Projection of a Vector upon a Plane from an Arbitrary Angle, via Geometric (Clifford) Algebra

December 19, 2017

James Smith nitac14b@yahoo.com https://mx.linkedin.com/in/james-smith-1b195047

Abstract

We show how to calculate the projection of a vector, from an arbitrary direction, upon a given plane whose orientation is characterized by its normal vector, and by a bivector to which the plane is parallel. The resulting solutions are tested by means of an interactive GeoGebra construction.

Vector **s** is the "shadow" of vector **g** cast upon the plane by "rays of the Sun" that have direction $\hat{\mathbf{r}}$. The unit vector in the direction of the plane's normal is

"Calculate the vector \mathbf{s} , which is the "shadow" of vector \mathbf{g} cast upon the plane by "rays of the Sun" that have direction $\hat{\mathbf{r}}$. The unit vector in the direction of the plane's normal is $\hat{\mathbf{e}}$."

Contents

1	Inti	roduction	2
2	Formulating the Problem in Geometric-Algebra (GA) Terms, and Devising a Solution Strategy		3
	2.1	Initial Observations	3
	2.2	Recalling What We've Learned from Solving Similar Problems Via GA	3
	2.3	Further Observations, and Identifying a Strategy	4
3	Solu	Solutions for s	
	3.1	Solution via the Inner Product with $\hat{\mathbf{e}}$	5
	3.2	Solution via the Outer Product with ${\bf T}$	5
4	Tes	ting the Formulas that We've Derived	7
5	Apj is ti	pendix: Calculating the Bivector of a Plane Whose Normal he Vector ê	8

1 Introduction

In this document, we will solve—numerically as well as symbolically—a problem of a type that can take the following concrete form, with reference to Fig.1:

"A pole (not necessarily vertical) casts a shadow onto the perfectly flat plaza into which it is set. With respect to a right-handed orthonormal reference frame with basis vectors $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$, and $\hat{\mathbf{c}}$, the direction of the Sun's rays is $\hat{\mathbf{r}} = \hat{\mathbf{a}}r_a + \hat{\mathbf{b}}r_b + \hat{\mathbf{c}}r_c$. The vector \mathbf{g} from the pole's base to the pole's tip, is $\mathbf{g} = \hat{\mathbf{a}}g_a + \hat{\mathbf{b}}g_b + \hat{\mathbf{c}}g_c$, and the upward-pointing unit vector normal to the plane is $\hat{\mathbf{e}} = \hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c$. Calculate \mathbf{s} , the vector from the base of the pole to the tip of the pole's shadow."

Figure 1: Vector **s** is the "shadow" of vector **g** cast upon the plane by "rays of the Sun" that have direction $\hat{\mathbf{r}}$. The unit vector in the direction of the plane's normal is $\hat{\mathbf{e}}$.

2 Formulating the Problem in Geometric-Algebra (GA) Terms, and Devising a Solution Strategy

2.1 Initial Observations

Let's begin by making a few observations that might be useful:

- 1. By saying "the direction of the Sun's rays is $\hat{\mathbf{r}} = \hat{\mathbf{a}}r_a + \hat{\mathbf{b}}r_b + \hat{\mathbf{c}}r_c$ ", we assumed that all of the Sun's rays are parallel. We'll use that assumption throughout this document.
- 2. The tip of the shadow is at the point where a ray that just grazes the tip of the pole intersects the surface of the plaza.
- 3. Therefore, the vector from the tip of the pole to the tip of the shadow is some scalar multiple of $\hat{\mathbf{r}}$. We'll call that scalar multiple $\lambda \hat{\mathbf{r}}$, and add it to our earlier diagram to produce Fig. 2.
- 4. From Fig. 2, we can see that $\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}}$.

2.2 Recalling What We've Learned from Solving Similar Problems Via GA

Let's also refresh our memory about techniques that we may have used to solve other problems via GA:

1. Problems involving projections onto a plane are usually solved by using the appropriately-oriented bivector that is parallel to the plane, rather than

Figure 2: The same situation as in Fig. 1, but noting that the vector from the tip of **g** to the tip of **s** is a scalar multiple (" λ ") of $\hat{\mathbf{r}}$.

by using the vector that is perpendicular to it. The Appendix (Section 5) shows how to find the required bivector, given said vector.

In a GA equation with two unknowns, such as the equation s = g + λr̂ at the end of the preceding list, a common strategy is to eliminate one of the unknowns by using either the "dot" product or the 'wedge" product ("∧") with a known quantity. Examples of this strategy are given in Ref. [2], and in Ref. [3], pp. 39-47.

