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We study several integrals that contain the infinite product

∞∏
n=0

[
1 +

(
x

b+n

)3]
in the

denominator of their integrand. These considerations lead to closed form evaluation∫ ∞
−∞

dx(
ex + e−x + eix

√
3
)2 =

1

3
and to some other formulas.

1. The infinite product
∞∏
n=0

[
1 +

(
α+ β

n+ α

)3
]

and more general products have been studied in the literature (see [1], ch. 16). In this paper we consider

integrals of the form ∫ ∞
0

Pb(x)f(x)dx, (1)

where

Pb(x) =
1

∞∏
k=0

(
1 + x3

(k+b)3

) . (2)

Several such integrals will be evaluated in closed form. However while others do not have a closed form will

allow us to evaluate some integrals of elementary functions.

Note that the infinite product in (2) can be written in terms of Gamma functions [2]

Pb(x) =
Γ(b+ x)Γ(b+ ωx)Γ(b+ x/ω)

Γ3(b)
, ω = e

2πi

3 .

The notation ω = e
2πi

3 for third root of unity will be used throughout the paper.

2. Consider the contour integral ∫
C
Pb(z)

dz

z
. (3)

along the contour depicted in Fig.1. We assume that b > 0. The most interesting cases considered in this

paper correspond to b = 1 and b = 1/2.

Inside the contour of integration, the integrand h(z) = Pb(z)/z has simple poles at z = −(k+b−1)/ω, k ∈
N, with residues

(−1)k

(k − 1)!

|Γ(b− ω(k + b− 1))|2

(k + b− 1)Γ3(b)
,

and no poles on the contour of integration if we choose R = N + b− 1/2 for some large natural number N .

Also h(z)dz is symmetric under the change z → ωz, and as a consequence the integrals along straight lines

cancel each other out. Let’s denote the integrals along ΓR and Cε as IR and Iε respectively. Then

lim
ε→0

Iε = −2πi

3
,



2

ε R

Rω

εω

O

Cε

ΓR

Fig.1

and (Appendix A)

lim
R→+∞

IR = 0.

Using residue theorem we get

∞∑
n=0

(−1)n

n!

|Γ(b− ω(n+ b))|2

n+ b
=

1

3
Γ3(b). (4)

The integral 3.985.1 from [3]∫ ∞
−∞

eiaxdx

coshν βx
=

2ν−1

βΓ(ν)
Γ

(
ν

2
+
ai

2β

)
Γ

(
ν

2
− ai

2β

)
(5)

allows to write (4) as an integral of a hypergeometric function∫ ∞
−∞

eib
√
3x

cosh3b x
2F1

(
b, 3b

b+ 1

∣∣∣∣∣− ei
√
3x

2 coshx

)
dx = 23b−1

b

3

Γ3(b)

Γ(3b)
. (6)

3. Here we specialize b in (6) so that the hypergeometirc function can be written in terms of elementary

functions. This happens when b = 1 + 3n or b = 1/2 + 3n, where n is a non-negative integer. Only the two

cases with n = 0 are considered below:

Let b = 1/2, then the hypergeometric function becomes
√

2 coshx
2 coshx+ei

√
3x

and we get

∫ ∞
−∞

sechx e
i
√

3

2
xdx√

ex + e−x + ei
√
3x

=
π

3
. (7)

If b = 1 then the hypergeometric function becomes
2 coshx(4 coshx+ei

√
3x)

(2 coshx+ei
√

3x)
2 and we get

∫ ∞
−∞

ei
√
3x

cosh2 x

4 coshx+ ei
√
3x(

2 coshx+ ei
√
3x
)2dx =

2

3
,

which due to 4 coshx+ei
√

3x

cosh2 x(2 coshx+ei
√

3x)
2 = − 4

(2 coshx+ei
√

3x)
2 + 1

cosh2 x
can be simplified further as

∫ ∞
−∞

dx(
ex + e−x + eix

√
3
)2 =

1

3
. (8)
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It is interesting to note that there is another way to write the sum (4) with b = 1 as an integral∫ ∞
−∞

ei
√
3x coshx(

ex + e−x + ei
√
3x
)2dx =

1

12
. (9)

One might observe how the 2π/3 rotation symmetry of the product
∞∏
k=1

(
1 + x3

k3

)
manifests itself in (8)

and (9): The set of roots of the equation ex + e−x + ei
√
3x = 0 has the same 2π/3 rotation symmetry (see

Appendix B).

4. The last integral in section 3 gives∫ ∞
−∞

ei
√
3x sinhx dx(

2 coshx+ ei
√
3x
)2 =

1

2

∫ ∞
−∞

ei
√
3x d(2 coshx+ ei

√
3x)(

2 coshx+ ei
√
3x
)2 − i

√
3

2

∫ ∞
−∞

e2i
√
3xdx(

2 coshx+ ei
√
3x
)2

=
i
√

3

2

∫ ∞
−∞

ei
√
3xdx

2 coshx+ ei
√
3x
−
∫ ∞
−∞

e2i
√
3xdx(

2 coshx+ ei
√
3x
)2


= i
√

3

∫ ∞
−∞

ei
√
3x coshx(

ex + e−x + ei
√
3x
)2dx =

i
√

3

12
.

Thus we have ∫ ∞
−∞

ei
√
3x sinhx dx(

2 coshx+ ei
√
3x
)2 =

i
√

3

12
. (10)

5. After the substitution t = e2x equation (8) becomes∫ ∞
0

dt

(1 + t+ tα)2
=

2

3
, α =

1 + i
√

3

2
, (11)

while combining (9) and (10) we find two analogous representations∫ ∞
0

tαdt

(1 + t+ tα)2
=
α

3
, (12)

∫ ∞
0

tα−1dt

(1 + t+ tα)2
=

1

3α
. (13)

(13) is related to (12) by complex conjugation and change of variable t→ 1/t.

6. If we apply the approach of section 2 to ∫
C
Pb(z)dz,

instead, then the integrals over straight lines no longer cancel out. However, there is nevertheless a simpli-

fication: in this case the sum analogous to (4) reduces to an integral of elementary function for all b so that

in this case we find the transformation∫ ∞
0

dx
∞∏
k=0

(
1 + x3

(k+b)3

) =
4πΓ(3b)

Γ3(b)
√

3

∫ ∞
−∞

eixb
√
3 dx(

ex + e−x + eix
√
3
)3b . (14)
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7. In principle integrals (7) and (8) can be written in terms of real-valued functions by calculating the

real part of the integrand. The resulting formulas are cumbersome and therefore omitted. However there is

another way to get a compact integral of a real valued function, at least for (8). First of all, all the roots of

the function ez + e−z + eiz
√
3 lie on the three rays z = irωk, r > 0, (k = 0, 1, 2) (see Appendix A). If one

bends the contour of integration so that it never crosses these zeroes then the integral (8) will not change.

Since the integrand decreases exponentially when z →∞, 0 < arg z < π/6 or 5π/6 < arg z < π we have

1

β

∫ ∞
0

dx(
e−x/β + ex/β + e−ix

√
3/β
)2 + β

∫ ∞
0

dx(
eβx + e−βx + eiβx

√
3
)2 =

1

3
, β = eπi/6,

and after elementary simplifications ∫ ∞
0

ex
√
3 cos

(
π
6 − x

)(
2 cosx+ ex

√
3
)2dx =

1

6
. (15)

Similarly, for the case b = 1 of (14)∫ ∞
0

dx(
1 + x3

13

) (
1 + x3

23

) (
1 + x3

33

)
. . .

= 8π

∫ ∞
0

ex
√
3 dx(

2 cosx+ ex
√
3
)3 . (16)

8. It turns out that (8) has a parametric extention. Consider the contour integral∫
C′
P1(z)

eazdz

z
, (17)

where the contour C ′ is a circle of radius R = N + 1/2 for large natural N . Since |P1(z)| decreases

exponentially with N on the circle C ′ (Appendix A), (17) will be zero in the limit N → ∞ for sufficiently

small |a|. Therefore the sum of residues of the integrand over three sets of simple poles z = −ke2πij/3, k ∈ N,

(j = 0, 1, 2) plus a simple pole at the origin, will be 0 according to residue theorem. As a result one will

obtain three sums similar to (4) and then convert them to integrals of the type (8). However there is a trick

that allows to avoid these calculations. Note that the factor eaz in (17) will introduce additional factors

exp
(
−ake

2πij

3

)
in the sum over residues. When converted to an integral via (5) these factors have the effect

of multiplying eix
√
3 by exp

(
−ae

2πij

3

)
:

3∑
j=1

∫ ∞
−∞

dx(
ex + e−x + exp

(
−ae

2πij

3

)
eix
√
3
)2 = 1,

or equivalently

∞∫
−∞

dx(
ex + e−x + ea+ix

√
3
)2 +

∞∫
−∞

eadx(
ea+x + e−x + eix

√
3
)2 +

∞∫
−∞

eadx(
ea+x + e−x + e−ix

√
3
)2 = 1, (18)

where |a| is sufficiently small.

9. There is a similarity between (4) with b = 1 and the identity due to Ramanujan ([4], p. 309)

eay =
−a
2ci

∞∑
k=0

Γ
(
−a+k(ci−b)

2ci

)
(−2ie−by sin cy)k

Γ
(
−a−k(ci−b)

2ci + 1
)
k!

.



5

After equating the coefficents of a1 in Taylor series expansion of both sides into powers of a and transforming

the Gamma function in the denominator via Euler’s reflection formula

y =
1

2πic

∞∑
k=1

(−1)k

k!
Γ

(
k

2
− ikb

2c

)
Γ

(
k

2
+
ikb

2c

)
sinπ

(
k

2
+
ikb

2c

)
(−2ie−by sin cy)k. (19)

To make this similarity more exact we differentiate (19) with respect to y, divide by (c cot cy − b), repeat

this procedure one more time and then set c = 1, b =
√

3

2πi sin y

(cos y −
√

3 sin y)3
=

∞∑
k=1

(−1)k

k!
|Γ (1− ωk)|2 · sin

(
πkeπi/3

)
(−2ie−

√
3y sin y)k. (20)

This series converges when |2e−
√
3y sin y| < e−

π

2
√

3 [4]. It will be convenient to use another variable α related

to y by

e−α = 2e−
√
3y sin y.

The condition that the series (20) converges now takes a very simple form Re α > π
2
√
3
. In the following it

will be assumed for simplicity that α > π
2
√
3
.

Is it possible that (20) leads to evaluation of integrals with infinite product
∞∏
k=1

(
1 + z3

k3

)
? Consider the

contour integral ∫
C

(−ie−α)
−ωz

sinπz

z
∞∏
k=1

(
1 + z3

k3

) dz, (21)

where C is the contour in Fig.2. Due to the asymptotics

|
(
−ie−α

)−ωz
sinπz| ∼ 1

2
exp

[
−
(
α

2
+
π
√

3

4

)
x+

(
5π

4
− α
√

3

2

)
y

]
, 0 < arg z <

2π

3
,

and the result of Appendix A, the integral over circular arc ΓR vanishes in the limit R→∞ if−
(
α
2 + 11π

4
√
3

)
x+

(
5π
4 −

α
√
3

2

)
y < 0, 0 < arg z < π

3 ,(
π

2
√
3
− α

)
(x+ y

√
3) < 0, π

3 < arg z < 2π
3 .

When α > π
2
√
3

these conditions are satisfied automatically.

The same approach as in section 2 yields∫ ∞
0

(−ie−α)
−ωx

sinπx− (−ie−α)
−x/ω

sinπωx

x
∞∏
k=1

(
1 + x3

k3

) dx

= 2πi

∞∑
k=1

(−1)k−1

k!
|Γ (1− ωk)|2 · sin

(
πkeπi/3

)
(−ie−α)k

=
4π2 sin y

(cos y −
√

3 sin y)3
.

For real α one can decompose the function in the numerator of this integral into real and imaginary parts(
−ie−α

)−ωx
sinπx−

(
−ie−α

)−x/ω
sinπωx = f(x, α) + ig(x, α)
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where

f(x, α) =
1

2
e−
√
3πx/4−αx/2

(
e
√
3πx sin

(
π − 2

√
3α
)
x

4
+ 2 sin

(
2
√

3α+ 3π
)
x

4
− sin

(
2
√

3α− 5π
)
x

4

)
,

g(x, α) =
1

2
e−
√
3πx/4−αx/2

(
cos

(
2
√

3α− 5π
)
x

4
− e
√
3πx cos

(
π − 2

√
3α
)
x

4

)
.

As a result ∫ ∞
0

g(x, α) dx

x
∞∏
k=1

(
1 + z3

k3

) = 0, (22)

∫ ∞
0

f(x, α) dx

x
∞∏
k=1

(
1 + z3

k3

) =
8π2 sin y(√

3 sin y − cos y
)3 , (23)

where y is the root of the equation 2e−y
√
3 sin y = e−α near y = 0.

These formulas simplify when α = 5π
2
√
3

∞∫
0

(
1− eπ

√
3x cosπx

)
e−

2π√
3
x dx

x
(
1 + x3

13

) (
1 + x3

23

) (
1 + x3

33

)
. . .

= 0, (24)

∞∫
0

sinπx
(

4 cosπx− eπ
√
3x
)
e−

2π√
3
xdx

x
(
1 + x3

13

) (
1 + x3

23

) (
1 + x3

33

)
. . .

=
8π2 sin y(√

3 sin y − cos y
)3 , (25)

where y = 0.0054167536 . . . is the root of the equation 2e−y
√
3 sin y = e−

5π

2
√

3 .

10. The hyperbolic log-trigonometric integral

Im

∫ ∞
0

dt(
it
√

3 + ln(2 sinh t)
)2 = 0, (26)

or in terms of real valued functions ∫ ∞
0

t ln (2 sinh t)[
3t2 + ln2 (2 sinh t)

]2 dt = 0, (27)

is also related to the infinite product in the title. Indeed∫ ∞
0

sinπx dx

x
∞∏
k=1

(
1− x3

k3

) =

∫ ∞
0

sinπx

x
Γ(1− x)Γ(1− ωx)Γ(1− x/ω)dx

= π

∫ ∞
0

Γ(1− ωx)Γ(1− x/ω)

Γ(1 + x)
dx

= π

∫ ∞
0

B(1− ωx, 1− x/ω)dx

= π

∫ ∞
0

dx

∫ ∞
0

t−ωx

(1 + t)x+1
dt (28)
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Changing the order of integration and calculating the integral over x we get∫ ∞
0

sinπx dx

x
∞∏
k=1

(
1− x3

k3

) = −2π

∫ ∞
0

dt(
it
√

3 + ln(2 sinh t)
)2 . (29)

(26) is the statement of the fact that the integral on the RHS of (29) is real. Of course by replacing in (28)

ω with any complex number of unit argument one gets other integrals like (26).

It is known that Laplace transform of the digamma function leads to some log-triginometric integrals [5–7]

that contain the expression x2 + ln2(2e−a cosx) in the denominator. This expression should be compared

to the expression 3t2 + ln2 (2 sinh t) in the denominator of (27).

Appendix A: Asymptotics of the product of gamma functions

Due to the asymptotic relation

ln Γ(z) =

(
z − 1

2

)
ln z − z +O(1), | arg z| < π,

one has

ln {Γ(b+ z)Γ(b+ ωz)Γ(b+ z/ω)} = 3

(
b− 1

2

)
ln z − 2π√

3
z +O(1), | arg z| < π

3
.

From this it follows that

|Pb(z)| = C|z|3b−3/2 ·

e
− 2π√

3
x, 0 < arg z < π

3 ,

e
π√
3
x−πy

, π
3 < arg z < 2π

3 ,

where z = x+ iy.

Appendix B: Roots of the equation ei
√
3z + 2 cosh z = 0

The fact that the roots of the equation ei
√
3z + 2 cosh z = 0 are symmetric under z → ωz is easy to check

directly.

Since 1
2e
−π
√
3/2 = 0.0329... is quite small the equation ei

√
3z + 2 cosh z = 0 will have roots close to

πi
(
n+ 1

2

)
, where n is a non-negative integer. Below it is shown that these are the only roots in the upper

half plane.

Let f(z) = ei
√
3z, g(z) = 2 cosh z. Obviously, on the real axis |f(z)| < |g(z)|. Now consider f(z) and g(z)

on the closed contour C depicted in Fig.2

R−R O

ΓR

Fig.2
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Here ΓR is a semicircle of radius R = πN for some large natural N . We have for z = x+ iy ∈ ΓR

|f(z)| = e−
√
3y ≤ 1,

|g(z)| = 2

√
sinh2 x+ cos2

√
π2N2 − x2 ≥ 2.

Thus |f(z)| < |g(z)| on the contour C. According to Rouche’s theorem this means that the function

f(z) + g(z) has the same number of roots inside the contour C as the function g(z), as required.

This analysis shows that the roots of ei
√
3z+2 cosh z = 0 are located on the three rays z = irωk, k = 0, 1, 2.
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