Projection of a Vector upon a Plane from an Arbitrary Angle, via Geometric (Clifford) Algebra

December 19, 2017

James Smith nitac14b@yahoo.com <https://mx.linkedin.com/in/james-smith-1b195047>

Abstract

We show how to calculate the projection of a vector, from an arbitrary direction, upon a given plane whose orientation is characterized by its normal vector, and by a bivector to which the plane is parallel. The resulting solutions are tested by means of an interactive GeoGebra construction.

Vector s is the "shadow" of vector g cast upon the plane by "rays of the Sun" that have direction \hat{r} . The unit vector in the direction of the plane's normal is

"Calculate the vector s, which is the "shadow" of vector g cast upon the plane by "rays of the Sun" that have direction $\hat{\mathbf{r}}$. The unit vector in the direction of the plane's normal is \hat{e} ."

Contents

1 Introduction

In this document, we will solve—numerically as well as symbolically—a problem of a type that can take the following concrete form, with reference to Fig[.1:](#page-2-3)

"A pole (not necessarily vertical) casts a shadow onto the perfectly flat plaza into which it is set. With respect to a right-handed orthonormal reference frame with basis vectors \hat{a} , \hat{b} , and \hat{c} , the direction of the Sun's rays is $\hat{\mathbf{r}} = \hat{\mathbf{a}}r_a + \hat{\mathbf{b}}r_b + \hat{\mathbf{c}}r_c$. The vector **g** from the pole's base to the pole's tip, is $\mathbf{g} = \hat{\mathbf{a}}g_a + \hat{\mathbf{b}}g_b + \hat{\mathbf{c}}g_c$, and the upward-pointing unit vector normal to the plane is $\hat{\mathbf{e}} = \hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c$. Calculate s, the vector from the base of the pole to the tip of the pole's shadow."

Figure 1: Vector s is the "shadow" of vector g cast upon the plane by "rays of the Sun" that have direction $\hat{\mathbf{r}}$. The unit vector in the direction of the plane's normal is $\hat{\mathbf{e}}$.

2 Formulating the Problem in Geometric-Algebra (GA) Terms, and Devising a Solution Strategy

2.1 Initial Observations

Let's begin by making a few observations that might be useful:

- 1. By saying "the direction of the Sun's rays is $\hat{\mathbf{r}} = \hat{\mathbf{a}}r_a + \hat{\mathbf{b}}r_b + \hat{\mathbf{c}}r_c$ ", we assumed that all of the Sun's rays are parallel. We'll use that assumption throughout this document.
- 2. The tip of the shadow is at the point where a ray that just grazes the tip of the pole intersects the surface of the plaza.
- 3. Therefore, the vector from the tip of the pole to the tip of the shadow is some scalar multiple of $\hat{\mathbf{r}}$. We'll call that scalar multiple $\lambda \hat{\mathbf{r}}$, and add it to our earlier diagram to produce Fig. [2.](#page-3-2)
- 4. From Fig. [2,](#page-3-2) we can see that $\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}}$.

2.2 Recalling What We've Learned from Solving Similar Problems Via GA

Let's also refresh our memory about techniques that we may have used to solve other problems via GA:

1. Problems involving projections onto a plane are usually solved by using the appropriately-oriented bivector that is parallel to the plane, rather than

Figure 2: The same situation as in Fig. [1,](#page-2-3) but noting that the vector from the tip of **g** to the tip of **s** is a scalar multiple (\mathscr{X}) of $\hat{\mathbf{r}}$.

by using the vector that is perpendicular to it. The Appendix (Section [5\)](#page-7-0) shows how to find the required bivector, given said vector.

2. In a GA equation with two unknowns, such as the equation $\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}}$ at the end of the preceding list, a common strategy is to eliminate one of the unknowns by using either the "dot" product or the 'wedge" product ("∧") with a known quantity. Examples of this strategy are given in Ref. [\[2\]](#page-6-1), and in Ref. [\[3\]](#page-6-2), pp. 39-47.

2.3 Further Observations, and Identifying a Strategy

Guided by Sections [2.1](#page-2-1) and [2.2,](#page-2-2) we might realize that the vector **s** is perpendicular to $\hat{\mathbf{e}}$. Thus, one method of solving the equation $\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}}$ is to eliminate s by "dotting" both sides with \hat{e} , thereby obtaining an equation that from which we can obtain an expression for λ in terms of g , \hat{e} , and \hat{r} . That expression can then be substituted for λ in the original eqation $(\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}})$ to find s.

The same observations that led us to the first strategy also lead us to see that s is parallel to the plane of the plaza. Therefore, s's product "∧" with the bivector that's parallel to that plane is zero. That is, if we denote said bivector by the symbol "T", then $s \wedge T = 0$. Using this observation, we also arrive at an equation for λ —and thus for s—but this time in terms of g, $\hat{\mathbf{r}}$, and **T**.

We'll use both approaches in this document.

3 Solutions for s

We'll begin with the solution that uses the normal vector $\hat{\mathbf{e}}$.

3.1 Solution via the Inner Product with \hat{e}

Taking up the first of the solution strategies that we identified in Section [2.3,](#page-3-0) we write

$$
\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}};
$$

\n
$$
\mathbf{s} \cdot \hat{\mathbf{e}} = (\mathbf{g} + \lambda \hat{\mathbf{r}}) \cdot \hat{\mathbf{e}};
$$

\n
$$
\therefore \lambda = -\frac{\mathbf{g} \cdot \hat{\mathbf{e}}}{\hat{\mathbf{r}} \cdot \hat{\mathbf{e}}}.
$$
 (3.1)

Question: Does our expression for λ make sense?

Let's pause for a moment to examine that result before proceeding. Does it make sense? The geometric interpretation of that result is that $|\lambda|$ is the ratio of the lengths of the projections of g and \hat{r} upon \hat{e} . So far, so good—a study of Fig. [2](#page-3-2) confirms that $|\lambda|$ must indeed be equal to that ratio. Examining Fig. 2 further, we see (1) that no shadow will be produced unless λ is positive, and (2) that no shadow will be produced unless the projections of g and \hat{r} are oppositely directed. Eq. [\(3.1\)](#page-4-2) is consistent with those observations: λ is positive only when $g \cdot \hat{e}$ and $\hat{r} \cdot \hat{e}$ are opposite in sign, and that difference in sign occurs only when $\hat{\mathbf{e}}$ and $\hat{\mathbf{r}}$ are oppositely directed.

Now that we've assured ourselves that our expression for λ makes sense, we continue by making the substitutions $\hat{\mathbf{r}} = \hat{\mathbf{a}}r_a + \hat{\mathbf{b}}r_b + \hat{\mathbf{c}}r_c$, $\mathbf{g} = \hat{\mathbf{a}}g_a + \hat{\mathbf{b}}g_b + \hat{\mathbf{c}}g_c$ and $\hat{\mathbf{e}} = \hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c$:

$$
\lambda = -\frac{\left(\hat{\mathbf{a}}g_a + \hat{\mathbf{b}}g_b + \hat{\mathbf{c}}g_c\right) \cdot \left(\hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c\right)}{\left(\hat{\mathbf{a}}r_a + \hat{\mathbf{b}}r_b + \hat{\mathbf{c}}r_c\right) \cdot \left(\hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c\right)} = -\frac{g_a e_a + g_b e_b + g_c e_c}{r_a e_a + r_b e_b + r_c e_c}.
$$
\n(3.2)

Now, we substitute that expression for λ in our original equation, then simplify:

$$
\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}}
$$

= $\hat{\mathbf{a}}g_a + \hat{\mathbf{b}}g_b + \hat{\mathbf{c}}g_c - \left[\frac{g_a e_a + g_b e_b + g_c e_c}{r_a e_a + r_b e_b + r_c e_c}\right] \left(\hat{\mathbf{a}}r_a + \hat{\mathbf{b}}r_b + \hat{\mathbf{c}}r_c\right).$

By expanding the product on the right-hand side, then rearranging, the result is

$$
\mathbf{s} = \hat{\mathbf{a}} \left[\frac{g_a \left(r_b e_b + r_c e_c \right) - r_a \left(g_b e_b + g_c e_c \right)}{r_a e_a + r_b e_b + r_c e_c} \right] \n+ \hat{\mathbf{b}} \left[\frac{g_b \left(r_a e_a + r_c e_c \right) - r_b \left(g_a e_a + g_c e_c \right)}{r_a e_a + r_b e_b + r_c e_c} \right] \n+ \hat{\mathbf{c}} \left[\frac{g_c \left(r_a e_a + r_b e_b \right) - r_c \left(g_a e_a + g_b e_b \right)}{r_a e_a + r_b e_b + r_c e_c} \right].
$$
\n(3.3)

3.2 Solution via the Outer Product with T

In this section, we'll write **T** as $\mathbf{T} = \hat{\mathbf{a}} \hat{\mathbf{b}} \tau_{ab} + \hat{\mathbf{b}} \hat{\mathbf{c}} \tau_{bc} + \hat{\mathbf{a}} \hat{\mathbf{c}} \tau_{ac}$ in order to arrive at a solution in which the plane of the plaza is expressed in that way. The Appendix [\(5\)](#page-7-0) shows how to find T in terms of the components of \hat{e} .