2.3 Further Observations, and Identifying a Strategy

Guided by Sections 2.1 and 2.2, we might realize that the vector \mathbf{s} is perpendicular to $\hat{\mathbf{e}}$. Thus, one method of solving the equation $\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}}$ is to eliminate \mathbf{s} by "dotting" both sides with $\hat{\mathbf{e}}$, thereby obtaining an equation that from which we can obtain an expression for λ in terms of \mathbf{g} , $\hat{\mathbf{e}}$, and $\hat{\mathbf{r}}$. That expression can then be substituted for λ in the original equation ($\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}}$) to find \mathbf{s} .

The same observations that led us to the first strategy also lead us to see that **s** is parallel to the plane of the plaza. Therefore, **s**'s product " \wedge " with the bivector that's parallel to that plane is zero. That is, if we denote said bivector by the symbol "**T**", then $\mathbf{s} \wedge \mathbf{T} = 0$. Using this observation, we also arrive at an equation for λ —and thus for **s**—but this time in terms of **g**, $\hat{\mathbf{r}}$, and **T**.

We'll use both approaches in this document.

3 Solutions for s

We'll begin with the solution that uses the normal vector $\hat{\mathbf{e}}$.

3.1 Solution via the Inner Product with ê

Taking up the first of the solution strategies that we identified in Section 2.3, we write

$$\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}};$$

$$\underbrace{\mathbf{s} \cdot \hat{\mathbf{e}}}_{=0} = (\mathbf{g} + \lambda \hat{\mathbf{r}}) \cdot \hat{\mathbf{e}};$$

$$\therefore \quad \lambda = -\frac{\mathbf{g} \cdot \hat{\mathbf{e}}}{\hat{\mathbf{r}} \cdot \hat{\mathbf{e}}}.$$
(3.1)

Question: Does our expression for λ make sense?

Let's pause for a moment to examine that result before proceeding. Does it make sense? The geometric interpretation of that result is that $|\lambda|$ is the ratio of the lengths of the projections of \mathbf{g} and $\hat{\mathbf{r}}$ upon $\hat{\mathbf{e}}$. So far, so good—a study of Fig. 2 confirms that $|\lambda|$ must indeed be equal to that ratio. Examining Fig. 2 further, we see (1) that no shadow will be produced unless λ is positive, and (2) that no shadow will be produced unless the projections of \mathbf{g} and $\hat{\mathbf{r}}$ are oppositely directed. Eq. (3.1) is consistent with those observations: λ is positive only when $\mathbf{g} \cdot \hat{\mathbf{e}}$ and $\hat{\mathbf{r}} \cdot \hat{\mathbf{e}}$ are opposite in sign, and that difference in sign occurs only when $\hat{\mathbf{e}}$ and $\hat{\mathbf{r}}$ are oppositely directed.

Now that we've assured ourselves that our expression for λ makes sense, we continue by making the substitutions $\hat{\mathbf{r}} = \hat{\mathbf{a}}r_a + \hat{\mathbf{b}}r_b + \hat{\mathbf{c}}r_c$, $\mathbf{g} = \hat{\mathbf{a}}g_a + \hat{\mathbf{b}}g_b + \hat{\mathbf{c}}g_c$, and $\hat{\mathbf{e}} = \hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c$:

$$\lambda = -\frac{\left(\hat{\mathbf{a}}g_a + \hat{\mathbf{b}}g_b + \hat{\mathbf{c}}g_c\right) \cdot \left(\hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c\right)}{\left(\hat{\mathbf{a}}r_a + \hat{\mathbf{b}}r_b + \hat{\mathbf{c}}r_c\right) \cdot \left(\hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c\right)}$$
$$= -\frac{g_a e_a + g_b e_b + g_c e_c}{r_a e_a + r_b e_b + r_c e_c}.$$
(3.2)

Now, we substitute that expression for λ in our original equation, then simplify:

$$\begin{split} \mathbf{s} &= \mathbf{g} + \lambda \hat{\mathbf{r}} \\ &= \hat{\mathbf{a}} g_a + \hat{\mathbf{b}} g_b + \hat{\mathbf{c}} g_c - \left[\frac{g_a e_a + g_b e_b + g_c e_c}{r_a e_a + r_b e_b + r_c e_c} \right] \left(\hat{\mathbf{a}} r_a + \hat{\mathbf{b}} r_b + \hat{\mathbf{c}} r_c \right). \end{split}$$

By expanding the product on the right-hand side, then rearranging, the result is

$$\mathbf{s} = \hat{\mathbf{a}} \left[\frac{g_a \left(r_b e_b + r_c e_c \right) - r_a \left(g_b e_b + g_c e_c \right)}{r_a e_a + r_b e_b + r_c e_c} \right] + \hat{\mathbf{b}} \left[\frac{g_b \left(r_a e_a + r_c e_c \right) - r_b \left(g_a e_a + g_c e_c \right)}{r_a e_a + r_b e_b + r_c e_c} \right] + \hat{\mathbf{c}} \left[\frac{g_c \left(r_a e_a + r_b e_b \right) - r_c \left(g_a e_a + g_b e_b \right)}{r_a e_a + r_b e_b + r_c e_c} \right].$$
(3.3)

