal covering space) is not arbitrary, but is limited to multiplication by
characters of the fundamental homotopy group of the original configuration space

(Morandi (1992), Balachandran et al. (1991)).

3.3.3 On the quantisation of angular momentum

It was mentioned in Sec. 3.3.2 that the quantum mechanics of a hydrogen atom in
the configuration space R?\ {0} can be considered in terms of a multiply connected
space, whose fundamental homotopy group is isomorphic to m;(S?). In this case,
wavefunctions on the space R?\ {0} are allowed to be multivalued. We now exam-
ine the relationship between the multiple valuedness of the wavefunction and the
quantisation of angular momentum (Ho (1994)).

It is known that there are two alternative methods for quantisation of a physical
system; namely, canonical quantization and the Feynman path integral formula-
tion. While the more familiar canonical quantization replaces classical observables
by operators which obey Heisenberg commutation relations, and hence the mathe-
matics one invokes is that of operators in Hilbert space, the path integral formula-
tion of quantum mechanics is based on the concept of the transition amplitude to
which all possible paths contribute (Feynman (1948), Feynman and Hibbs (1965),
Dittrich and Reuter (1992)). However, although the Feynman formulation is closely
related to the canonical equations of quantum mechanics, there remains some pro-
found differences between the two methods. Because the method of canonical quan-
tization uses the Heisenberg uncertainty principle, it is not possi.ble to define a path,

in the classical sense, for a particle moving from one place to another in space. On



the other hand, the Feynman path integral method of quantization does not exclude
the notion of classical paths of a particle; however, the dynamics of the particle in
a classical sense are radically modified by introducing a complex-valued transition
amplitude. In particular one is allowed to consider all possible paths in different
frames of reference in different configurational spaces. This possibility allows us
to discuss coordinate transformations in quantum mechanics and to use the topo-
logical structure of the configuration space of a physical system to determine the
quantization of the angular momentum in multiply connected spaces.

In quantum mechanics the problem of multivalued eigenfunctions of angular mo-
mentum may be argued to appear only because one changes from Cartesian coordi-
nates to polar coordinates which are singular at the coordinate origin. However, the
single-valuedness of a wavefunction, such as 9 = exp(im@), that satisfies the equa-
tion L3 = mh, results from the boundary condition. This may be regarded as less
natural than other requirements imposed on the wavefunction, such as the require-
ment of square integrability. Furthermore, it can also be argued that multivalued
wavefunctions cannot be excluded a priori because well-defined functions should be
associated only with physical observables, such as expectation values of operators in
the vector space of physical states (Merzbacher (1962), Blatt and Weisskopf (1952)).
We will show that the problem is actually related to quantum mechanics in multiply
connected spaces, and within the present physical interpretation of quantum me-
chanics, the use of multivalued wavefunctions is allowed provided the configuration
space is not simply connected. In this section we investigate in detail the particular
case of a hydrogen-like atom from the point of view of an observer who describes the
atom as a planar physical system. Here the assumption is made that the electron
can never penetrate the nucleus, so that the configuration space can be considered
multiply connected and the use of multivalued wavefunctions is permitted. In such
situations the single-valuedness condition is no longer an obvious requirement for
limiting the angular momentum quantum number to integer values. It is shown that
the eigenvalues of angular momentum must be half-integer if an observer obtains
the same energy spectrum as that of an observer who views tile atom in three di-

mensional space. Later we will discuss quantum mechanics in higher-dimensional



multiply connected spaces of the Kaluza-Klein type: R¥~' x S', whose universal
covering space is the Euclidean space RV. This requires the formulation of the
quantum mechanics of a generalised hydrogen atom in an N-dimensional Euclidean

space.

The generalised hydrogen-like atom consisting of a single electron of charge —e
and a nucleus of charge Ze is described by the eigenvalue equation (Louck (1960),
Hagen (1995), Nieto (1979))

~ 35 VhH(E) ~ = (s) = B(o), (3.:30)

where g is the reduced mass, r? = g,,z"*z” and V% = g**8,0,, where g,, is the
N-dimensional Euclidean metric. In an N-dimensional Euclidean space, spherical

polar coordinates are defined in terms of the coordinates 6;, 1 <7 < N — 1, i.e.

