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Abstract

We introduce a new class of higgs type fields {U,Uµ, Uµν} with Feynman propaga-
tor ∼ 1/p4, and consider the matching to the traditional gauge fields with propagator
∼ 1/p2 in the viewpoint of effective potentials at tree level. With some particular
restrictions on the convergence, there are a wealth of potential forms generated by the
fields {U,Uµ, Uµν}, such as: (1) in the case of U coupled to the intrinsic charges of
matter fields, electromagnetic Coulomb potential with an extra linear potential and
Newton’s gravitation could be generated with the operators of different orders from
the dynamics of U , respectively; (2) for the matter fields, with the multi-vacuum struc-
ture of a sine-Gordon type vector field Aµ induced from U , a seesaw mechanism for
gauge symmetry and flavor symmetry of fermions could be generated, in which the
heavy fermions could be produced; besides, by treating the fermion current as a field,
a possible way for renormalizable gravity could be proposed; (3) the Coulomb poten-
tial in electromagnetism and gravitation could be generated by an anti-symmetric field
strength of Uµ, when it’s coupled to the intrinsic charge and momentum of matter
fields, respectively; and, except for the Coulomb part in each case, there is a linear and
a logarithmic part in the former case which might correspond to the confinement in
strong QED, while there is a linear and a logarithmic part in the latter case which might
correspond to the dark energy effects in the impulsive case and dark matter effects in
the attractive case, respectively; besides, a symmetric field strength of Uµ could also
generate the same gravitation form as the anti-symmetric case; (4) a nonlinear version
Klein-Gordon equation, QED and the Einstein’s general relativity, could be generated
as a low energy approximation of the dynamics of U , Uµ and Uµν , respectively; more-
over, in the weak field case, the gauge symmetry could superficially arise, and, a linear
QED, linear gravitation and a 3rd-order tensor version QED could be generated by
relating the field strength of U , Uµ and Uµν to the corresponding gauge fields, respec-
tively; (5) for the massive {U,Uµ}, attractive potentials for particles with the same
kind of charges could be generated, which might serve as candidate for interactions
maintaining the s-wave pairing and d-wave pairing Cooper pairs in superconductors,
with electric charge in the U case and magnetic moment in the Uµ case as interaction
charge, respectively; etc.
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1 Introduction

As a very successful theory, the gauge field theory with the gauge invariance principle could
be used to solve a huge part of questions for people. Certainly, there are some challenges
to the gauge theory: one class about the extension for methods of application, such as the
ones for non-perturbative problems; another class about the extension for new phenomenons,
such as the ones for new particles or dark matter/dark energy effects; with an inevitable old
topic about the unification and renormalization.

It’s just the linear potential from the non-perturbative results in lattice gauge theo-
ry [1] that motivated us to consider a fourth order differential equations (D.E.). And,
mathematically, a most straightforward way on the extensions for new particles could be
related to the higher order D.E., generally with a trouble on dealing with the redundant
unphysical/noncausual degrees of freedom (d.o.f) and an omittance/ignorance on the non-
perturbative and unification problems. So, it would be significant to modify the higher order
D.E. framework to cover the three sectors mentioned above, even with some man-made pos-
tulations or constraints. That is just what we have done in this paper.

In this paper, we have taken some postulations to construct our model within the 4th-
order D.E. framework, mainly for the convergence(renormalization) and a reasonble perfor-
mance on matching conditions of the model. For simplicity, we have concentrated our studies
on the pro forma feasibility of the model in the view of effective potentials at tree level.

The remainder of this paper is organized as follows. In Sect. 2,3,4, we build the dy-
namics for the massless scalar, vector and tensor fields, respectively, in the 4th-order D.E.
framework. In Sect. 5, we extend the models to a massive case and apply them to discuss
the superconductor. The final section is reserved for our conclusions.

2 Field U

2.1 A Lagrangian for linear potential

2.1.1 Framework: effective potentials for tree-level

We can get the classic non-relativistic (NR) potential form from the amplitude of the tree-
level “2→ 2” scattering process for a perturbative theory, within the Born-approximation
framework, for instance, we can take [2]

(vertex)1 ⊗ (inner-line propagator) ⊗ (vertex)2 ⇔ V (1)

where the l.h.s is a part of the amplitude for a tree-level Feynman diagram, and the r.h.s
is the classic potential. So, conversely, we can build theories for potentials with a definite
form through the tree-level-correspondence, provided that the theories are perturbatively
computable. For example, if there were neither momentums nor coordinates in the Feynman
rules of vertices, we would extract different potentials with different inner-line propagators,
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such as:

linear potential ↔ 1

p4
. ,

Coulomb potential ↔ 1

p2
,

van der Waals potential ↔ 1

pα
,with ∞ < α < 2. (2)

2.1.2 A Lagrangian for linear potential

We firstly write a Lagrangian, and then give the illustrations in following subsubsections.

We take {U, ψ} as the physical particle degree of freedom(d.o.f), which have the trans-
formation law under a U(1) global group element V as

U → V UV † , ψ → V ψ , (3)

and, with the method in Section 2.1.1, for a propagator ∼ 1
p4
, we take the Lagrangian with

Lorentz symmetry and the U(1) global symmetry as

L = LU + Lψ + LI , (4)

where the kinetic energy term

LU = −∂µ∂νU †∂µ∂νU − Λ4
U [(U + U †) + i(U − U †)] +m4

UU
†U ,

with U †U ≤ 1 , (5)

is for free complex-valued field U ;1 the term

Lψ = ψ̄(i∂/ −mψ)ψ (6)

is for free particle ψ; and,

LI = −αQΛ ψ̄[(U + U †) + i(U − U †)]ψ

−βQ ψ̄∂/[(U + U †) + i(U − U †)]ψ

−ρQ 1

M
∂µ[(U + U †) + i(U − U †)](ψ̄i

←→
∂ µψ)

−ξQ 1

M
ψ̄∂/∂/[(U + U †) + i(U − U †)]ψ

+...(higher order 3-field terms)

−κQ 1

M
ψ̄
{
Λ2 · [U †U ] + Λ · [U †i

←→
∂/ U ] + ∂/[U †i

←→
∂/ U ]

