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Abstract 

We show that some interesting properties of the bilateral Laplace transform of even and positive 

functions both on the line 𝑧0 = 𝑥 + 𝑖𝑦0 and on a circle. We also show the Riemann hypothesis is 

true using these properties. We do not prove well-known theorems and encourage readers to refer 

to the literatures. 

 

1. Introduction 

We begin with the definition of the bilateral Laplace transform.1 The definition of Laplace transform 

of a real function f(t) is as follows: 

 
F(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡

∞

−∞

 

 

(1) 

and the inverse transform: 

 f(t) =
1

𝑖2𝜋
∫ 𝐹(𝑧) ∙ 𝑒𝑧𝑡𝑑𝑧
𝑥+𝑖∞

𝑥−𝑖∞

 (2) 

where 𝑧 = 𝑥 + 𝑖𝑦. 

 

If f(t) is even, then 

 F(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ 𝑒𝑧𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ cosh(𝑧𝑡)𝑑𝑡
∞

−∞

 (3) 

 

and since F(−z) = F(z), F(𝑖𝑦) is real-valued for all y. If f(t) is even and also positive for all t, its 

Laplace transform F(z) is transcendental. 

 

2. Power Series expansion 

It is not always easy to find the Laplace transform of a function in the closed form, but we can get 

the power series using the definition of the Laplace transform as follows: 

 F(z) = ∑𝑎𝑛 ∙ 𝑧
𝑛

∞

𝑛=0

= 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧
2 +⋯ (4) 

 

To find the coefficients of F(z), we examine the derivatives of (1). 

                                           

1 Since we are only dealing with the bilateral Laplace transform, The term “bilateral” will be omitted. 



 
𝑎𝑛 =

1

𝑛!
∫ 𝑡𝑛𝑓(𝑡)𝑑𝑡
∞

−∞

 

 

(5) 

 

Moreover, if the function f(t) > 0 for all t and even, all the odd terms are vanished and the power 

series will be like that: 

 
F(z) = ∑𝑎2𝑛 ∙ 𝑧

2𝑛

∞

𝑛=0

= 𝑎0 + 𝑎2𝑧
2 + 𝑎4𝑧

4 +⋯ 

 

(6) 

where 𝑎2𝑛 =
1

(2𝑛)!
∫ 𝑡2𝑛𝑓(𝑡)𝑑𝑡
∞

−∞
 and 𝑎2𝑛 > 0 for all 𝑛. 

Since 𝑓(𝑡) is even and positive, F(z) is also even and F(−𝑧̅) = F(𝑧̅) = �̅�(𝑧). Hence we have 

|F(z)| = |F(−z)| = |F(𝑧̅)| = |F(−𝑧̅)|. 

 

3. The convex functions 

For a real function f(x) and 𝑥1, 𝑥2 ∈ ℛ and λ ∈ [0,1], then f(x) is convex if and only if 

𝑓[λ𝑥1 + (1 − λ)𝑥2] ≤ λ𝑓(𝑥1) + (1 − λ)𝑓(𝑥2). 

and similarly, f(x) is strictly convex if and only if 

𝑓[λ𝑥1 + (1 − λ)𝑥2] < λ𝑓(𝑥1) + (1 − λ)𝑓(𝑥2). 

 

The function f(x) is a midpoint convex if 

𝑓 (
𝑥1 + 𝑥2
2

) ≤
𝑓(𝑥1) + 𝑓(𝑥2)

2
 

 

Further, a continuous function 𝑓(𝑥) is multiplicatively convex if and only if 

𝑓(√𝑥1𝑥2) ≤ √𝑓(𝑥1)𝑓(𝑥2) 

A multiplicatively convex function is which is increasing convex. This inequality can be obtained 

from the definition of the midpoint convex. 

 

Hardy-Littlewood Theorem 

Every polynomial 𝑓(𝑥) = ∑ 𝑐𝑘𝑥
𝑘𝑛

𝑘=0   with non-negative coefficients is multiplicatively convex on 

(0,∞) . Moreover 𝑓(𝑥) = ∑ 𝑐𝑘𝑥
𝑘∞

𝑘=0   for 𝑐𝑘 ≥ 0  is strictly multiplicatively convex which is also 

increasing and strictly convex. 