N-1
z; = rcosb, H sin 6;
=2
N-1
r [ sin6; (3.31)
i=1
N-1
z; = rcosf;_, H sin; 1=3,...,N

Jj=t
where the range of the variables is 0 < 7 < 00, 0 < §; < 2r and 0 < §; < 7 for
i=2,...,N — 1. It is straightforward to verify that the Laplacian V% expressed in
terms of the N- dimensional polar coordinates takes the form

5 1 ETN-1_3___L?V—1
N™ pN-1§p Or K2’

\% (3.32)

where the generalised angular momentum operators are defined by the recursion

relation

1 o}

sin'~? 8;_1 06,

: 0 L?
s 1—2 6: s 1—2
86, T R sin?6, } ’ )

L?—l =—k? {

The generalised spherical harmonics Y (Iy_1,...,11) are defined as the simultaneous

eigenfunctions of the set of operators {L}}
LY (In-1y- ) = Wl + k — DAY (Iv=q, ooy la), (3.34)

where 1 < k < N — 1. Imposing the requirement of single-valuedness, the quan-

tum number /; with 1 < ¢ < N — 1 must be an integer. Integer values of the



quantum number [ are also required for consistency of the representation of the
angular momentum group (Merzbacher (1962), Landau and Lifshitz (1975)). When

the eigenfunctions of the generalised hydrogen atom are written as
Ynt(ly IN=2y -0y l1) = RuY (1, n=2;.s01)s (3.35)

with [ = Iy_1, then the radial equation for the function Ry, for the case of bound

states, with E < 0, becomes

d®R, N —1dRn (I+N-2) r 1
Tp_z— 3 —d_p__ 2 +;—Z R, =0, (3.36)
where p and A are defined by

i IR = I

We seek solutions for R of the form
R = exp(—p/2)p'S(p)- (3.38)

By substitution into the equation for Ry the following differential equation for S(p)

is obtained, i.e.

ds (2l+N—1 ) s A—-(N-1)/2-1
—_— grAT. ) =4 ———5=0. 3.39
dp? P dp P B
This equation can be solved using a series expansion for S(p)
S(p) = Z anp”, (3.40)
n=0
with the coefficients a, satisfying the recursion relation
_ n+l+(N-1)/2-2A
G = it A+ N =D (341)
The bound state energy spectrum is given by
Zet 1
I . (3.42)

TR [n+ i+ (N-1)/21
This result shows that for spaces of odd dimension the quantum number ! must be an
integer for the energy En to have the same form as that of the Bohr model. On the

other hand, for spaces of even dimension, the Bohr spectrum is obtained only when



the quantum number [ is half-integer. However, in quantum mechanics the quantum
number ! must always be an integer due to the requirement of single-valuedness of
the Schrédinger wavefunction, regardless of the dimension of the configuration space
of a physical system. We now discuss this problem from the perspective of quan-
tum mechanics on a multiply connected space, showing the important relationship
between the topology of the system and the multiple connectedness of the configu-
ration space of the atom. In a two-dimensional space, the Schrédinger equation in

planar polar coordinates takes the form

2 2 2
e B G 7 PEO R R R TCONCED
where it is assumed that the Coulomb potential has the ! form. This equation
admits solutions of the form %(r,$) = R(r)exp(im¢) where m is identified with
the angular momentum of the system. We normally require the angular momentum
quantum number m to take integer values so that the single-valuedness condition
is satisfied. However, the requirement that m be integer is not compatible with
the assumption that an observer in a two-dimensional space must obtain an energy

spectrum identical to the Bohr model, because the energy spectrum in this case can

be written explicitly as
Z%
26*(n+m + 1)? '

Hence, if the hydrogen-like atom is viewed as a two dimensional physical system,

E= (3.44)

and if the energy is observed to have the same spectrum as that of the Bohr model
then the angular momentum m must take half-integer values. These half-integer
values are allowed provided the configuration space is not simply connected. This
will be the case for a hydrogen-like atom viewed as a planar system, in which the
atomic electron cannot penetrate the nucleus. In this situation the single-valuedness
condition is no longer a sufficient requirement to ensure that the angular momentum
adopts integer values. However, integer values for the angular momentum m can be
retained if we add to the Coulomb potential a quantity — (ﬁm /7, when the
hydrogen-like atom is viewed as a two-dimensional physical system.