}
ψ

+...(higher order multi-field terms) (7)

is for the gauge invariant interaction term under the condition of (3), where the “...” denotes
terms for multi-field and higher order operators. Each of the coefficients {α, β, κ} takes a real
number value for the sake of hermitian; and, Q is an operator corresponding to the generator
of gauge group, with 〈Q〉 = ±|Q| for particles and anti-particles respectively. Particularly,
in the simplest case, for the sake of universality, we can take

α = β = ρ = ξ = κ ≡ gU . (8)

1For a non-Abelian version of extension, the terms would be taken a trace of the “charge” indices.
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For the parameters Λ and M , referring to Wilson’s scheme for renormalization, we can
propose the postulation as:

(i) each U(rather than ∂U) is tied with one small I.R. energy scale Λ, so the operators
constituted with multi-U would be spontaneously depressed;

(ii) all the higher-dimensional(D > 4) operators are depressed by the large U.V. energy
scale M . 2

And, the variable Λ and M for balancing the dimension is set to be

Λ = µIR
(QED)−−−−→ 0, M = µUV

(QED)−−−−→ µEW ∼ 246GeV (9)

where µIR is the infrared boundary(but not the cutoff µ in next sections for dealing with I.R.
divergences of loop level processes), andM the ultraviolet boundary for the theory. The first
reason for taking a so small µIR is the fact that the linear potential hasn’t been detected in
the real QED sector. For the correspondence between µIR for U and µIR(or µUV ) for QED,
we won’t consider in this work.

Since both p̂ = i∂ for a complex field and p̂ = ∂ for a real field are hermite, the two
interaction forms

LI = −αψ̄(U + U †)ψ − βψ̄∂(U + U †)ψ, (10)

and
LI = −αψ̄[i(U − U †)]ψ − βψ̄∂[i(U − U †)]ψ, (11)

are both hermite and right. Indeed, we can have

U ≡ U1 − iU2 , ⇒
U + U †

2
= U1 ,

i(U − U †)

2
= U2 . (12)

that means, both U1 and U2 include the effects from both U and U †. For future convenience,
here we obviously write down the interaction Lagrangian for U1, as

LI = −αQΛ ψ̄U1ψ − βQ ψ̄∂/U1ψ − ρQ
1

M
ψ̄∂/∂/U1ψ + ... , (13)

and, contributions from U2 should combine rather than cancel with that from U1, otherwise,
the introduction of U would be trivial.

We don’t consider terms as

LI = −αΛ ∂µU1ψ̄[σµν(γ
µ − i∂µ)]ψ (14)

in this work.

2.1.3 On the ∂∂U term (I): no ∂U , in kinetics term!

Each one of the {U, ∂U, ∂∂U} could be well-define and be taken as the block for constructing
Lagrangian terms. However, there are two questions to answer:

1. why is ∂U absent in the kinetic energy term?

2If we offer a 1/M factor for every ∂ symbol in all the interaction terms, the linear potential would be a
dominated part of the interaction since all other interaction terms are depressed, which isn’t consistent with
the real world.

3



2. which one is the canonic commutator, among [U, U̇ ], [U, ∂U̇ ] and [U̇ , ∂U̇ ]?

Firstly, we should note, these are two isolated questions. In a word, for a block-variable,
its appearance/absence in the kinetic energy term is irrelevant with its appearance/absence
in canonic commutator. For instance, for a massless scalar field A, one of its canonic vari-
able, the field variable A itself as a well-defined d.o.f., doesn’t appear in the kinetic term,
while for a Dirac field ψ, its canonic variables ψ and ψ̇ both appear in the kinetic term.

Secondly, it’s not incomprehensible for the kinetic energy term with four derivatives: now
that the kinetic energy term of Dirac field could include only one derivative rather than two
for the case of Klein-Gordon fields, the number of derivative in kinetic energy term could be
possibly as many as it needed. So, we could say, which variables and how many ∂ operators
appear in the kinetic energy term could be irrelevant with the ones in canonic commutator,
and, it’s allowed to construct the kinetic energy term with the ∂∂U variable; or, we could
say, the E.O.M is the very core for a field, rather than the kinetic energy term which could
be constructed according to the E.O.M. Besides, the stress tensor for a block of continuum
material is not completely equivalent the acceleration of a particle, that is,

∂µ∂νU 6= ∂2gµνU . (15)

Thirdly, for the Question-1, the term

(∂U)2 and U †∂∂U

could not appear in our model, since it would give a term ∂∂U in the E.O.M so a propagator
form ∼ 1/(p4 − p2). However, due to the singularity(pole) structure, we can’t get the same
results for the two propagators, ∼ 1/(p4) and ∼ 1/(p4 − p2). Besides, if the E.O.M is not
the form p̂4U = m4U , that might break a generalized “charge” symmetry, see Sect. 2.1.5.
So, we could only take ∂∂U to construct the kinetic term rather than ∂U .

Fourthly, for the Question-2, if we asked, “for variables at different level, such as a field
U and its derivative {∂U, ∂∂U, . . .} or integration {

∫
U,

∫ ∫
U, . . .}, which ones could be the

well-defined blocks for constructing the canonic commutators, E.O.M and propagators, in-
teraction terms for d.o.f?”, then, at least we can say, for different successful frameworks,
the matching among them should always be realized, and their results should be always
equivalent in the matching region.

2.1.4 On the ∂∂U term (II): in the viewpoint of continuum medium

A particle is a field, and a field should be a field much more.