3.2 Solution via the Outer Product with T

In this section, we'll write \mathbf{T} as $\mathbf{T} = \hat{\mathbf{a}}\hat{\mathbf{b}}\tau_{ab} + \hat{\mathbf{b}}\hat{\mathbf{c}}\tau_{bc} + \hat{\mathbf{a}}\hat{\mathbf{c}}\tau_{ac}$ in order to arrive at a solution in which the plane of the plaza is expressed in that way. The Appendix

(5) shows how to find **T** in terms of the components of $\hat{\mathbf{e}}$.

We indicated in Section 2.3 that because **s** is parallel to the plaza (and therefore to **T**), $\mathbf{s} \wedge \mathbf{T} = 0$. Using that fact, we arrive at a preliminary version of λ as follows:

$$\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}};$$

$$\underbrace{\mathbf{s} \wedge \mathbf{T}}_{=0} = (\mathbf{g} + \lambda \hat{\mathbf{r}}) \wedge \mathbf{T};$$

$$\lambda \hat{\mathbf{r}} \wedge \mathbf{T} = -\mathbf{g} \wedge \mathbf{T}$$

$$\therefore \quad \lambda = -(\mathbf{g} \wedge \mathbf{T}) (\hat{\mathbf{r}} \wedge \mathbf{T})^{-1}.$$
(3.4)

Now, we need to calculate $\mathbf{g} \wedge \mathbf{T}$ and $(\hat{\mathbf{r}} \wedge \mathbf{T})^{-1}$. To find the former, we use Macdonald's ([4], p. 111) definition of the product " \wedge ". See also the list of formulas in Reference [2], pp. 2-4.

$$egin{aligned} \mathbf{g}\wedge\mathbf{T}&=\langle\mathbf{g}\mathbf{T}
angle_3\ &=\langle\left(\hat{\mathbf{a}}g_a+\hat{\mathbf{b}}g_b+\hat{\mathbf{c}}g_c
ight)\left(\mathbf{T}=\hat{\mathbf{a}}\hat{\mathbf{b}} au_{ab}+\hat{\mathbf{b}}\hat{\mathbf{c}} au_{bc}
ight)
angle_3\ &=\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}\left(au_{ab}g_c+ au_{bc}g_a- au_{ac}g_b
ight). \end{aligned}$$

Similarly, $\hat{\mathbf{r}} \wedge \mathbf{T} = \hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}} (\tau_{ab}r_c + \tau_{bc}r_a - \tau_{ac}r_b)$. We recognize the product $\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}$ as I_3 : the unit pseudoscalar for \mathbb{G}_3 . Its multiplicative inverse (I_3^{-1}) is $-I_3$, $= -\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}$. Therefore, multiplicative inverse of $\hat{\mathbf{r}} \wedge \mathbf{T}$ is

$$(\hat{\mathbf{r}} \wedge \mathbf{T})^{-1} = \frac{I_3^{-1}}{|\hat{\mathbf{r}} \wedge \mathbf{T}|^2}$$
$$= -\frac{\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}}{(\tau_{ab}r_c + \tau_{bc}r_a - \tau_{ac}r_b)^2}.$$

Using that result, and our expression for $\hat{\mathbf{r}} \wedge \mathbf{T}$, Eq. (3.4) becomes

$$\lambda = -\left[\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}\left(\tau_{ab}r_{c} + \tau_{bc}r_{a} - \tau_{ac}r_{b}\right)\right] \left[-\frac{\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}\left(\tau_{ab}r_{c} + \tau_{bc}r_{a} - \tau_{ac}r_{b}\right)}{\left(\tau_{ab}r_{c} + \tau_{bc}r_{a} - \tau_{ac}r_{b}\right)^{2}}\right]$$
$$= -\frac{\tau_{ab}g_{c} + \tau_{bc}g_{a} - \tau_{ac}g_{b}}{\tau_{ab}r_{c} + \tau_{bc}r_{a} - \tau_{ac}r_{b}}.$$
(3.5)

Substituting this expression for λ in $\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}}$, we obtain

$$\mathbf{s} = \hat{\mathbf{a}} \left[\frac{\tau_{ab} \left(g_a r_c - g_c r_a \right) + \tau_{ac} \left(g_b r_a - g_a r_b \right)}{\tau_{ab} r_c + \tau_{bc} r_a - \tau_{ac} r_b} \right] + \hat{\mathbf{b}} \left[\frac{\tau_{ab} \left(g_b r_c - g_c r_b \right) + \tau_{bc} \left(g_b r_a - g_a r_b \right)}{\tau_{ab} r_c + \tau_{bc} r_a - \tau_{ac} r_b} \right] + \hat{\mathbf{c}} \left[\frac{\tau_{bc} \left(g_c r_a - g_a r_c \right) + \tau_{ac} \left(g_b r_c - g_c r_b \right)}{\tau_{ab} r_c + \tau_{bc} r_a - \tau_{ac} r_b} \right].$$
(3.6)

The red vector is \mathbf{s} : the "shadow" of the blue vector \mathbf{g} , from the direction of the orange vector $\hat{\mathbf{r}}$, upon the plane represented by the brown bivector \mathbf{T} . The purple vector is $\hat{\mathbf{e}}$, the unit vector normal to the plane. \mathbf{T} and $\hat{\mathbf{e}}$ are calculated from vectors that form the sides of the brown triangle.

Figure 3: Screen shot (Ref. [5]) of an interactive GeoGebra worksheet that calculates the vector \mathbf{s} , and compares the result to the vector \mathbf{s} that was obtained by construction.

4 Testing the Formulas that We've Derived

Fig. 3 shows an interactive GeoGebra worksheet (Reference [5]) that calculates the vector \mathbf{s} , and compares the result to the vector \mathbf{s} that was obtained by construction. The worksheet calculates λ from $\hat{\mathbf{e}}$ as well as from \mathbf{T} , but shows the numerical calculation only for \mathbf{T} because of space limitations.

References

- J. A. Smith, 2017a, "Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vectors and Bivectors in Geometric (Clifford) Algebra", http://vixra.org/abs/1712.0393.
- [2] J. A. Smith, 2017b, "Some Solution Strategies for Equations that Arise in Geometric (Clifford) Algebra", http://vixra.org/abs/1610.0054.
- [3] D. Hestenes, 1999, New Foundations for Classical Mechanics, (Second Edition), Kluwer Academic Publishers (Dordrecht/Boston/London).
- [4] A. Macdonald, *Linear and Geometric Algebra* (First Edition) p. 126, CreateSpace Independent Publishing Platform (Lexington, 2012).
- [5] J. A. Smith, 2017c, "Projection of Vector on Plane via Geometric Algebra" (a GeoGebra construction), https://www.geogebra.org/m/ykzkbQJq.

5 Appendix: Calculating the Bivector of a Plane Whose Normal is the Vector ê

As may be inferred from a study of References [3] (p. (56, 63) and [4] (pp. 106-108), the bivector \mathbf{T} that we seek is the one whose dual is $\hat{\mathbf{e}}$. That is, \mathbf{Q} must satisfy the condition

$$\hat{\mathbf{e}} = \mathbf{Q}I_3^{-1};$$

$$\mathbf{Q} = \hat{\mathbf{e}}I_3.$$
(5.1)

where I_3 is the right-handed pseudoscalar for \mathbb{G}^3 . That pseudoscalar is the product, written in right-handed order, of our orthonormal reference frame's basis vectors: $I_3 = \hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}$ (and is also $\hat{\mathbf{b}}\hat{\mathbf{c}}\hat{\mathbf{a}}$ and $\hat{\mathbf{c}}\hat{\mathbf{a}}\hat{\mathbf{b}}$). Therefore, writing \mathbf{Q} as $\mathbf{Q} = \hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c$,

·

$$\mathbf{Q} = \hat{\mathbf{e}}I_3$$

$$= \left(\hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c\right)\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}$$

$$= \hat{\mathbf{a}}\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}e_a + \hat{\mathbf{b}}\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}e_b + \hat{\mathbf{c}}\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}e_c$$

$$= \hat{\mathbf{a}}\hat{\mathbf{b}}e_c + \hat{\mathbf{b}}\hat{\mathbf{c}}e_a - \hat{\mathbf{a}}\hat{\mathbf{c}}e_b.$$
(5.2)

In writing that last result, we've followed [4]'s convention (p. 82) of using $\hat{\mathbf{ab}}$, $\hat{\mathbf{bc}}$, and $\hat{\mathbf{ac}}$ as our bivector basis. Examining Eq. (5.2) we can see that if we write \mathbf{Q} in the form $\mathbf{Q} = \hat{\mathbf{ab}}q_{ab} + \hat{\mathbf{bc}}q_{bc} + \hat{\mathbf{ac}}q_{ac}$, then

$$q_{ab} = e_c, \quad q_{bc} = e_a, \quad q_{ac} = -e_c.$$
 (5.3)

Although we won't use that fact here, I_3^{-1} is I_3 's negative: $I_3^{-1} = -\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}.$

To make this simplification, we use the following facts:

- The product of two perpendicular vectors (such as $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$) is a bivector;
- Therefore, for any two perpendicular vectors ${\bf p}$ and ${\bf q},\, {\bf qp}=-{\bf qp};$ and
- (Of course) for any unit vector p, pp = 1.