In the above example it is seen that the topological structure of a configura-

tion space can determine the quantum nature of an observable. This result is not



unexpected in quantum mechanics. If the electron in a hydrogen-like atom is con-
strained to move in a plane, then the orbital angular momentum of the electron
must take half-integer values in order to reproduce the same energy spectrum as the
Bohr model. As a consequence, it may be possible to invoke topological arguments
to explain the Stern-Gerlach experiment, without the necessity of introducing spin
into non-relativistic quantum theory in an ad hoc manner. In the following sections

we explore these issues in more detail.

3.4 Quantum mechanics in compactified Kaluza-Klein spaces

The topological structure of a physical system can determine the nature of an
observable of a quantum system, such as angular momentum. In the case of a
hydrogen-like atom, the nontrivial topological structure of the system can only be
revealed when the electron is constrained to move in a plane, so that the funda-
mental homotopy group, m1(R? \ {0}), is nontrivial. This results in the angular
momentum adopting half-integer values, since the wavefunction in this case is al-
lowed to be multi-valued. However, how do we incorporate topological constraints
into the dynamics of the electron in three-dimensional space? One possible ap-
proach is to use path integral methods in multiply connected spaces, where spin can
be incorporated by specifying an appropriate space, e.g. SO(3). In this manner,
continuous classical mechanics, when defined and quantised, can provide a frame-
work for incorporating spin (Schulman (1968), Schulman (1981)). However, in the
present work we require that the topological description should only involve space-
time structures. Consider the quantum mechanics of a generalised /N-dimensional
hydrogen atom whose bound state spectrum is given by the relation (3.42), i.e.,
E, = —pe*/(2h*[n+1+ (N —1)/2]*). It is noted that for spaces of even dimensions
the Bohr energy spectrum is retained only if the angular momentum adopts half-
integer values. This energy spectrum is derived for a hydrogen atom in the simply
connected N-dimensional Euclidean space RY whose fundamental homotopy group
is trivial, i.e. m(R") = {0}. In the simply connected Euclidean'space RY, the wave-

function must be single-valued, and, as a consequence, the angular momentum must



be integer. However, for quantum mechanics in multiply connected spaces, the Eu-
clidean space RN may be considered as a universal covering space of some multiply
connected space in which a wavefunction of the Schrddinger equation can be multi-
valued. It is known that the Euclidean space R" is a universal covering space of the
space RV~ x S (Singer and Thorpe (1967), Nakahara (1990)). The space RA=15*
has a nontrivial topological structure because its fundamental homotopy group is
isomorphic to Z, i.e. m(RY"! x §) & m(R¥ ") @m(S') = {0} ® Z = Z. The mul-
tiply connected space RV~! x S has the structure of a Kaluza-Klein space, because,
according to the modern perspective (see, e.g., Maheshwari (1989)), a Kaluza-Klein
space is not considered as an M N manifold whose symmetries are the N-dimensional
Poincaré symmetries, but rather a compactified manifold of the form M* x S9.
Here M* is a four-dimensional Minkowski spacetime and S¢ is some compact man-
ifold whose size is much smaller than any measurable length scale (Kaluza (1984),
Maheshwari (1989)). In the following sections we consider nonrelativistic quantum
mechanics in a compactified Kaluza-Klein space, RN-1 x 81, consisting of the di-
rect product of an (N — 1)-dimensional Euclidean space RN-! with the compact
circle S'. We assume quantum mechanics is valid in these compactified spaces. The
introduction of the compact circle makes it possible to incorporate spin into the
nonrelativistic Schrédinger wave equation. Since the topological structure of the
configuration space of a physical system depends on the dimension of the space, we

discuss two, three and four-dimensional compactified spaces separately.