Based on the continuum mechanics theory, the stress tensor, a second order tensor,
completely define the state of stress inside a material. So, if the velocity(momentum)pµ are
treated as canonic coordinates for a particle, the stress tensor(energy-momentum tensor)
T µν ∼ pµpν should be reasonably treated as canonic coordinates for a field. In other words,
if the canonic momentum operators of particles are treated as the blocks for construction of
the wave equations for particles, such as in relativistic quantum mechanics

p̂Ψ = mΨ, p̂2Φ = m2Φ, ....(higher order D.E.), (16)
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where “D.E.” denotes differential equations, then the canonic momentum operators of fields
should be treated as the blocks for construction of the wave equations for fields, such as

T̂Ψ = m2Ψ, T̂ 2Φ = (m2)2Φ, ....(higher order D.E.). (17)

The E.O.M is contained in the continuity equation for a particle current, as [2]

∂µJ
µ = 0,

Jµ = ρuµ = Φ†i∂µΦ− i∂µΦ†Φ ⇒ i∂µΦ = pµΦ , pµ = mvµ (18)
(square)−−−−→ −∂2Φ = p2Φ = m2Φ⇒ pµ = ±mvµ , (19)

where we take directly a square for each operator to get the Klein-Gordon equation for a
relativistic extension. So, under the correspondence, the continuity equation and E.O.M for
a field should be as

∂µ∂νT
µν = 0,

T µν = (ρ+ p)uµuν + pgµν (symmetric tensor)

=
∂L

∂(∂νφα)
∂µφα − gµνL

= (∂µφ
†∂νφ+ ∂νφ

†∂µφ)− gµν(∂αφ†∂αφ−m2φ†φ)

= φ†
[←−
∂ µ∂νφ+

←−
∂ ν∂µ − gµν(

←−
∂ α∂

α −m2)
]
φ

= φ† [(i∂µi∂νφ+ i∂νi∂µ)− gµν(i∂αi∂α −m2)
]
φ

⇒ i∂µi∂νφ = pµpνφ , p2 −m2 = 0
(square)−−−−→ ∂4U = p4U = m4

UU ⇒ p2 = ±m2
U , (20)

where we also take directly a square for each operator to get the relativistic extension.

2.1.5 On the ∂∂U term (III): in the viewpoint of anti-particle

Although there exist acausal solutions for differential equations with orders higher than 2, see
Ref. [4], we can just omit them by treating them as non-physical (or, frozen) d.o.f, or, treat
them as effects of hidden new degrees of freedom (existent but can’t be directly measured
for some reasons, such as being confined or spreading to the higher dimensions) beyond the
standard model(SM) in particle physics; the latter one case is just what we want to propose,
as discussed in Section 2.1.7.

Only on the viewpoint of mathematics, the general solution to (39) could be the form

U(x) = c1e
ip·x + c2e

−ip·x + c3e
p·x + c4e

−p·x , (21)

which could be converted to a particular solution with a specific boundary condition. How-
ever, we can write the E.O.M in another form,

p̂4U(x) = [p̂2Φ(x)]2 = [p̂2Φ̃(x)] · [p̂2Φ(x)] , (22)

with the correspondence for Φ̃ to Φ here is just like a generalized version of the case that the
anti-particles ψ̄ associated with the particles ψ, which also arised from the treatment that
the Dirac equation was formally from the square root of the Klein-Gordon equation. Besides,
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we can see, if the E.O.M is not the form p̂4U = m4U , then that might break a generalized
“charge” symmetry between Φ and Φ̃, as mentioned in Sect. 2.1.3. We can denote that as

Φ(x) ∼ 〈ψ̄ψ〉
⇒ K-G eq. = [ Dirac eq. ]2 , (23)

U(x) ∼ 〈Φ̃Φ〉
⇒ U-eq. = [ K-G eq. ]2 . (24)

Then we can have the new E.O.M

p̂2Φ = m2
UΦ⇒ Φ = c1e

ip·x + c2e
−ip·x (25)

for the ordinary physical d.o.f, and

p̂2Φ̃ = −m2
U Φ̃, (tachyon/higgs) (26)

< −p̂2Φ̃ = m2
U Φ̃, (phantom) (27)

⇒ Φ̃ = c3e
p·x + c4e

−p·x (28)

for the so-called unphysical d.o.f: the tachyons in (26), with an imaginary number valued
mass [5], and the phantoms in (27), with a negative kinetic energy [6], respetively.

Now, we can understand how to deal with the divergence part c3e
p·x + c4e

−p·x in (21):
they could be limited as serving for the two particular cases of boundary conditions, that is,
the tachyon/higgs/phantom/instanton solution,

[
ep

0x0 · θ(−x0) + e−p
0x0 · θ(x0)

]
· [e−ip·x + eip·x] , (29)

[
ep

0x0 · θ(−x0) + e−p
0x0 · θ(x0)

]
· C(x) , (30)

or
[
ep

0x0 · θ(−x0) + e−p
0x0 · θ(x0)

]
·
[
ep·x · θ(−x) + e−p·x · θ(x)

]
, (31)

with C a constant function.

Methodologically to say, wherever an infinity exist, it might be the place to discover new
d.o.f. Or, we can take a generalization for the “pair” concept. For example:

a. the zero-temperature point , T = 0;
b. the light-speed point, c = 1;
b. the critical point for cosmological state parameter, w = 1, see Ref. [6] [7];

all of them could not be reached, but could be crossed by skipping it, with the introduction
of a pair of some kind of conjugated “charges” for the two sides of the critical boundary, as:

a. the magnetic moment in a ferromagnetic system, leading to a generation for states
of negative-temperature, with the critical boundary T = 0+ and T = 0− still could not be
reached;

b. the tachyon, leading to a generation for states faster than light, with the critical
boundary c = 1+ and c = 1− still could not be reached;

c. the phantom, leading to a generation for states of negative pressure, w < 1, with the
critical boundary w = 1+ and c = w− still could not be reached.
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2.1.6 On the ∂∂U term (IV): hints from the lattice gauge theory

In fact, the term ψ̄Uψ in (7) has been formally introduced in the lattice gauge theory ,
though Eq.(305) by setting a finite minimal ǫ = a9 0 for the space size, that is, [1]

nµDµψ =
1

a
[ψ(x+ ǫn)− ψ(x) + (1− U)]ψ(x)] . (32)

And, there is a kind of orthogonal relations for the Wilson line Uij , as the functional inte-
grations below:

∫
[dU ]Uij = 0 ,

∫
[dU ]UijU

†
kl =

1

N
δilδjk , (33)

where the indices ijkl denote the lattice grid points.

Besides, as what shown in the computation, it’s just the employment of the Wilson loop
UP that ensured the availability of lattice gauge theory, while the usual concepts for the
gauge field A in perturbative quantum field theory were almost unavailable and absent.