 

Let F(z)  be the Laplace transform of an even and positive function 𝑓(𝑡) , then by Hardy-

Littlewood, F(z) is increasing and strictly convex on the x-axis of the interval (0,∞) if F(z) is entire. 

If F(z)  is not entire, F(x)  is increasing and strictly convex in the radius of convergence. Since 

F(−x) = F(x), F(x) is symmetric at x = 0, and therefore F(x) has a unique minimum at x = 0. 

 



4. The co-positive definiteness 

F(𝑧) is complex-valued co-semipositive definite if 

 ∑∑𝑐𝑛𝑐�̅�𝑓(𝑧𝑛 + 𝑧𝑘̅̅̅) ≥ 0

𝑁

𝑘=1

𝑁

𝑛=1

 (7) 

 

and similarly, 𝑓(𝑧) is complex-valued co-positive definite if 

 ∑∑𝑐𝑛𝑐�̅�𝑓(𝑧𝑛 + 𝑧𝑘̅̅̅) > 0

𝑁

𝑘=1

𝑁

𝑛=1

 (8) 

for all 𝑐𝑛 ∈ ℂ and 𝑧𝑛 = 𝑥𝑛 + 𝑖𝑦𝑛. 

 

Clearly, if a complex function 𝑓(𝑧) is complex-valued co-(semi)positive definite, then the real-

valued function 𝑓(𝑥) is also co-(semi)positive definite. 

 

Lemma 1 

A real function 𝑓(𝑡) > 0 for all t, then its Laplace transform is complex-valued co-positive definite. 

Proof 

From the definition F(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞
 

∑∑𝑐𝑛𝑐�̅�𝐹(𝑧𝑛 + 𝑧𝑘̅̅̅) =

𝑁

𝑘=1

𝑁

𝑛=1

∑∑𝑐𝑛𝑐�̅�∫ 𝑓(𝑡) ∙ 𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )𝑡𝑑𝑡
∞

−∞

𝑁

𝑘=1

𝑁

𝑛=1

= ∫ 𝑓(𝑡) ∙ ∑∑𝑐𝑛𝑐�̅�

𝑁

𝑘=1

𝑁

𝑛=1

𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )𝑡𝑑𝑡 = ∫ 𝑓(𝑡) ∙ ∑ 𝑐𝑛

𝑁

𝑛=1

𝑒−𝑧𝑛𝑡∑𝑐𝑘

𝑁

𝑘=1

𝑒−𝑧𝑘̅̅̅̅ 𝑡𝑑𝑡
∞

−∞

∞

−∞

= ∫ 𝑓(𝑡) ∙ |∑ 𝑐𝑛

𝑁

𝑛=1

𝑒−𝑧𝑛𝑡|

2

𝑑𝑡 > 0
∞

−∞

 

 

Lemma 2 

If 𝑓1(𝑧) and 𝑓2(𝑧) are co-positive definite then they are also co-positive definite: 

1. 𝑓1(𝑧)̅̅ ̅̅ ̅̅ ̅ and 𝑓2(𝑧)̅̅ ̅̅ ̅̅ ̅ 

2. 𝑓1(−𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑓2(−𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

3. |𝑓1(𝑧)|
2 and |𝑓2(𝑧)|

2 

4. 𝑓1(𝑧) ∙ 𝑓2(𝑧) 

5. 𝑎1 ∙ 𝑓1(𝑧) + 𝑎2 ∙ 𝑓2(𝑧) for 𝑎1, 𝑎2 > 0 

 

These properties can be easily proved using the definition of the Laplace transform (1). 

 



Lemma 3 

If 𝐹(𝑧) is co-positive definite, then 𝐹(0) is real and 𝐹(0) > 0. 

Proof 

From (8), We let N =1, then 𝑐1𝑐1̅𝐹(𝑥1 + 𝑥1) > 0 . Letting x = 𝑥1 + 𝑥1 , we have |𝑐1|
2 ∙ 𝐹(𝑥) > 0 . 

Hence 𝐹(𝑥) is real and 𝐹(𝑥) > 0 for all real 𝑥 and therefore 𝐹(0) is real and 𝐹(0) > 0. 

 

Lemma 4 

If 𝐹(𝑧) is co-positive definite, then 𝐹(2𝑛)(𝑧) is also co-positive definite for non-negative integer n. 

Proof 

From the definition of the Laplace transform (1), taking derivative 2𝑛 times with respect to z, we 

have 

∫ 𝑡2𝑛𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞

 

Since 𝑓(𝑡) > 0 for all t and even, and therefore 𝑡2𝑛𝑓(𝑡) > 0 and 𝑡2𝑛𝑓(𝑡) is even and hence co-

positive definite. 

 

Lemma 5 

If y  is fixed, say y = 𝑦0  and z = x + i𝑦0 , then any complex-valued co-positive definite function 

𝐹(𝑧) is co-positive definite for x. 

Proof 

∑∑𝑐𝑛𝑐�̅�𝐹(𝑧𝑛 + 𝑧𝑘̅̅̅) =

𝑁

𝑘=1

𝑁

𝑛=1

= ∫ 𝑓(𝑡) ∙ ∑∑𝑐𝑛𝑐�̅�

𝑁

𝑘=1

𝑁

𝑛=1

𝑒−(𝑧𝑛+𝑧𝑘̅̅̅̅ )𝑡𝑑𝑡
∞

−∞

= ∫ 𝑓(𝑡) ∙ ∑∑𝑐𝑛𝑐�̅�

𝑁

𝑘=1

𝑁

𝑛=1

𝑒−(𝑥𝑛+𝑖𝑦0+𝑥𝑘−𝑖𝑦0)𝑡𝑑𝑡 =
∞

−∞

∫ 𝑓(𝑡) ∙∑∑𝑐𝑛𝑐�̅�

𝑁

𝑘=1

𝑁

𝑛=1

𝑒−(𝑥𝑛+𝑥𝑘)𝑡𝑑𝑡
∞

−∞

=∫ 𝑓(𝑡) ∙ |∑ 𝑐𝑛

𝑁

𝑛=1

𝑒−𝑥𝑛𝑡|

2

𝑑𝑡 > 0
∞

−∞

 

This is clear since  

∑∑𝑐𝑛𝑐�̅�𝐹(𝑧𝑛 + 𝑧𝑘̅̅̅) =

𝑁

𝑘=1

𝑁

𝑛=1

∑∑𝑐𝑛𝑐�̅�𝐹(𝑥𝑛 + 𝑥𝑘) > 0

𝑁

𝑘=1

𝑁

𝑛=1

 

that is, 𝑦0 is cancelled out and we have a real-valued co-positive definite function. 

 

We note that this also is valid for |F(z)|2. If y is fixed, |F(𝑥 + 𝑖𝑦0)|
2 is real-valued co-positive 

definite for x. 

 



5. Expansion of |𝑭(𝒛)|𝟐 

From (6), we have 

 
F(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑧𝑡𝑑𝑡

∞

−∞

= ∑𝑎2𝑛 ∙ 𝑧
2𝑛

∞

𝑛=0

 

 

(9) 

and |𝐹(𝑧)|2 = 𝐹(𝑧) ∙ 𝐹(𝑧)̅̅ ̅̅ ̅̅ = 𝐹(𝑧) ∙ 𝐹(𝑧̅) = [∑ 𝑎2𝑛 ∙ 𝑧
2𝑛∞

𝑛=0 ] ∙ [∑ 𝑎2𝑛 ∙ 𝑧̅
2𝑛∞

𝑛=0 ].  The power series 

expansion of [∑ 𝑎2𝑛 ∙ 𝑧
2𝑛∞

𝑛=0 ] ∙ [∑ 𝑎2𝑛 ∙ 𝑧̅
2𝑛∞

𝑛=0 ] is 

 
|𝐹(𝑧)|2 = 𝐶0 +∑𝐶2𝑛 ∙ (𝑧

2𝑛 + 𝑧̅2𝑛)

∞

𝑛=1

 

 

(10) 

where 𝐶0 = ∑ 𝑎2𝑘
2∞

𝑘=0 |𝑧|4𝑘 , 𝐶2𝑛 = ∑ 𝑎2𝑘 ∙ 𝑎2𝑘+2𝑛
∞
𝑘=0 |𝑧|4𝑘 . Since 𝑎2𝑘 ≥ 0 , 𝐶0 > 0  and 𝐶2𝑛 > 0  for 

all n. 

Since there are only even terms of x, we let 

|𝐹(𝑧)|2 = 𝐴0 + ∑ 𝐴2𝑚 ∙ 𝑥
2𝑚

∞

𝑚=1

 (11) 

To determine 𝐴0 and 𝐴2𝑚,  

 𝐶0 =∑ 𝑎2𝑘
2 |𝑧|4𝑘

∞

𝑘=0
=∑ 𝑎2𝑘

2 (𝑥2 + 𝑦2)2𝑘
∞

𝑘=0
= 2∑ ∑ 𝑎2𝑘

2 (
2𝑘
𝑗
) 𝑦4𝑘−2𝑗𝑥2𝑗

∞

𝑘=𝑗

∞

𝑗=0
 (12) 

 

and since 

 (𝑧2𝑛 + 𝑧̅2𝑛) = 2∑ (−1)𝑝
𝑛

𝑝=0
(
2𝑛
2𝑝
) 𝑦2𝑛−2𝑝𝑥2𝑝 (13) 

we have 

 ∑𝐶2𝑛 ∙ (𝑧
2𝑛 + 𝑧̅2𝑛)

∞

𝑛=1

=

{
 

 2∑ ∑ (−1)𝑛 ∙ 𝑦2𝑛 ∙ 𝐶2𝑛
∞

𝑛=1

∞

𝑘=0
                  𝑓𝑜𝑟 𝑝 = 0

2∑ ∑ (−1)𝑛 ∙ (
2𝑛

2𝑛 − 2𝑝
) 𝑦2𝑛−2𝑝

∞

𝑛=𝑝
𝑥2𝑝 ∙ 𝐶2𝑛   𝑓𝑜𝑟 𝑝 ≥ 1

∞

𝑝=1

 (14) 

and 

 
𝐶2𝑛 =∑ 𝑎2𝑘 ∙ 𝑎2𝑘+2𝑛

∞

𝑘=0
|𝑧|4𝑘 =∑ 𝑎2𝑘 ∙ 𝑎2𝑘+2𝑛

∞

𝑘=0
(𝑥2 + 𝑦2)2𝑘 

 
(15) 

By the Leibniz rule, 

 
𝜕2𝑚

𝜕𝑥2𝑚
[(𝑥2 + 𝑦2)2𝑘 ∙ 𝑥2𝑚]x=0 =

𝜕2𝑚

𝜕𝑥2𝑚
[(𝑥2 + 𝑦2)2𝑘]x=0 = [∏[(2𝑚 − 𝑗)(2𝑘 − 𝑗)]

𝑚−1

𝑗=0

] ∙ 𝑦2(2𝑘−𝑚) (16) 

where m ≥ 1 and k ≥ m. 

Taking derivatives (2m) times to Eq. (11) and Eq. (12), (14) and letting x = 0, we have 

 𝐴2𝑚 = 𝐶2𝑚
1 + 𝐶2𝑚

2 + 𝐶2𝑚
3  (17) 

where 

𝐶2𝑚
1 =∑ 𝑎2𝑘

2 (
2𝑘
2𝑚

)𝑦4𝑘−2𝑚
∞

𝑘=0
 



𝐶2𝑚
2 = 2∑ ∑ (−1)𝑛 ∙ 𝑎2𝑘 ∙ 𝑎2𝑘+2𝑛 ∙ [∏(2𝑚 − 𝑗)(2𝑘 − 𝑗)

𝑚−1

𝑗=0

] 𝑦2𝑛 ∙ 𝑦2(2𝑘−𝑚)
∞

𝑛=1

∞

𝑘=𝑚
 

𝐶2𝑚
3 = 2∑ (−1)𝑛−𝑚 (

2𝑛
2𝑛 − 2𝑚

)
∞

𝑛=𝑚
𝑦2𝑛−2𝑚∑ 𝑎2𝑘 ∙ 𝑎2𝑘+2𝑛 [∏(2𝑚 − 𝑗)(2𝑘 − 𝑗)

𝑚−1

𝑗=0

] ∙ 𝑦2(2𝑘−𝑚)
∞

𝑘=𝑚
 

and 

 
𝐴0 =∑𝑎2𝑘

2 𝑦4𝑘
∞

𝑘=0

+ 2∑∑(−1)𝑛𝑎2𝑘𝑎2𝑘+2𝑛𝑦
2𝑛+4𝑘

∞

𝑘=0

∞

𝑛=1

 

 

(18) 

 

 

If y is fixed, 𝐴0 and 𝐴2𝑚 are constants and |𝐹(𝑧)|2 are a function of only x, that is, we have a 

function |𝐹(𝑧)|2 which is lying on the horizontal line of z = 𝑥 + 𝑖𝑦0 where 𝑦0 is a fixed value. 

By Lemma 3 and letting 𝑥 = 0, we note 𝐴0 > 0. Likewise, from Eq. (11), taking derivative 2𝑛 

times with respect to x and letting 𝑥 = 0, we note 𝐴2𝑚 > 0 for all 𝑚 ≥ 1 by Lemma 3 and 4. 

Since all the coefficients of Eq. (11) positive, by Hardy-Littlewood, |𝐹(𝑧)|2  is a strictly 

multiplicatively convex function on the horizontal line z = x + 𝑦0 and in the interval of x (0,∞).            

Moreover, since |𝐹(𝑧)|2 is symmetric at x = 0, |𝐹(𝑧)|2 has a unique minimum at x = 0. Further, 

since 𝑦0 is arbitrary, we conclude the theorem: 

Theorem 

1. Let 𝐹(𝑧) be Laplace transform of a positive and even function, then if y is fixed, |𝐹(𝑧)|2 is 

strictly multiplicatively convex for 0 ≤ 𝑥 < ∞ on the line z = 𝑥 + 𝑖y0. If 𝐹(𝑧) is not entire, 

|𝐹(𝑧)|2 is multiplicatively convex in the radius of convergence. 

2. Since |𝐹(𝑧)|2 is symmetric by iy-axis, |𝐹(𝑧)|2 has a unique minimum at 𝑥 = 0. 

3. Since |𝐹(𝑧)|2 has a unique minimum at 𝑥 = 0, all zeros of |𝐹(𝑧)|2 locate only at iy-axis. It 

cannot have zeros on other places since |𝐹(𝑖y0)|
2 ≥ 0 and |𝐹(𝑥 + 𝑖y0)|

2 > |𝐹(𝑖y0)|
2 for all 

𝑥 ≠ 0. Clearly, this is also valid for |𝐹(𝑧)|. 

4. Since the zeros of |𝐹(𝑧)|2 locate at iy-axis, the zeros of 𝐹(𝑧) locate only at iy-axis, if 𝐹(𝑧) 

has any zeros2 . If 𝐹(𝑧)  had zeros on other places than on iy-axis, |𝐹(𝑧)|2  should have 

zeros on the same places, but |𝐹(𝑧)|2 has zeros only on iy-axis as shown. 

 

The theorem is valid only for the Laplace transform of functions that are even and positive for all 

t. It is not valid for non-even functions. However, the Laplace transform of the positive functions are 

co-positive definite and the power series can be found which is similar to (11) but contains odd 

powers. We do not have any information about the coefficients of odd powers but the coefficients of 

even powers should be positive if the power series converges. 

                                           

2 There are some functions whose Laplace transform does not have any zero. For example, 2√𝜋𝑒𝑧
2
 is the Laplace 

transform of 𝑒−𝑡
2/4, but 2√𝜋𝑒𝑧

2
 has neither poles nor zeros. 



 

6. The positive definiteness 

By replacing z ↦ 𝑖𝑧 and for some function 𝑓(𝑡) > 0, the Laplace transform will be 

 
G(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖𝑧𝑡𝑑𝑡

∞

−∞

 

 

(19) 

It can be shown that G(z) is complex-valued positive definite, that is 

 
∑∑𝑐𝑛𝑐�̅�𝐺(𝑧𝑛 − 𝑧𝑘̅̅̅)

𝑁

𝑘=1

𝑁

𝑛=1

> 0 

 

(20) 

which is the generalized Bochner’s theorem. 

 The Properties of positive definiteness are similar to the co-positive definiteness. For example, if 

G(z) is positive definite, (−1)𝑛𝐺(2𝑛)(𝑧) is also positive definite and G(0) > 0 and therefore G(0) 
is real and so on. 