3.4.1 Quantum mechanics in 2-dimensional space R' x 5*

Let us consider first the case of quantum mechanics in a two-dimensional Kaluza-
Klein space R! x S', where the compact space S' is a circle of radius p and R'is
a one-dimensional Euclidean space. This space has the form of a cylinder of radius
p embedded in the three-dimensional Euclidean space R3. The time-independent
Schrédinger wave equation for a free particle moving in this space can be written as

B’ (1 ot 0

G a—) ¥(er8) = B¥(2,9). (3.45)



When the wavefunction is written in the separable form ¥(z,$) = Z(2)®(¢), the

Schrodinger equation (3.45) reduces to the following system of differential equations

£e
W—FS ¢ = 0, (3.46)
R d*Z h2s?
2—/;——(122 < (E — —Z[Lpz) zZ = 0, (3.47)

where the quantity s is identified with the angular momentum quantum number of
the system. The solution for the function @ is of the form ®(¢) = exp(is$). In order
to obtain nontrivial solutions, the energy of the particle must satisfy the condition
E > s2h?/2up®. In this case, the solution is of the form Z(z) = exp(ikz), where k
is a real number defined via the relation
2\ 72
E= (k’ g :7) ;’—p (3.48)
It is interesting to note that free particles in this compactified Kaluza-Klein space
posseses an angular momentum s which can adopt half-integer values, since the
space B! x S! is multiply connected. This result allows an interpretation of the
spin of a particle as a manifestation of the topological structure of spacetime at the
quantum level. It is also noted that the ground state energy £ = s2h?[2pp” of a
free particle in this space is very large if the size of the compact space S! is very
small. However, if the size of the compact space is not directly measurable then this
energy is unobservable because it is associated only with the compact space.
Now consider a particle moving under the influence of a Coulomb-like potential.
Let us locate the nucleus of positive charge e of a hydrogen-like atom at the origin

of the space R! x S'; the distance from the nucleus to the atomic electron is r =

/22 + (p$)?. In this case the Schrédinger equation takes the form

2 2 2 2

—% (;1;66752 4 %) P — 871/1 = Ey. (3.49)
We assume that the size of the compact manifold is small, so that the condition
p < z can be imposed. This allows us to expand the Coulomb potential and use
perturbation theory to calculate the first order correction to the energy spectrum.

Consider the electron confined to the region z > 0, which is equivalent to a potential



of the form (Nieto (1979))

&2 e2p2g? 3e2pt gt
e oot Jepe . forz>0
V(z) = W EEF

400 for 2z S 0

(3.50)

The terms involving p¢ are treated as a perturbation. We could choose an alternative
potential of the form V(z) = —e?/|z| + *p’¢*/2|z|> — ... With this potential,
however, the system would become doubly degenerate, although it would yield the
same energy spectrum. The unperturbed Schrédinger equation takes the form

d’®

réz-i-sz@

A hs?
B e L) [ B
2p dz? +[z +( 2#/)2)]Z

The solution to Eq.(3.51) is ®(¢) = exp(is¢). On the other hand, Eq.(3.52) rep-

Il

0, (3.51)

Il
ol

(3.52)

resents the time-independent Schrédinger equation for a one-dimensional hydrogen

atom. The solution is given by
/2
_— (n = 1)' g —u/2 1
Pa(z) = [2n(n!)3 e ?ul,(u) (3.53)
where L} (u) is the associated Laguerre polynomial and u = 2ue?z/h’n. The bound
state energy spectrum in this case is given by
pet 1 KZs?

E,=-—F— ;
oK% n? T 2pp?

(3.54)

It is seen that the energy levels are shifted by the amount 1%s%/2up? which is identical
to that predicted by Eq.(3.48), so the hydrogen atom in the compactified Kaluza-
Klein space, R! x S*, has the same energy spectrum as that of a hydrogen atom in a
one-dimensional Euclidean space. However, if the length of the compact manifold St
is measurable then the energy levels would be different, because in such a situation
the condition p < z could not be imposed. In that case it would be possible to
detect the difference by a measurement of the frequency spectrum. Perturbative
corrections to the energy spectrum can be calculated using the generating function
for Laguerre polynomials. For example, the first order correction, AE,, using the
term e®p®¢?/(22%) as a perturbation, is given by .

2292
AE, = / ¥z (r) (e sz;# )¢ns(r)dr
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/ Pn(z ( )¢,.(z)dz (3.55)
p2e®p?¢? (n — 1)! [:0 g [L;(u)]z i

B md(nl)
In general, in order to evaluate integrals involving the associated Laguerre poly-
nomials of the form [ e~*u*L(u) L (u)du, the following generating function Gy, (u,.
is used (Sneddon (1980), Bransden and Joachan (1986)):

Gm(u,s) =

(=)™ exp[—us/(1 - s)] i L (u) sk, (3.56)

(1—s)mt1

By expressing the integral G(m,m/, s,t) = [ e u*Gyn(u, )G (u, t)du as
© oo sktk’ ,
G(m,m',s,t) = k;ﬂ k,_zm AT / e~ us L (u) L (u)du
/e—u o (=8)™ exp[—us/(1 — s)] (—t)™ exp[—ut/(1 - ) .,
(]_ — 3)rn+1 ( t)m’+1

_ ()i g’ u(1 — st) sz
= (1= s)y™(1 _t)m’+1 _/ ( a —_——s)(l = t)) du, (3.57)

it follows that the integral [ e *u®L7(u)L} (u)du is equal to k!(k’)! times the coeffi-

cient of s¥¢*' in the binomial series expansion of the quantity (1(_:)2,,":"(‘1 _':;,:'_a (lr_(‘:[;':l, 5

Applying the above method to the present problem with the La.guerre polynomial

L} (u) and the generating function —t exp (— —) ==ty Lln the energy

n!

correction AE, is found to be

2 22
AE, = "; il Ei(u) (3.58)

where Ei(u) is the exponential-integral defined by
. =gy
Ei(u) = / oW (3.59)
This result shows that perturbative corrections to the unperturbed energy spectrum
can only be carried out for z > 0. For z > p the correction term is negligible. Higher
order perturbative terms can also be calculated and in general they depend on the

uantum number n and integrals of the form e Yy %*-1dy where k =1,2,....
q g >0 y 94y



3.4.2 Quantum mechanics in 3-dimensional space R*x $!

The time-independent Schrodinger equation for a free particle in a three-dimensional

compactified Kaluza-Klein space R? x S' can be written in the form

REf ;. 18

where p is the radius of the compact circle S! parametrised by the angle Q, and
V? is the Laplacian in two-dimensional Euclidean space. If the two-dimensional
wavefunction % is written in the form 9 = w(Q)®(#)R(r), where (v, ¢) are the polar
coordinates in the space R?, then the above Schrodinger equation reduces to the

system of equations

2
%4—52(‘) — 0, (361)
d*®
d_¢3+m2§ = 0, (3.62)
R 1dR m’_ 2 h’s?
S+ -kt (E ~5g B = O (3.63)

It is seen that a free particle moving in a three-dimensional compactified Kaluza-
Klein space, R? x S!, possesses an angular momentum s associated with the third
compactified dimension, in addition to the angular momentum associated with the
two-dimensional Euclidean space. An important feature of this extra angular mo-
mentum is that it can take on half-integer values, because the configuration space
is multiply connected and so multivalued wavefunctions are allowed. On the other
hand, although the solution for the function & is of the form ®(¢) = exp(im¢),
the angular momentum m can only adopt integer values, since in this case the
quantity m is associated with the simply connected Euclidean space R?. However,
for the quantum dynamics of an electron in a hydrogen atom whose configuration
space is (R \ {0}) x S', the angular momentum m can have half-integer values.
The Schrodinger equation for the stationary states of an hydrogen atom in a three-
dimensional compactified Kaluza-Klein space, R” x S', is
2 2 2

—% (v2 % %%) b — j—3¢ =Eyp . (3.64)

where 73 = /7% F p2§2?, with » = \/2Z + y%. As in the case of a hydrogen atom in

a two-dimensional compactified Kaluza-Klein space, R' x §', the condition p < 7



can be imposed, since the size of the compact space is assumed to be small. The
potential can be expanded as a binomial series and terms (other than e?/r) may be
regarded as a perturbation. The energy corrections are calculated using the earlier
method for evaluating integrals involving the Laguerre polynomial. The potential is

expanded in a binomial series as

e? 1/p0\% 3 /pQ\* 5 /pQ\®
o T2l E0Y 480 Y s :
¥ 1-[ 2<r)+8(r) 16(r)+ (7:65)
If the terms that contain the quantity p) are treated as a perturbation, then the

unperturbed Schrodinger equation for the hydrogen reduces to the system of differ-

ential equations

d?
ﬁ—!—szw = 0, (3.66)
42
Tﬁz_*_mzé = 0, (3.67)
#R 1dR m? 2 (e K’s?
_—(17‘2 + ;_d'r - ——1‘2 R + F (T + E— 2,u.p2 R = 0. (368)

The quantities s and m can take half-integer values, since both are associated with
multiply connected spaces. The fundamental homotopy group of the space R?\ {0}
is isomorphic to 7;(S'), and the fundamental homotopy group of the space (R? \
{0}) x S! is isomorphic to the fundamental homotopy group of the space §* x S7,
which is just the two-dimensional torus 72, i.e., w1 ((R?\ {0}) x S') & m (S x §1) =
71(8*) ® m(S') = Z & Z. Therefore, the fundamental group m;((R? \ {0}) x S?)
has a unitary representation a : m((R? \ {0} x S') — U(1) x U(1) defined by the
characters a(n,m) = exp(inw)exp(imn), where n,m € Z. It is seen that the use
of multivalued wavefunctions are permitted in this case, since the multiple-valued
wavefunctions are determined by the characters of the fundamental homotopy group
of the configuration space.

In order to evaluate the correction to the energy spectrum we consider unper-

turbed solutions of the form

2 N ) 172 bl
_'/)"m’ - pe { (n m ) } e-—u/zumLZm X (u)ezméeuﬂ,

~ wh’(n—1/2) L2~ D[(n +m - 1P i
(3.69)
where u = 2ue?r/A*(n — 1/2) and L7 . are the associated Laguerre polynomials.

With these solutions the quantum number m takes on integer values |m| < n — 1,



with n = 1,2,.... This results from the definition of v in terms of n — 1/2 instead of

n (Zaslow and Zandler (1967)). The unperturbed energy spectrum E, is given by

4 2.2

pe h*s
E,=- : 3.70
2h%(n — 1/2)2 F 2pp? (520

The shift in the radial distribution makes the energy level lower in this case. The
ground state energy level is four times that of the hydrogen atom in a three-
dimensional space.

For the hydrogen atom in the three-dimensional compactified Kaluza-Klein space,
the first order correction, AE,, is calculated be using the term e2p?Q?/2r® as a per-
turbation and the generating function (—s)*™ exp[—us/(1 — s)]/(1 — s)*™*! for the

associated Laguerre polynomial L27, ., thus

AE, “’Q

/ Yrms(T, 6, Q)* ( ) Ynms (7, ¢, Q)rdrdpdQ

- 2 [t (S )

x [Temum (12, )] du (3.71)
4pe8p?0? i c
F (adm-2a—=1R) =

where the quantities Cp,_p,—1 are defined by

Co = n-in:—l (n -_m— k)}(jm -2+ k)’ (372)

k=0

Higher order perturbation terms can also be calculated in a similar manner.
The results, however, can be expressed in a general form using the relationship be-
tween the associated Laguerre polynomials and the confluent hypergeometric func-
tion F(a,v,u) (Sneddon (1980))

L™ (u) = (=1)™ ,(” Ui F(—n+m,m+1,u). (3.73)
ml(n —m)!
The evaluation of integrals involving the radial hydrogenic wavefunctions requires

the calculation of the integral

Iy=/o°° ~uy N F(=n +m,m + 1,u)%du, (3.74)



which is given by

__ (n=-m)T()
L = miDm+2)n (3.75)
y { n-m— (n—m)...(n—m—k)...(m—u—k+1)...(m—u+k+1)}.

H Z% [(k+ D)P(m + 1)(m + 2)...(m + 1+ k)

Because these correction terms involve the compact dimension pf), the above cal-
culations show that the corrections only become meaningful when the compact di-
mension is measurable, because the correction AE, given by the relation (8.711) is
proportional to the square of the compact dimension p§2. When the size of the com-
pact space is not measurable all energy corrections can be ignored and the hydrogen
atom in this case behaves like a hydrogen atom in ordinary two-dimensional space
R%

To generalise the previous discussion, let us consider quantum mechanics con-
structed on a multiply connected configuration space whose fundamental homotopy
group is nonabelian; such an example is that of the planar hydrogen molecular ion
Hj, with the assumption that the electron of the system can not penetrate either
nucleus. The general multiply connected configuration space of this kind has the
form R?\{z1, ..., @}, Where z1,..., z, are n distinct points in the plane R?. The fun-
damental homotopy group m; of the space R\ {z1,..., z,} is an infinite nonabelian
group for n > 2. This is a free group of n generators which can be constructed
by the homotopy classes [v] of closed curves ~; each of which encloses the corre-
sponding point z; but none of the remaining points. However, the generators are
not determined uniquely, and when specified, they give rise to a representation of
the group. Hence, the fundamental homotopy group of the configuration space of
the hydrogen molecular ion Hj has two generators which can be identified with two
independent loops. It is known that all higher homotopy groups of B?\ {z1,...,Zn}
vanish (Hilton (1961), Singer and Thorpe (1967)). However, in the case where the
atomic electron of the hydrogen molecular ion, HY, is not constrained to the two-
dimensional plane B2 \ {@1,...,2a}, all loops are contractible. In other words, the
configuration space of the system is simply connected. In this ‘case, the wave func-
tions that describe the quantum electronic motion must be single-valued, and as a

consequence, the angular momentum takes on integer values. Let the origin of the



polar coordinates be at the midpoint of two nuclei which are separated by a distance
d, then the Schrodinger equation for the stationary states of the electronic motion

is written as

2 2 2 2
g (j— + = %) ¢ = By, (3.76)

2u T
where r; and rp are the position vectors of the electron with respect to the two
protons of the molecule. Using elliptic coordinates (¢,7,%), where ¢ is the azimuthal
angle with the z-axis being the line joining the two protons, ¢ = (r; + r2)/d and
n = (r1—r2)/d, the Laplacian operator expressed in terms of these coordinates takes
the form (Bransden and Joachan (1986))
2 _ 2 2
V2 = d2(£24 5 {;6(52 e 1)33)£ 3 %(1 - 1,2)645:7 tE-DA=D _61)(1’7_ 7’2)5%7}(3 77)

When the wave function is written as a product ¥ = ®&(¢)F(£)G(n), the Schrédinger

equation reduces to the system of equations, in atomic units p = e =% =ap =1,

%f+m2<1> = 0 (3.78)
d( l)dF (dz( >5z+2d5_£ +/\) F(&) = 0 (3.79)
cZz( ) (d; (E alz) )F(ﬁ) = 0, (3.80)

where m and A are separation constants. The solution to Eq.(3.78) is of the form
exp(tm@), in which case m must take integer values because the fundamental group

of the configuration space vanishes.

3.4.3 Quantum mechanics in 4-dimensional space R® x S!

The time-independent Schrédinger equation for a free particle in a four-dimensional
compactified Kaluza-Klein space R® x S! can be written as

h? 1 9°
T ( +aaa) Y= B (heL)
where p is the radius of the compact circle S' parametrised by the angle €2, and

V2 is the Laplacian in three-dimensional Euclidean space. If the four-dimensional

wavefunction 1, is written in the form 1y = w(Q)¥(r,0,$), where (7,0, ) are the



three-dimensional spherical coordinates, then the Schrédinger equation (3.81) re-

duces to the system of equations

d?

E‘%H?w = 0, (3.82)
hZ
R PR = 0 (3.83)

where k is defined by E = h*k?/2u — h®s*/2pp?. As in the case of a free parti-
cle in three-dimensional compactified Kaluza-Klein space, R* x S*, the Schrodinger
equation gives rise to an angular momentum s which can take on half-integer val-
ues. The energy spectrum is also shifted by an amount h%s%/2up?. Therefore,
free particle eigenfunctions in a four-dimensional compactified Kaluza-Klein space,
R® x S', can be classified by the continuous energy eigenvalues E and three dis-
crete indices s,I and m, where the quantum numbers ! and m result from the
three-dimensional free-particle solutions P gim(r) = ji(kr)Yim (6, 4), where Ji(kr) are
the spherical Bessel functions and Yin(0¢) are the spherical harmonics (see, e.g.,
Bransden and Joanchain (1989)). Both of the quantum numbers ! and m are in-
tegers since they are associated only with the simply connected Euclidean space
R3.

The Schrodinger equation for the stationary states of an hydrogen atom in a
four-dimensional compactified Kaluza-Klein space, R® x S, can be written in the

form , \ \

__2"; (vz + ;1;5%;) ba= S = B, (3.84)
where 2 = 12 + p?Q? with r* = 2 +3y° + 2°. As in the case of a hydrogen
atom in three-dimensional compactified Kaluza-Klein space, the condition p < 7 is
imposed, since the size of the compact space is assumed to be small, and the potential
is expanded in a binomial series similar to Eq.(3.65). If the terms that contain

the quantity pQ are treated as a perturbation, then the unperturbed Schrédinger

equation for the hydrogen atom reduces to the system of differential equations

d?

?1?% +8%w = 0, : (3.85)
B2 2
o (v’ +>+ k’) $ = 0. (3.86)



The behaviour of an hydrogen atom in four-dimensional compactified Kaluza-Klein
space is therefore identical to that of a hydrogen atom in three-dimensional Eu-
clidean space, if the ground state energy h%s%/2pup® is unobservable. However, un-
like the situation in three-dimensional Euclidean space, the Schrédinger equation in
four-dimensional compactified Kaluza-Klein space gives rise to an angular momen-
tum that can take on half-integer values, which hints at a possible topological origin
of the spin of the electron. It should be emphasised again that the half-integer values
of the angular momentum s are possible because the background space R3x S'is
multiply connected.

If the terms in the binomial series of the potential (see Eq.(3.65)), that con-
tain the quantity pQ, are treated perturbatively then the correction to the energy

spectrum can be calculated from

g

Il

[ Bt ()
/o 22k | Ry (r) P, (3.87)

where the eigenfunctions ¥um(r) are written as a product of the normalised radial

wavefunctions R,; and spherical harmonics ¥i,(8, ¢). These are defined by

3 (m—l— 1))
By} = _{(nzao) 2(n[(nl+l;!)]'3} L) f.56)
VRV _
Yin(04) = (-1 [%} Pr(cosO)e™,  (3.89)

where L2} (p) are the associated Laguerre polynomial and P/ (cos f) are the asso-

ciated Legendre polynomial. The quantities p and ao are defined by the relations

2 47!'6052
p=—r, ag = =
nag He

(3.90)

Here ao denotes the Bohr radius and g is the reduced mass of the system.
Using a generating function for the associated Laguerre polynomials L?(p), or

the confluent hypergeometric functions (3.73), it can be shown that

1 1
<;>nlm - aonz’ . (391)

and

<1~1_2>,,,,,, = 3853(!—145/7) .o (3.92)



For k < —3 the following recursion relation can be used
k41 r k s
T (r*) — (2K + 1)ao (') + 7121 +1)* — K)ad {*) =1, (3.93)

with the condition k£ > —21 —1 (Messiah (1961)). Applying this relation, the energy
correction due to the term e%p?Q?/2r® is found to be

e2p202 B B 222 il
2 ) . T 2a3n3I(1+ 1/2)(1 + 1) :

As in the case of the hydrogen atom in lower dimensions, these corrections, due to
the quantity pS2, only become significant when the compact dimension is measurable.
The atom is indistinguishable from a hydrogen atom in ordinary three-dimensional
Euclidean space when the size of the compact space is not measurable.

The analysis of quantum mechanics in multiply connected spaces shows that the
topological structure of the configuration space effects quantum observables, such as
angular momentum. Furthermore, the choice of a coordinate system also allows for
alternative interpretations of quantum observables, as long as these are consistent
with the mathematical formulation of quantum mechanics. For example, in Sec.
3.3.3 we noted that due to the symmetry of the Schrédinger equation, with respect
to the rotation group, an observer who views the hydrogen atom as a planar physical
system describes the angular momentum of the system differently from an observer
who uses a three-dimensional model. This result poses an interesting question: does
the choice of a coordinate system affect the description of physical observables? In
order to illustrate that what we have been discussing are not exceptional cases, in

the next section we present an analysis of coordinate systems in general relativity.
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