It is just these subtle hints that reminded us the importance of UP , and inspired us to
consider a field U , with a hidden correspondence of

UP → U , (34)

rather than the gauge field A as a possible effective particle degree of freedom, which might
even be a more general concept for all g-valued cases. And, since the field U is corresponding
to the Wilson line UP (y, x), which could visually be seemed as a propagator of a particle in
the lattice,

U ∼ UP (y, x) ∼ 〈Φ̃Φ〉 , (35)

so it’s not difficult to understand that the E.O.M of U is the square of K-G equation, as
shown in (24).

Some details in the lattice gauge theory

However, since U wasn’t treated as a particle in Ref. [1], the term ψ̄Uψ in lattice gauge
theory is essentially different with the one in (7), for instance, there would’t be an appar-
ent kinetics Lagrangian for a particle U (nevertheless, that surely doesn’t matter with the
employment of functional method, which is also available in the semi-classic framework). In-
deed, in the derivation of the linear potential in Ref. [1], the field A (equivalently, the U) was
treated as a classic field without free excitation modes, besides, with the gauge invariance
of UP , the Lagrangian were parameterized as Lgluon ∼ Lgluon(UP ) for gluons, and S ∼ UP
for the total action, which could also be said that, the Lagrangian of a “free particle” U was
chosen to a nonstandard Lagrangian as

S ∼ UP ⇒ LU ∼ ∂4(U + U †), (36)

after a correspondence of UP → U .
Besides, from the parameterization S ∼ UP in semi-classic sense in Ref. [1] we can know:

if UP was quantized, so would be the action S! However, we should note that, although UP
could be a particle degree of freedom, S couldn’t be, since S would change its form after
quantization, for instance, it would be constituted with multi-field coupled terms including
the block UP as a field!
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Figure 1: Self-interaction potentials for the field U and A.

2.1.7 On the mass term: more than higgs!

Why do we define U †U < 1?3

U is a special higgs field.

Firstly, U is a complex-valued field rather than a quaternion, so it has only two compo-
nents. For a potential V (U) with the form as the line-“a” in Fig.-1-(1), which is defined only
for |U | < 1 rather than for all the U field configuration, we can treat U as a field including:
a radial-direction component Ur, and a angular component Uθ as the conventional field(the
Goldstone boson).

Secondly, for a higgs field U with a potential form as the line-“b” in Fig.-1-(1), we can
generally decompose its radial-direction component to two fluctuation: a stable(physical) one
based on the stable vacuum (minimum of the potential V (U)), and a unstable(unphysical)
one based on the unstable vacuum (maximum of the potential V (U)); the former one could
be seemed as the traditional excitation of “higgs particle”, and the latter one would be “die
out”. Here, the most important point is, how to consider the Ur? For the case of line-“a”,
we can surely treat Ur as the former one, however, now we can also treat Ur as the latter
one, since now Ur can keep exciting at the point of U = 0 without a “death”(which would
happen in the case of line-“d” in Fig.-1-(1)), which could be more reasonable in the strong
field case.

We will take the latter one choice, as discussed in Section 2.1.5. So, now, we needn’t
give too many query to the sign of the mass term in (5). We can say: yes, U is a kind of
higgs-type field, and U does have a nonzero VEV, however, the U field (with p̂4U = m4U)
is not a traditional higgs field (or, tachyon, with p̂2U = −m2U , see (26)). The choice for the
sign of the mass term is very important and crucial for our following work.

2.2 The kinetics of U

2.2.1 The equation of motion of U

By the Euler-Lagrange equation [3]

∂LU
∂U
− ∂µ

∂LU
∂(∂µU)

+ ∂µ∂ν
∂LU

∂(∂µ∂νU)
= 0 , (37)

3Indeed, we can define U †U < v0, with v0 a constant.
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from (5) we can get the equation of motion(E.O.M) of U, see Appendix D,

−∂µ∂ν∂µ∂νU = −m4
UU + Λ4

U (38)

⇔ −p̂4U = −m4
UU + Λ4

U , p̂
µ = i∂µ , (39)

and the dynamical E.O.M for U , see (368) in Appendix D, as

− ∂4U = −m4
UU + Λ4

U + αQΛ ψ̄ψ + ... . (40)

So, that means, the media field U would only be influenced by the “scalar currents” of the
matter field, but not the vector currents, which is fit with the common sense.

The appearance of term (U +U †) must be in the combination with the term U †U , by the
requirement for a stable vacuum, and, the role of term (U +U †) is to provide a shift for the
position of vacuum, as

V (U) = Λ4
U(U + U †)−m4

UU
†U = −m4

U

[(
U − Λ4

U

m4
U

)†(
U − Λ4

U

m4
U

)
− (

Λ4
U

m4
U

)2

]
. (41)

2.2.2 The canonic commutator and propagator

Please pay attention to the free propagator! There are two crucial problems about it:
1. whether it’s reasonable for the application of the traditional canonic framework with only
two canonic variables to a 4th-order D.E.?
2. how to construct the canonic commutator for U , especially, how to decide the “±” sign?

Firstly, if we crudely copy the tradition of the procedure for P-2 type field theory, then,
according to the custom on the choice of “±” sign in classic Poisson bracket

[pi, xj ] = −iδij , (42)

and its quantum version for scalar field

[U̇i(x, t), Ui(y, t)] = −iδ(3)(x− y) , (43)

we just need assign the canonic commutators below to quantize our model:
Postulation

[
∂2U̇i(x, t), Ui(y, t)

]
= −iδ(3)(x− y) (44)

(x=y)−−−→6=
[
∂U̇(x, t), ∂U(y, t)

]
∼

[
Ȧµ(x, t), Aν(y, t)

]
= igµνδ

(3)(x− y) , (45)

others = 0 . (46)

Formally, maybe we can understand (44) in another viewpoint (45), where U ≃ 1 + iǫnµA
µ.

Or, maybe we can say, the Lagrangian should be originally constructed with the block
∂∂∂U , as

L = +∂µU · ∂2∂µU +m4
UUU = ∂µU∂ν∂

ν∂µU +m4
UUU

= ∂ν (∂µU∂
ν∂µU)− ∂ν∂µU∂ν∂µU +m4

UUU (47)

and then modified to the from in (5),

L → −∂ν∂µU∂ν∂µU +m4
UUU , (48)
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where the derivative term in (47) was dropped. And, with the corresponding Euler-Lagrangian
equation

∂LU
∂U
− ∂µ

∂LU
∂(∂µU)

+ ∂µ∂ν
∂LU

∂(∂µ∂νU)
− ∂α∂µ∂ν

∂LU
∂(∂α∂µ∂νU)

= 0 , (49)

we can get a definition for the “canonic momentum” as

π(x) =
∂LU
∂U̇

= +∂2∂µU , (50)

just the one in (44), with the Hamiltonian form

H ∼ +

∫
d3xπ(x)U̇(x)− LU . (51)

Secondly, by inserting one of the definition (“physical version”) of propagator (U1,2 ≡ U
for simplicity in this subsection)

DF (x− y) ≡ 〈0|TU(x)U(y)|0〉
= θ(x0 − y0)〈0|U(x)U(y)|0〉+ θ(y0 − x0)〈0|U(y)U(x)|0〉 (52)

into the E.O.M, we can verify its correctness, as

−(∂4 −m4 )xDF (x− y) ≡ (∂4 −m4 )x〈0|TU(x)U(y)|0〉
= −

{
(∂4 −m4 )

[
θ(x0 − y0)〈0|U(x)U(y)|0〉

]

+(∂4 −m4 )
[
θ(y0 − x0)〈0|U(y)†U(x)|0〉

]}

= −
{
∂4 θ(x0 − y0) · 〈0|U(x)U(y)|0〉+ 4 ∂3θ(x0 − y0) · ∂〈0|U(x)U(y)|0〉

+6 ∂2θ(x0 − y0) · ∂2〈0|U(x)U(y)|0〉+ 4 ∂θ(x0 − y0) · ∂3〈0|U(x)U(y)|0〉
+θ(x0 − y0) · (∂4 −m4 )〈0|U(x)U(y)|0〉
+∂4 θ(y0 − x0) · 〈0|U(y)U(x)|0〉+ 4 ∂3θ(y0 − x0) · ∂〈0|U(y)U(x)|0〉
+6 ∂2θ(y0 − x0) · ∂2〈0|U(y)U(x)|0〉+ 4 ∂θ(y0 − x0) · ∂3〈0|U(y)U(x)|0〉
+θ(y0 − x0)(∂4 −m4 ) · 〈0|U(y)U(x)|0〉

}

= −
{
δ
′′′

(x0 − y0) · 〈0|[U(x), U(y)]|0〉+ 4 δ
′′

(x0 − y0) · ∂〈0|[U(x), U(y)]|0〉

+6 δ
′

(x0 − y0) · ∂2〈0|[U(x), U(y)]|0〉+ 4 δ(x0 − y0) · ∂3〈0|[U(x), U(y)]|0〉
}

= −
{
−δ(x0 − y0) · ∂3〈0|[U(x), U(y)]|0〉+ 4 δ(x0 − y0) · ∂3〈0|[U(x), U(y)]|0〉

−6 δ(x0 − y0) · ∂3〈0|[U(x), U(y)]|0〉+ 4 δ(x0 − y0) · ∂3〈0|[U(x), U(y)]|0〉
}

= −
{
δ(x0 − y0) · 〈0|[∂3U(x), U(y)]|0〉

}

= +iδ(4)(x− y) , (53)

with the condition that δ
′

(x0 − y0) and δ
′′′

(x0 − y0) are odd functions with respect to x0,
and the relations on δ-functions:
∫ ∞

−∞
δ′(x)ϕ(x) dx = [δ(x)ϕ(x)]∞−∞ −

∫ ∞

−∞
δ(x)ϕ′(x) dx = −

∫ ∞

−∞
δ(x)ϕ′(x) dx , (54)

∫ ∞

−∞
δ′′(x)ϕ(x) dx = −

∫ ∞

−∞
δ′(x)ϕ′(x) dx =

∫ ∞

−∞
δ(x)ϕ′′(x) dx , (55)

∫ ∞

−∞
δ′′′(x)ϕ(x) dx = −

∫ ∞

−∞
δ′′(x)ϕ′(x) dx =

∫ ∞

−∞
δ′(x)ϕ′′(x) dx = −

∫ ∞

−∞
δ(x)ϕ′′′(x) dx .

(56)
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That means, DF (x− y) is really the propagator of U . We can get the Feynman propagator
Dνρ
F through its another definition(“mathematical version”), that is, with an equation for

Dνρ
F from the E.O.M in (39,40) or (368) in Appendix D, by setting ΛU = 0, we have

−(∂4 −m4
U)DF (x− y) = iδ(4)(x− y) , (57)

or −(p4 −m4
U)D̃F (p) = i , (58)

with the solution in momentum space

D̃F (p) =
−i

p4 −m4
U + iǫ

=
−i

(p2 +m2
U − iǫ)(p2 −m2

U + iǫ)
(when ΛU = 0) , (59)

for mU 6= 0, or

DF (U) =
−i

p4 + iǫ
(60)

for mU = 0.

So, the “−” factor in the E.O.M (39,40,53,58) is very crucial, which represents the sign
of the mass term in Lagrangian, and, without the “−” factor, everything will be different!
After all, the U here isn’t the traditional scalar field.

Besides, please pay attention to the poles in the propagator. The position and residue of
a pole is crucial for the calculation results. For a general case, a contour integration in the
p0 complex plan would be equivalent to a complex integration

∫ +∞
−∞ dp0+

∫ +i∞
−i∞ dp0, however,

if we transfer the imaginary unit i in ip0 to ix0 through the product p · x in e−ip·x and treat
ix0 as the temperature T , then, in a zero-temperature field theory, we can omit effects of
the two poles {iEU + ǫ,−iEU − ǫ}, with EU =

√
p2
U +m2

U the energy of U . Otherwise, if
we just rudely choose to detour the two poles, then our model would not give the results for
superconductor in Section 5. Besides, for the mU = 0 case, it’s much more convenient for us
since we can reduce the four simple-poles to two double-poles or just one quadruple-pole.

For convenience, we would call the model for U defined in the E.O.M p4U = m4
UU as a

“P-4” type, and the traditional model for U defined in Klein-Gordon equation p2U = m2
UU

as a “P-2” type.

2.3 Interaction I: coupled to intrinsic charges, QED?

A linear potential for strong QED?

At the beginning, we set the variables of the particles below:

p = (m,p), k = (m,k), (61)

p′ = (m,p′), k′ = (m,k′) . (62)

For the non-relativistic approximation, we have the relations for kinetics variables as

q = p′ − p⇒ q2 = (p′ − p)2 (NR limit)
======= −|p′ − p|2 +O(p4), (63)

and

ūs
′

(p′)us(p) = 2mδss
′

, ūs
′

(p′)γµus(p)
(NR limit)
======= vµ2mδss

′

. (64)
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Suppose that the scattering is between a pair of particles with different kinds of charges,
denoted as Q1 = −Q2 ≡ 1, that is, here the couplings α1,2 ≡ αQ1,2, and β1,2 = βQ1,2, then
we have the complete amplitude for Fig. 4-(a), as4

iMa = ūs
′

i(Λα1 + β1iq/)u
s · −i

q4
· ūr′i(Λα2 − β2iq/)ur

≃ −i
q4
i(Λα1 + β1γµiq

µ)i(Λα2 − β2γνiqν)2mδss
′

2mδrr
′

≃ −i
q4

[
−Λ2α1α2 − iΛ(α2β1v1 − α1β2v2) · q − β1β2γµγνqµqν

]
2mδss

′

2mδrr
′

= −i
[
−Λ2(α1α2)

1

|q|4 − iΛλα1β2
1

|q|3 + β1β2g
00 1

|q|2
]
2mδss

′

2mδrr
′

.

(65)

where
(α2β1v1 − α1β2v2) · q = α1β2(v1 − v2) · q ≡ α1β2λ|q|, (66)

for the reason of α2β1 = αQ2βQ1 = αQ1βQ2 = α1β2, and we define

(v1 − v2) · q ≡ v12 · q ≡ λ|q| , −∞ < λ < +∞, (67)

or
v1,2 · q ≡ λ1,2|q| , λ = λ1 − λ2 , −∞ < λ1,2 < +∞, (68)

and, particularly, for v12 = 0 case, λ = 0, and, for NR case, λ ≃ 0.
The amplitude iM should be compared with the Born approximation to the scattering

amplitude in non-relativistic quantum mechanics, written in terms of the potential function
V (x): [2]

iM ∼ NR〈p′|iT |p〉NR = −iṼ (q)(2π)δ(Ep′ −Ep), (q = p′ − p). (69)

By dealing with the kinetics factors as 2mδss
′ → δss

′

and (2π)δ(Ep′ −Ep)→ 1, we can have

Ṽ (q) = −Λ2(α1α2)
1

|q|4 + β1β2
1

|q|2 , (70)

where the λ term in (65) was dropped according to the optical theorem, and the inverse
Fourier transformation

V (x) = F−1[Ṽ (q)] . (71)

With the formula in Appendix B, we can get the potential form for a pair of particles with
different kinds of charge, as

V (r) = +
Λ2α1α2

8π
r +

β1β2
4πr

. (72)

There is a linear confined potential for the α1α2 > 0 case, which might be corresponding to
the confinement for strong-coupled gauge theory.

4For simplicity, here we can only consider the contributions from U1, and, for the contributions from U2,
the result just need a double.
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2.4 Interaction II: coupled to momentum, gravity?

Could the term ∂U serve as gravity?

For the interaction term

L(U+∂∂U) = −αQ−1Λ ψ̄U1ψ − ρQ
1

M
ψ̄∂/∂/U1ψ, (73)

which was extracted from the total Lagrangian (7), as the case for (101), we can write the
corresponding part for the amplitude with the Feynman rules as

iMU+∂∂U = ūs
′

(k′)i(αQ−1
1 Λ + ρQ1

1

M
iq/iq/)us(k) · −i

q4

·ūr′(p′)i(αQ−1
2 Λ + ρQ2

1

M
i(−q/)i(−q/))ur(p)

(Q1 = Q2)−−−−−−→ = 2ūs
′

(k′)i(αQ−1
1 Λ)us(k) · i(q

2)

q4
· ūr′(p′)i(ρQ2

1

M
)ur(p) + ...

= 2
Λ

M
ūs

′

(k′)i(αQ−1
1 )us(k) · i

q2
· ūr′(p′)i(ρQ2)u

r(p) + ...

= 2
Λ

M
· [iMCoulomb−like] + ... , (74)

which was indeed a weak version of Coulomb-type potential (depressed by Λ
M
) but attractive

for particles with the same charge so could be a possible candidate for Newton’s gravity.
Maybe this could give an approach to unify the electromagnetic force and the gravity. For
detail, if we set Λ = 1

L
≃ 10−41GeV with L ≃ 1011l.y. corresponding to the size of universe,

with the ratio of Newton’s gravity force FG and the Coulomb force FC ,

FG
FC

=

[
G
(me

e

)2 e2

r2

]
/

[
k
e2

r2

]
≃ 10−43 (75)

where me is the mass of electron and k ≃ 9× 109(N ·m2 ·C−2) the Coulomb constant(in SI
unit), then we have

M ≃ 102GeV , (76)

by a lucky coincidence at the order of E.W. energy scale! See (9).
If this is true, we might say, the the smallness of gravitation constant G comes from a

depression of the I.R. energy scale Λ or the size of universe. And, of course, directly to see,
the two couplings in (172) and (203) would spontaneously become equal at a large enough
energy scale, so a unification would be realized.

2.5 Comments on the potentials: Unification I

If we combine the potential terms in (72,74, ), then, we can say, the field U could provide a
wealth of interaction information, such as:

The list of potentials generated by U

1. there is a linear impulsive/confined potential (for the α1α2 < 0 and α1α2 > 0 case,
respectively), which might be corresponding to the dark energy effects [6] [7] or the confine-
ment for strong-coupled gauge theory; surely this term would be depressed or enhanced by
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the energy scale Λ.

2. (Unification I) there are two Coulomb-type potentials, which might be correspond-
ing to the ordinary Coulomb potential and Newton’s gravitation; that the two kinds of forces
appear in a single model with a relation on the coupling coefficients, might be seemed as a
kind of unification;

Some notes for the potential

3. the special relativity (SR) effects are automatically served by the spinor basis us(p).
Since the coupling β is dimensionless, this theory would be a U.V. renormalizable one in
the sense of superficial degree of divergence(or, in the dimensional regularization framework).