If 𝑓(𝑡) > 0 for all t and is even, we have: 

 G(z) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑖𝑧𝑡𝑑𝑡
∞

−∞

= 2∫ 𝑓(𝑡) ∙ cos(𝑧𝑡)𝑑𝑡
∞

0

= ∫ 𝑓(𝑡) ∙ cos(𝑧𝑡)𝑑𝑡
∞

−∞

 (21) 

 

Using the power series expansion and properties of the positive definite functions, it can be 

shown that G(z) from Eq. (21) has only real zeros. In fact, we do not need to prove it. Because of 

mapping z ↦ 𝑖𝑧, G(z) is a rotated function by π/2 of F(z) in Eq. (9), and therefore, since F(z) in 

Eq. (9) has zeros only on the iy-axis, G(z) should have zeros only on x-axis, that is, only real zeros. 

 

7. Behavior on a circle 

We now consider |𝐹(𝑧)|2 on a circle centered at the origin with radius r. Letting 𝑧 = 𝑟 ∙ 𝑒𝑖𝜃, from Eq. 

(10) we have  

 |𝐹(𝑟 ∙ 𝑒𝑖𝜃)|
2
= 𝐶0 + 2∑𝐶2𝑛 ∙ 𝑟

2𝑛 ∙ cos(2𝑛𝜃)

∞

𝑛=1

 (22) 

 

Since |𝐹(𝑥)|2 is co-positive definite as shown, letting 𝑥 = 𝑟 ∙ cos(𝜃) and if 𝑟 is fixed, |𝐹(𝑥)|2 is 

co-positive definite for cos(𝜃), thus |𝐹(𝑟 ∙ 𝑒𝑖𝜃)|
2
 is also co-positive definite for cos(𝜃). This can be 

easily proved using the definition of the Laplace transform Eq. (1). Caution must be taken. 

|𝐹(𝑟 ∙ 𝑒𝑖𝜃)|
2
 is co-positive definite for cos(𝜃) itself, not for 𝜃. If |𝐹(𝑟 ∙ 𝑒𝑖𝜃)|

2
 is co-positive definite 

for 𝜃, it must be that 
𝜕2

𝜕𝜃2
[|𝐹(𝑟 ∙ 𝑒𝑖𝜃)|

2
]
𝜃=0

> 0. Taking derivative twice to Eq. (22) and letting 𝜃 = 0, 

we have −2 ∙ ∑ (2𝑛)2 ∙ 𝐶2𝑛 ∙ 𝑟
2𝑛∞

𝑛=1  . Since 𝐶2𝑛 > 0  for all 𝑛 , −2 ∙ ∑ (2𝑛)2 ∙ 𝐶2𝑛 ∙ 𝑟
2𝑛∞

𝑛=1 < 0 , thus 

|𝐹(𝑟 ∙ 𝑒𝑖𝜃)|
2
 is not co-positive definite for 𝜃. In fact, |𝐹(𝑟 ∙ 𝑒𝑖𝜃)|

2
 is positive definite for 𝜃 because 

cos(2𝑛𝜃)  is positive definite and |𝐹(𝑟 ∙ 𝑒𝑖𝜃)|
2
  is summing of cos(2𝑛𝜃)  with positive coefficients, 

hence |𝐹(𝑟 ∙ 𝑒𝑖𝜃)|
2
 is positive definite for 𝜃. 

Letting α = cos(𝜃) and for fixed r, we have 



 |𝐹(α)|2 = 𝐶0 + 2∑𝐶2𝑛 ∙ 𝑟
2𝑛 ∙ 𝑇2𝑛(α)

∞

𝑛=1

 (23) 

where 𝑇2𝑛(α) denotes the Chebyshev polynomials of the first kind. 

𝑇𝑛(α) can be expressed as the sum of α, which is 

 𝑇𝑛(α) =
1

2
∑ (−1)𝑘

𝑛

𝑛 − 𝑘
∙ (
𝑛 − 𝑘

𝑘
) ∙ (2α)𝑛−2𝑘

𝑛/2

𝑘=0
 (24) 

 

where 𝑛/2 denotes the floor function. 

  Letting n ↦ 2n, we have 

 𝑇2𝑛(α) =∑ (−1)𝑘
𝑛

2𝑛 − 𝑘
∙ (
2𝑛 − 𝑘

𝑘
) ∙ (2α)2𝑛−2𝑘

𝑛

𝑘=0
 (25) 

and letting m = n − k 

 𝑇2𝑛(α) =∑ (−1)𝑛−𝑚
𝑛

𝑛 +𝑚
∙ (
𝑛 + 𝑚

𝑛 −𝑚
) ∙ (2α)2𝑚

𝑛

𝑚=0
 (26) 

and finally we have 

 
|𝐹(α)|2 = 𝐶0 + 2∑𝐶2𝑛 ∙ 𝑟

2𝑛 ∙∑ (−1)𝑛−𝑚
𝑛

𝑛 +𝑚
∙ (
𝑛 + 𝑚

𝑛 −𝑚
) ∙ 22𝑚 ∙ α2𝑚

𝑛

𝑚=0

∞

𝑛=1

 

 

(27) 

From Eq. (27), if 𝑚 = 0, then we get 

 
𝐶0 + 2∑ (−1)𝑛 ∙ 𝐶2𝑛 ∙ 𝑟

2𝑛
∞

𝑛=1
 

 
(228) 

which is the constant part of |𝐹(α)|2. 

  With the results, we have 

 |𝐹(α)|2 = 𝐶0 + 2∑ (−1)𝑛 ∙ 𝐶2𝑛 ∙ 𝑟
2𝑛

∞

𝑛=1
+ 2∑ ∑ (−1)𝑛−𝑚

∞

𝑛=𝑚

∞

𝑚=1

𝑛

𝑛 +𝑚
∙ (
𝑛 + 𝑚

𝑛 −𝑚
)𝐶2𝑛 ∙ 𝑟

2𝑛 ∙ 22𝑚 ∙ α2𝑚 

 

(239) 

which can be written 

 |𝐹(α)|2 = 𝐵0 + 𝐵2α
2 +⋯ = 𝐵0 +∑ 𝐵2𝑚 ∙ α

2𝑚
∞

𝑚=1
 (30) 

where 

𝐵0 = 𝐶0 + 2∑ (−1)𝑛 ∙ 𝐶2𝑛 ∙ 𝑟
2𝑛

∞

𝑛=1
 

and 

𝐵2𝑚 =∑ (−1)𝑛−𝑚
∞

𝑛=𝑚

𝑛

𝑛 +𝑚
∙ (
𝑛 + 𝑚

𝑛 −𝑚
)𝐶2𝑛 ∙ 𝑟

2𝑛 ∙ 22𝑚 ∙ 

 

Since |𝐹(α)|2 is co-positive definite, we have 

|𝐹(0)|2 > 0 and 
𝑑2𝑚

dα2𝑚
[|𝐹(α)|2]α=0 > 0 

thus 



𝐵0 > 0 and 𝐵2𝑚 > 0 for 𝑚 = 1,2,⋯ 

Since α = cos(𝜃), from Eq. (30) 

 |𝐹(α)|2 = 𝐵0 +∑ 𝐵2𝑚 ∙ cos
2𝑚(

∞

𝑚=1
𝜃) (31) 

and 

 
𝑑

𝑑𝜃
|𝐹(α)|2 = −2sin(𝜃)∑ 𝑚 ∙ 𝐵2𝑚 ∙ cos

2𝑚−1(
∞

𝑚=1
𝜃) = −sin(2𝜃)∑ 𝑚 ∙ 𝐵2𝑚 ∙ cos

2𝑚−2(
∞

𝑚=1
𝜃) (32) 

 

  Since  

∑ 𝑚 ∙ 𝐵2𝑚 ∙ cos
2𝑚−2(

∞

𝑚=1
𝜃) = 𝐵2 +∑ 𝑚 ∙ 𝐵2𝑚 ∙ cos

2𝑚−2(
∞

𝑚=2
𝜃) 

∑ 𝑚 ∙ 𝐵2𝑚 ∙ cos
2𝑚−2(∞

𝑚=1 𝜃)  cannot be zero and therefore ∑ 𝑚 ∙ 𝐵2𝑚 ∙ cos
2𝑚−2(∞

𝑚=1 𝜃)  is strictly 

positive, thus −sin(2𝜃) determines the sign of 
𝑑

𝑑𝜃
|𝐹(α)|2. 

We note that sin(2𝜃) = 0  when 𝜃 = 0  and 𝜃 = 𝜋/2  as expected. Moreover, −sin(2𝜃) < 0  in 

the interval 0 < 𝜃 < 𝜋/2 , and therefore |𝐹(α)|2  is decreasing in the interval. Since |𝐹(α)|2 ≥ 0 , 

|𝐹(α)|2 has a unique minimum at 𝜃 = 𝜋/2 and 𝜃 = −𝜋/2 because |𝐹(α)|2 has the same value 

at 𝜃,−𝜃, 𝜋 − 𝜃 and 𝜃 − 𝜋. 

  Since the radius r can be chosen arbitrarily, the zeros of 𝐹(α) locate only 𝜃 = 𝜋/2 and = −𝜋/2, 

that is, iy-axis which we have proved. In fact, it can be shown that if |𝐹(α)|2 has a unique minimum 

at = 𝜋/2, |𝐹(𝑧)|2 is strictly multiplicatively convex for 𝑥 on the line 𝑧 = 𝑥 + 𝑖𝑦0 where 𝑦0 = 𝑟. 

 

8. Proof of the Riemann hypothesis 

The Riemann zeta function (s) is defined as follows: 

 
(s) = ∑

1

𝑛𝑠

∞

𝑛=1

= 1 +
1

2𝑠
+
1

3𝑠
+⋯ 

 

(33) 

where s = + iω. 

The functional equation of Riemann xi-function ξ(s) is 

 ξ(s) = ξ(1 − s) (34) 
where  

 ξ(s) =
1

2
𝜋−

𝑠
2𝑠(𝑠 − 1)Γ(𝑠/2)(s) (35) 

which is symmetric at  =
1

2
 and therefore ξ (

1

2
+ iω) is real-valued. 

Riemann showed that 

 ξ(s) =
1

2
+
1

2
∫ [∑ 𝑒−𝑛

2𝜋𝑡
∞

𝑛=1
]

∞

1

∙
𝑠(𝑠 − 1)

𝑡
(𝑡𝑠/2 + 𝑡(1−𝑠)/2)𝑑𝑡 (36) 

The Jacobi Theta function can be expanded using the Poisson summation formula and the Mellin 

transform, and finally we have 



 ξ(s) = ∫ φ(t) ∙ 𝑒(𝑠−
1
2
)𝑡𝑑𝑡

∞

−∞

 (24) 

where  

 
φ(t) = 2∑𝑒−𝜋𝑛

2𝑒2𝑡(2𝜋2𝑛4𝑒
9
2
𝑡 − 3𝜋𝑛2𝑒

5
2
𝑡)

∞

𝑛=1

 

 

(38) 

It can be shown that φ(t) > 0  for all t and an even function. From (37), the power series 

expansion is 

 
ξ(s) = ∑ℎ2𝑛 (𝑠 −

1

2
)
2𝑛∞

𝑛=0

 

 

(39) 

Letting z ↦ 𝑠 −
1

2
, that is, shifted by 

1

2
 and therefore the zeros now locate on the stripe of −

1

2
<

x <
1

2
 and we have 

 
Φ(z) = ∫ φ(t) ∙ 𝑒𝑧𝑡𝑑𝑡

∞

−∞

= ∫ φ(t) ∙ 𝑒−𝑧𝑡𝑑𝑡
∞

−∞

 

 

(25) 

and the power series expansion 

 
Φ(z) = ∑ℎ2𝑛 ∙ 𝑧

2𝑛

∞

𝑛=0

 

 

(41) 

which is the Laplace transform of the positive and even function φ(t). We showed that all zeros of 

the Laplace transform of a positive and even functions locate at iy-axis. Hence all the zeros of ξ(s) 

must locate at  =
1

2
 and therefore (s) too, which means the Riemann hypothesis is true. 

Riemann suggested a function named “big xi-function” Ξ(z), which is defined 

 
Ξ(z) = 2∫ φ(t) ∙ cos(𝑧𝑡) ∙ 𝑑𝑡

∞

0

= ∫ φ(t) ∙ cos(𝑧𝑡) ∙ 𝑑𝑡
∞

−∞

 

 

(42) 

and if Ξ(z)  has only real zeros, the Riemann hypothesis is true. This function is nothing but a 

positive definite function in Eq. (21) and we showed that these kind of functions can have only real 

zeros and therefore the Riemann hypothesis is true. 
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