We indicated in Section [2.3](#page-3-0) that because s is parallel to the plaza (and therefore to **T**), $s \wedge T = 0$. Using that fact, we arrive at a preliminary version of λ as follows:

$$
\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}};
$$

\n
$$
\underbrace{\mathbf{s} \wedge \mathbf{T}}_{=0} = (\mathbf{g} + \lambda \hat{\mathbf{r}}) \wedge \mathbf{T};
$$

\n
$$
\lambda \hat{\mathbf{r}} \wedge \mathbf{T} = -\mathbf{g} \wedge \mathbf{T}
$$

\n
$$
\therefore \lambda = -(\mathbf{g} \wedge \mathbf{T})(\hat{\mathbf{r}} \wedge \mathbf{T})^{-1}.
$$
 (3.4)

Now, we need to calculate $\mathbf{g} \wedge \mathbf{T}$ and $(\hat{\mathbf{r}} \wedge \mathbf{T})^{-1}$. To find the former, we use Macdonald's ([\[4\]](#page-6-3), p. 111) definition of the product "∧". See also the list of formulas in Reference [\[2\]](#page-6-1), pp. 2-4.

$$
\begin{aligned} \mathbf{g} \wedge \mathbf{T} &= \langle \mathbf{g} \mathbf{T} \rangle_3 \\ &= \langle \left(\hat{\mathbf{a}} g_a + \hat{\mathbf{b}} g_b + \hat{\mathbf{c}} g_c \right) \left(\mathbf{T} = \hat{\mathbf{a}} \hat{\mathbf{b}} \tau_{ab} + \hat{\mathbf{b}} \hat{\mathbf{c}} \tau_{bc} \right) \rangle_3 \\ &= \hat{\mathbf{a}} \hat{\mathbf{b}} \hat{\mathbf{c}} \left(\tau_{ab} g_c + \tau_{bc} g_a - \tau_{ac} g_b \right). \end{aligned}
$$

Similarly, $\hat{\mathbf{r}} \wedge \mathbf{T} = \hat{\mathbf{a}} \hat{\mathbf{b}} \hat{\mathbf{c}} (\tau_{ab} r_c + \tau_{bc} r_a - \tau_{ac} r_b)$. We recognize the product $\hat{\mathbf{a}} \hat{\mathbf{b}} \hat{\mathbf{c}}$ as I₃: the unit pseudoscalar for \mathbb{G}_3 . Its multiplicative inverse (I_3^{-1}) is $-I_3$, = $-\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}$. Therefore, multiplicative inverse of $\hat{\mathbf{r}} \wedge \mathbf{T}$ is

$$
(\hat{\mathbf{r}} \wedge \mathbf{T})^{-1} = \frac{I_3^{-1}}{|\hat{\mathbf{r}} \wedge \mathbf{T}|^2}
$$

$$
= -\frac{\hat{\mathbf{a}} \hat{\mathbf{b}} \hat{\mathbf{c}}}{(\tau_{ab} r_c + \tau_{bc} r_a - \tau_{ac} r_b)^2}.
$$

Using that result, and our expression for $\hat{\mathbf{r}} \wedge \mathbf{T}$, Eq. [\(3.4\)](#page-5-0) becomes

$$
\lambda = -\left[\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}\left(\tau_{ab}r_{c} + \tau_{bc}r_{a} - \tau_{ac}r_{b}\right)\right] \left[-\frac{\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}\left(\tau_{ab}r_{c} + \tau_{bc}r_{a} - \tau_{ac}r_{b}\right)}{\left(\tau_{ab}r_{c} + \tau_{bc}r_{a} - \tau_{ac}r_{b}\right)^{2}}\right]
$$

$$
= -\frac{\tau_{ab}g_{c} + \tau_{bc}g_{a} - \tau_{ac}g_{b}}{\tau_{ab}r_{c} + \tau_{bc}r_{a} - \tau_{ac}r_{b}}.
$$
(3.5)

Substituting this expression for λ in $\mathbf{s} = \mathbf{g} + \lambda \hat{\mathbf{r}}$, we obtain

$$
\mathbf{s} = \hat{\mathbf{a}} \left[\frac{\tau_{ab} \left(g_a r_c - g_c r_a \right) + \tau_{ac} \left(g_b r_a - g_a r_b \right)}{\tau_{ab} r_c + \tau_{bc} r_a - \tau_{ac} r_b} \right] + \hat{\mathbf{b}} \left[\frac{\tau_{ab} \left(g_b r_c - g_c r_b \right) + \tau_{bc} \left(g_b r_a - g_a r_b \right)}{\tau_{ab} r_c + \tau_{bc} r_a - \tau_{ac} r_b} \right] + \hat{\mathbf{c}} \left[\frac{\tau_{bc} \left(g_c r_a - g_a r_c \right) + \tau_{ac} \left(g_b r_c - g_c r_b \right)}{\tau_{ab} r_c + \tau_{bc} r_a - \tau_{ac} r_b} \right].
$$
\n(3.6)

The red vector is s: the "shadow" of the blue vector g , from the direction of the orange vector \hat{r} , upon the plane represented by the brown bivector T . The purple vector is \hat{e} , the unit vector normal to the plane. ${\bf T}$ and $\hat{\bf e}$ are calculated from vectors that form the sides of the brown triangle.

Figure 3: Screen shot (Ref. [\[5\]](#page-6-4)) of an interactive GeoGebra worksheet that calculates the vector s, and compares the result to the vector s that was obtained by construction.

4 Testing the Formulas that We've Derived

Fig. [3](#page-6-5) shows an interactive GeoGebra worksheet (Reference [\[5\]](#page-6-4)) that calculates the vector s, and compares the result to the vector s that was obtained by construction. The worksheet calculates λ from $\hat{\mathbf{e}}$ as well as from \mathbf{T} , but shows the numerical calculation only for T because of space limitations.

References

- [1] J. A. Smith, 2017a, "Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vectors and Bivectors in Geometric (Clifford) Algebra", <http://vixra.org/abs/1712.0393>.
- [2] J. A. Smith, 2017b, "Some Solution Strategies for Equations that Arise in Geometric (Clifford) Algebra", <http://vixra.org/abs/1610.0054> .
- [3] D. Hestenes, 1999, New Foundations for Classical Mechanics, (Second Edition), Kluwer Academic Publishers (Dordrecht/Boston/London).
- [4] A. Macdonald, Linear and Geometric Algebra (First Edition) p. 126, CreateSpace Independent Publishing Platform (Lexington, 2012).
- [5] J. A. Smith, 2017c, "Projection of Vector on Plane via Geometric Algebra" (a GeoGebra construction), <https://www.geogebra.org/m/ykzkbQJq>.

5 Appendix: Calculating the Bivector of a Plane Whose Normal is the Vector \hat{e}

As may be inferred from a study of References [\[3\]](#page-6-2) (p. (56, 63) and [\[4\]](#page-6-3) (pp. 106-108), the bivector T that we seek is the one whose dual is $\hat{\mathbf{e}}$. That is, Q must satisfy the condition

$$
\hat{\mathbf{e}} = \mathbf{Q} I_3^{-1};
$$

$$
\therefore \mathbf{Q} = \hat{\mathbf{e}} I_3.
$$
 (5.1)

where I_3 is the right-handed pseudoscalar for \mathbb{G}^3 . That pseudoscalar is the product, written in right-handed order, of our orthonormal reference frame's basis vectors: $I_3 = \hat{a}\hat{b}\hat{c}$ (and is also $\hat{b}\hat{c}\hat{a}$ and $\hat{c}\hat{a}\hat{b}$). Therefore, writing **Q** as $\mathbf{Q} = \hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c,$

To make this simplification, we use the following facts:

Although we won't use that fact here, I_3^{-1} is I_3 's negative:

 $I_3^{-1} = -\hat{\bf a}\hat{\bf b}\hat{\bf c}.$

- The product of two perpendicular vectors (such as \hat{a} and \hat{b}) is a bivector;
- Therefore, for any two perpendicular vectors p and \mathbf{q} , $\mathbf{q}\mathbf{p} = -\mathbf{q}\mathbf{p}$; and
- (Of course) for any unit vector $\hat{\mathbf{p}}$, $\hat{\mathbf{p}}\hat{\mathbf{p}} = 1$.

$$
\mathbf{Q} = \hat{\mathbf{e}}I_3
$$

= $(\hat{\mathbf{a}}e_a + \hat{\mathbf{b}}e_b + \hat{\mathbf{c}}e_c) \hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}$
= $\hat{\mathbf{a}}\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}e_a + \hat{\mathbf{b}}\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}e_b + \hat{\mathbf{c}}\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}e_c$
= $\hat{\mathbf{a}}\hat{\mathbf{b}}e_c + \hat{\mathbf{b}}\hat{\mathbf{c}}e_a - \hat{\mathbf{a}}\hat{\mathbf{c}}e_b.$ (5.2)

In writing that last result, we've followed [\[4\]](#page-6-3)'s convention (p. 82) of using \hat{a} **b**, \hat{b} **c**̂, and \hat{a} **c**̂ as our bivector basis. Examining Eq. [\(5.2\)](#page-7-1) we can see that if we write **Q** in the form $\mathbf{Q} = \hat{\mathbf{a}} \hat{\mathbf{b}} q_{ab} + \hat{\mathbf{b}} \hat{\mathbf{c}} q_{bc} + \hat{\mathbf{a}} \hat{\mathbf{c}} q_{ac}$, then

$$
q_{ab} = e_c, \quad q_{bc} = e_a, \quad q_{ac} = -e_c.
$$
 (5.3)