4. apparently, with different settings for the parameters, different part in the total po-
tential would be the dominant part.

5. the linear potential would not influence the transmit of the free photons since the pho-
ton is a kind of source-free field, but the hyper-hyperfine structure of the optical spectrum
of atoms would be influenced.

2.6 Renormalization: depression for higher-order processes

Postulation Amplitudes for all higher-order processes are depressed by I.R. renormaliza-
tion, even couplings α, β ≫ 1!(Renormalization II)

(a) (b)

q
l

p′

pk

k′ p′

p

k′

k
l − q

p′

(c)

q

k′

k

p′

p

h

(d)

l

Figure 2: Some Feynman diagrams for higher order processes induced by the 3-particle
vertices.

2.6.1 Ladder loop level: a infrared cutoff

When g → ∞, rather than doing perturbative expansion in 1/g power series in the neigh-
borhood region of g =∞, we will show that in some particular cases we can directly do the
expansion in g power series.

In the approximation k ∼ mψ ≃ 0 and k′ ≃ k, with the leading order (LO) interaction
terms in (7)

LI = −αQΛ ψ̄Uψ − βQ ψ̄∂/Uψ , (77)

14



the amplitude corresponding to the vertex correction part of the loop diagram in Fig. 2-(a)
can be written as(for the loop integration formula, see Appendix C)

iMb =

∫
d4l

(2π)4
i

l4
i(α1Λ + β1l/)

i

k′/− l/−mψ
i(α1Λ+ β1q/)

i

k/− l/−mψ
i(α1Λ− β1l/)

=

∫
d4l

(2π)4
i

l4
i(α1Λ + β1l/)

i(k′/− l/ +mψ)

(k′ − l)2 −m2
ψ

i(α1Λ+ β1q/)
i(k/− l/ +mψ)

(k − l)2 −m2
ψ

i(α1Λ− β1l/)

k∼mψ≃0−−−−−→
k′≃k

≃ −
∫

d4l

(2π)4
1

l4
1

(k − l)4 (α1Λ + β1l/)(−l/)(α1Λ+ β1q/)(−l/)(α1Λ− β1l/)

=

[
−
∫

d4l

(2π)4
a4l

4 + a3l
3 + a2l

2

l4(l − k)4
]
(α1Λ + β1q/)

=

[
−
∫

d4l

(2π)4
a4

(l − k)4 −
∫

d4l

(2π)4
a3l

3 + a2l
2

l4(l − k)4
]
(α1Λ + β1q/)

= −i
[
log

(−k2
M2

)
+

1

k2

(−k2
µ2

)
+

1

k4

(−k2
µ2

)]
(α1Λ + β1q/) . (78)

There are both ultraviolet divergences and infrared divergences in this integration, however,
it’s renormalizable, with a dimensional regularization for the ultraviolet part and a cutoff for
the infrared part. Here, if we can renormalize the magnitude of the amplitude for the loop-
level to be smaller than the result for the tree-level in Fig. 4-(a), and ensure the magnitude
becomes smaller and smaller as the loops becoming more and more, then, the theory would
be “perturbatively” computed “loop by loop”(attention: it is not equivalent to “order by
order” in the power of {α, β} here).

For instance, reminding the second factor in (78) is just corresponding to a single vertex
for the tree level, if we impose a very large µ (say, µ > αΛ) as the infrared cutoff, the
amplitude in (78) could indeed become smaller than the one in (65) for the tree-level. We
can take an example to show the reasonableness for this statement, in the viewpoint of the
relaxation time: the stronger interaction, the short relaxation time, so the larger character-
istic momentum scale.

The amplitude of the loop diagram in Fig. 2-(b) can be written as

iMb =

∫
d4l

(2π)4
ūs

′

i(α1Λ + β1l/)
i

p′/− l/ −mψ

i(α1Λ + β1(q/− l/))us

· i
l4
· i

(l − q)4 · ū
r′i(α2Λ− β2l/)

i

k′/+ l/−mψ

i(α1Λ− β1(q/− l/))ur

=

∫
d4l

(2π)4
ūs

′

(α1Λ + β1l/)
p′/− l/+mψ

(p′ − l)2 −m2
ψ

(α1Λ + β1(q/− l/))us

· 1
l4
· 1

(l − q)4 · ū
r′(α2Λ− β2l/)

k′/+ l/+mψ

(k′ + l)2 −m2
ψ

(α1Λ− β1(q/− l/))ur

∼

[∫
d4l

(2π)4
b6l

6 + b5l
5 + ... + b1l + b0

a0l12 + a1l11 + ... + a8l4

]
2mδss

′

2mδrr
′

. (79)

Apparently, it’s hyper-renormalizable in the ultraviolet region and non-renormalizable in
the infrared region for this integration, that is, there isn’t ultraviolet divergences but only
infrared divergences in this integration. Here if we impose a very large µ (say, µ > αΛ) as
the infrared cutoff, the amplitude in (79) indeed becomes smaller than the one in (65) for
the tree-level.
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2.6.2 Higher order tree-level: kinetics/dynamics equivalence

The amplitude of the loop diagram in Fig. 2-(c) can be written as

iMc ∼ iMa · i(α1Λ + β1h/)
i

p′/+ h/ −mψ

. (80)

The result can be used to describe two cases: (1) the amplitude indeed becomes larger for a
many-body system, which should be in a bound state (or Bose - Einstein condensate state),
with the same momentum for all the particls, like the case in Fig. 2-(d); (2)the amplitude
could be “depressed” after the renormalization of the collinear divergences, for instance, one
can introduce a cutoff for the phase-space parameters to avoid the collinear divergences,
which would give an effective depressed factor for the physical cross section, and, the more
particles, the more depressed factors. (Renormalization III)

Anyway, for some particular cases, in which the effective expansion factors could be
“renormalized” to be smaller than 1 after the renormalization to the infrared divergences
(through an introduction of a large energy scale) and the renormalization to the collinear
divergences (through an introduction of a constraint on the kinetics phase space), the the-
ory would be “perturbatively” computed “order by order” formally in the power series of
the couplings {α, β}, and, maybe we could say the theory is formally non-perturbative but
practically perturbative.

♠ the multi-particle vertices

(a) (b)
k

k′ p′

p

p′

p

k′

k

q

l

l − q

l

(c) (d)

(e) (f) (g) (h)

Figure 3: Some Feynman diagrams for loop-level processes induced by the multi-particle
vertices.

For the amplitude in Fig. 3-(a), with the 4-particle coupled terms in (7), we have

iMa ∼

∫
d4l

(2π)4
a4l

4 + a3l
3 + a2l

2 + a1l + a0
l4(l − q)4 . (81)

Apparently, it’s hyper-renormalizable in the ultraviolet region and non-renormalizable in the
infrared region for this integration, as in the case of (79).
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2.7 U out a nutshell: the generation of a nonlinear K-G equation

1. We can generate a Klein-Gordon equation for Φ ∼

√
U .

Mathematically, it’s allowed to reduce the one 4th-order D.E. (39) to two 2nd-order e-
quations. Indeed, as mentioned in (22-24), we can decompose the E.O.M of U in (39) to two
Klein-Gordon equations for a P-2 type conventional scalar field Φ and a P-2 type unconven-
tional scalar field Φ̃ respectively, where U ∼ Φ̃Φ, for Φ̃, see (26-27).

2. We can’t generate a Klein-Gordon equation for U .

By treating (39) as an inhomogeneous Laplace equation for V = ∂2U , we can get a
solution

∂2V = m4
UU − J ⇒ V ≡ (∂2U = ...) (82)

as a formally 2nd-order D.E. for U , underlined in (82). However, that’s not a real Klein-
Gordon equation for U , even not a nonlinear one! For mathematical detail, we take the free
E.O.M of U in (39) as an example:

a. if mU 6= 0, (82)is truly an integro-differentia equation rather than a really 2nd-order
D.E. for U , with the r.h.s a nonzero term

∫
G(x, x′)U(x′), where G(x, x′) is the Green func-

tion of the homogeneous Laplace equation ∂2V = ∂2(∂2U) = 0;
b. if mU = 0, with the boundary condition [∂2U ]B 6= 0 for the nontrivial D.E. (39), we

must get a solution V = ∂2U = B 6= 0, which is corresponding to a E.O.M for massive U or
interactive U , rather than the original massless free field U , depending on the detail of the
term B.
So, we can not say that the Klein-Gordon equation is based on the “solution” level of the
4th-order D.E. (39).

Nonlinear Klein-Gordon equation for U : out of a nutshell

Here we need the self-interaction term of U , which could be written as

LI = −gUΛ2
UU∂µU∂

µU +m4
UU

2 . (83)

Since there is at least 3 U -field for the interaction term, there must be at least 0 or 2 ∂-
symbols for constructing a Lorentz scalar Lagrangian; however, here we don’t use the terms
UUU , because, we’ll see, that can’t give us a qualified 2nd-order D.E..

In a word, for a pure U -field system, if ∂∂ ≪ ΛUΛ (or, we can say, the system is “out
of a nutshell” as an illustrative statement), then the kinetic energy term could be dropped,
then we can get a E.O.M for U according to the Euler-Lagrangian equation, as

gUΛ
2
U(∂U)

2 − 2gUΛ
2
UU∂

2U = m4
UU ⇒ (∂U)2 − 2U∂2U =

m4
U

gUΛ2
U

U . (84)

Apparently, that is a nonlinear 2nd-order D.E., so, we just call it “nonlinear Klein-Gordon
equation”. Particularly, for a special case, 〈U〉 ≫ U − 〈U〉 and 〈U〉 ≫ ∂U , we can get the
“linear” Klein-Gordon equation

− ∂2U =
m4
U

2gU〈U〉Λ2
U

U , (85)

and there should be the relation 2gU〈U〉Λ2
U = m2

U .
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2.8 From U to QED: gauge symmetry arises

2.8.1 U as a group element in weak field case

For a complex-valued field U , we can decompose it as

U = φ1 exp
−iφ2 = φ1 cosφ2 − iφ1 sin φ2 , U

†U ≤ 1 , (86)

then, in the weak field approximation, that is, U ≃ 〈U〉, there would be

U(x)→ 〈U〉e−igφ(x) = 〈U〉(cos gφ− i sin gφ) ≃ 〈U〉[1− igφ(x)] ,
g ≃ 0 ⇒ U †U ≃ 1 . (87)

So we can see, within a nonlinear σ model framework, terms in (10) and (11) are now ac-
tually equivalent so that should be mutually exclusive in a definite Lagrangian of U , with
the difference on the choice for the particle degree of freedom(d.o.f) between two real fields,
(U + U †) and [i(U − U †)]. For example, if a real vector field Aµ behaved as the fluctuation
of U , then the imaginary part of U would be chosen for the proper “block” for constructing
the Lagrangian.

Particularly, there is another approximation expansion of U ,

U ≃ 〈U〉[1− igǫnµAµ(x)] → 〈U〉e−igǫnµAµ(x) ,
g ≃ 0 ⇒ U †U ≃ 1 . (88)

That means, now U could be treated as a U(1) group element with Aµ as its gauge
particle d.o.f, and the superficial gauge symmetry of the Lagrangian arises!

Hence, in the viewpoint of traditional gauge theory, the interaction term

ψ̄Ui∂/U †ψ ≃ ψ̄i∂/(U − U †)ψ

is formally supplemented for the gauge invariance for the kinetics terms of the matter field
ψ. Sine the former term above would be depressed as it’s a multi-field term, the actual term
for the gauge invariance is the latter one, ψ̄i∂/U †ψ, and that might imply

β = e . (89)

Effects of the nonzero VEV of U

U is a kind of higgs field, so it should exhibit its higgs-like property. From its definition

U = exp[−igǫnµAµ] ∼ 1− igǫnµAµ + ... , (90)

when g → 0, there was 〈U〉 = 1. And now, with the interaction term αΛ ψ̄Uψ in (7),
according to the higgs mechanism, the fermions will get a a mass correction

△m ∼ αΛ〈U〉 ∼ αΛ
Λ≃0−−→ 0 . (91)

2.8.2 From A to U : U as a background and U as an excitation

We write the quantum mechanics amplitudes as

〈f |eiS|i〉 ≡ eiθ = eiθ̄eiθ
′ ