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We study several integrals that contain the infinite product H {1 + (,)%l) ] in the
n=0
denominator of their integrand. These considerations lead to closed form evaluation

/ i 5 = 3 and to some other formulas.
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and more general products have been studied in the literature (see [I], ch. 16). In this paper we consider

integrals of the form
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where
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Several such integrals will be evaluated in closed form. However while others do not have a closed form will
allow us to evaluate some integrals of elementary functions.
Note that the infinite product in can be written in terms of Gamma functions [2]

Py(x) = I‘(b—l—JU)F(bI—I‘—?)(Z;)J;:)F(b+ac/w)7 =

The notation w = es~ for third root of unity will be used throughout the paper.
2. Consider the contour integral
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C
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along the contour depicted in Fig.1. We assume that b > 0. The most interesting cases considered in this
paper correspond to b =1 and b= 1/2.
Inside the contour of integration, the integrand h(z) = P,(z)/z has simple poles at z = —(k+b—1)/w, k €

N, with residues
(=DF |T(b—w(k+b— 1))
(k=10 (k+b—1T3(0)

and no poles on the contour of integration if we choose R = N + b — 1/2 for some large natural number N.
Also h(z)dz is symmetric under the change z — wz, and as a consequence the integrals along straight lines
cancel each other out. Let’s denote the integrals along I'r and C. as Ir and I. respectively. Then
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Using residue theorem we get
o~ (D" [Cb—wn+ b)) 14
= —T"(b). 4
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The integral 3.985.1 from [3]
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allows to write as an integral of a hypergeometric function
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3. Here we specialize b in @ so that the hypergeometirc function can be written in terms of elementary

functions. This happens when b =1+ 3n or b = 1/2 4 3n, where n is a non-negative integer. Only the two
cases with n = 0 are considered below:

. . h
Let b = 1/2, then the hypergeometric function becomes , /mghc‘;% and we get
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If b =1 then the hypergeometric function becomes (Reoshorevir)’ and we get
/Oo V32 feosha + V3 d 2
T = -
oo cosh’ (2 coshz + e"\/gw) ’ 3
: 4 cosh z+e?V3® _ 4 : :
which due to conh? o(2coshate )’ (2ZeoshareVir)? + 7, can be simplified further as
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It is interesting to note that there is another way to write the sum with b =1 as an integral

/ e cosh x do — 1 (9)
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One might observe how the 27 /3 rotation symmetry of the product [] (1 + i—i) manifests itself in
k=1

and @: The set of roots of the equation e* + e=* + ¢V3¢ = 0 has the same 27 /3 rotation symmetry (see
Appendix .

4. The last integral in section 3 gives

2
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2
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Thus we have
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5. After the substitution ¢ = e?* equation (§)) becomes
© dt 2 14123
[ =l =1, (1)
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while combining @D and we find two analogous representations
o tdt
/ —_— = g, (12)
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is related to by complex conjugation and change of variable ¢ — 1/¢.
6. If we apply the approach of section 2 to
/ Pb(Z)dZ,
C

instead, then the integrals over straight lines no longer cancel out. However, there is nevertheless a simpli-
fication: in this case the sum analogous to reduces to an integral of elementary function for all b so that

in this case we find the transformation
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7. In principle integrals and can be written in terms of real-valued functions by calculating the
real part of the integrand. The resulting formulas are cumbersome and therefore omitted. However there is
another way to get a compact integral of a real valued function, at least for . First of all, all the roots of
the function e* + e~ + ¢*V3 lie on the three rays z = irw®, >0, (k =0,1,2) (see Appendix . If one
bends the contour of integration so that it never crosses these zeroes then the integral will not change.
Since the integrand decreases exponentially when z — 0o, 0 < argz < 7/6 or 57/6 < argz < 7 we have

B ‘ 2 + B ' 5 = ga B =e€ )
0 (efx//a’ + ez/B + efzx\/g/ﬁ> 0 (eﬁx + e— Bz + elﬁm\/g)

and after elementary simplifications

0 LTV3 T _
/ e’V cos (6 x)2 do — é (15)
0 (2 cos T + em\/g)

Similarly, for the case b = 1 of

o dz > e™V3 dy
AN AN CR =8r 3 (16)
8. It turns out that has a parametric extention. Consider the contour integral

/, Pu(2) 92 (17)

z

where the contour C’ is a circle of radius R = N + 1/2 for large natural N. Since |Pi(z)| decreases
exponentially with N on the circle ¢’ (Appendix , will be zero in the limit N — oo for sufficiently
small |a|. Therefore the sum of residues of the integrand over three sets of simple poles z = —ke?™J /3 keN,
(j = 0,1,2) plus a simple pole at the origin, will be 0 according to residue theorem. As a result one will
obtain three sums similar to and then convert them to integrals of the type . However there is a trick
that allows to avoid these calculations. Note that the factor e®® in will introduce additional factors

exp (—ake%) in the sum over residues. When converted to an integral via these factors have the effect

w
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or equivalently
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dx etdr etdr
/ 5 T / 5 + / 5 = 1, (18)
(em +e T 4+ ea+iz\/§> - (ea+:v +e T 4 ewm/ﬁ) e <€a+x +e T 4 efir\/g)

where |a| is sufficiently small.
9. There is a similarity between (4]) with b = 1 and the identity due to Ramanujan ([4], p. 309)
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After equating the coefficents of a! in Taylor series expansion of both sides into powers of a and transforming
the Gamma function in the denominator via Euler’s reflection formula

1 N (-DE [k ikb k  ikb\ . k  ikb by K
y=5_ . r (2 - 20) r <2 + 2C> sin <2 + 2c> (—2ie” " sincy)"”. (19)

To make this similarity more exact we differentiate (19) with respect to y, divide by (ccotcy — b), repeat

this procedure one more time and then set ¢ =1, b = /3

o o |
(cosy m\S/nglny Z k' |F (1—wk)|* - sin (Wkem/s) (—2ie~V3 siny)*. (20)
k=1

This series converges when \26_‘/33/ siny| < e VE [4]. It will be convenient to use another variable « related
to y by

—

e~ = 2¢ VW gin Y.

The condition that the series converges now takes a very simple form Re o > 5 \f In the following it
will be assumed for simplicity that a> g f

& 3
Is it possible that (20) leads to evaluation of integrals with infinite product [] (1 + %)7 Consider the
k=1

contour integral

/(—ze ) sinmz iz (21)
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where C' is the contour in Fig.2. Due to the asymptotics

_ 1 5 3 2
|(—ie_°‘) wzsinwz|~2exp[—<2—|—7{> —|—<I—a\2f>y], O<argz<§,

and the result of Appendix [A] the integral over circular arc I'g vanishes in the limit R — oo if

—(9+4117%>x+(%—%‘/§)y<0, 0<argz < 3,

W—a)(m+y\/§)<0, %<argz<2{.

When o > ;W these conditions are satisfied automatically.
The same approach as in section 2 yields

© (—jem ) ““sinmr — (fie_o‘)_z/w sin Twzx
= - dx
0 T+ E)
k=1

o 1yk—1 ‘
= 27i Z (lk)'|F (1 — wk)|? - sin (7rk:e7”/3> (—ie~)*

For real o one can decompose the function in the numerator of this integral into real and imaginary parts

—z/w

(—ie™®) " sinmz — (—ie™®) sintwz = f(x,a) +ig(z, o)



where
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2 — -2
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where y is the root of the equation 2e~vV3 siny = e ® near y = 0.
These formulas simplify when o = 2%
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where y = 0.0054167536.. .. is the root of the equation 2e~YV3 siny = e VA,
10. The hyperbolic log-trigonometric integral
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or in terms of real valued functions

/ tln (2sinht) Cdt =0,
0 [3t2+In*(2sinht)]

is also related to the infinite product in the title. Indeed
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Changing the order of integration and calculating the integral over x we get

/ solon Tx dr _ —27r/ dt . (29)
O o[ (1-%) 0 (itv/3 + In(2sinht))
k=1

is the statement of the fact that the integral on the RHS of is real. Of course by replacing in
w with any complex number of unit argument one gets other integrals like .

It is known that Laplace transform of the digamma function leads to some log-triginometric integrals [5H7]
that contain the expression z2 + lnz(Qe*“ cosx) in the denominator. This expression should be compared
to the expression 3t? + In? (2sinht) in the denominator of (27).

Appendix A: Asymptotics of the product of gamma functions

Due to the asymptotic relation
1
Inl(z) = <z - 2) Inz—240(1), |argz|<m,

one has ) )
T T
In{T'(b+2)I'(b+w2)l'(b+z/w)} =3 (b — 2> Inz— %z +0(1), |argz|< 3

From this it follows that

27
e Vit 0<argz < %
Py(2)| = Cl* 220" 3
% , 3 <argz < %”,

where z = x + 1y.

Appendix B: Roots of the equation eV3* 4 2coshz =0

The fact that the roots of the equation V3 4 2cosh z = 0 are symmetric under z — wz is easy to check
directly.

Since %e_“‘/g/Q = 0.0329... is quite small the equation V3% 4 2coshz = 0 will have roots close to
i (n + %), where n is a non-negative integer. Below it is shown that these are the only roots in the upper
half plane.

Let f(z) = e?V32, g(z) = 2cosh z. Obviously, on the real axis | f(z)| < |g(z)|. Now consider f(z) and g(z)
on the closed contour C' depicted in Fig.2

Fig.2



Here I'g is a semicircle of radius R = IV for some large natural N. We have for z = x + iy € I'p
f@) =<,

lg(2)| = 2¢/sinh? z + cos? /72N2 — 22 > 2.

Thus |f(2)] < |g(2)| on the contour C. According to Rouche’s theorem this means that the function
f(2) + g(z) has the same number of roots inside the contour C' as the function g(z), as required.
This analysis shows that the roots of V32 19 cosh 2 = 0 are located on the three rays z = irwF, k=0,1,2.
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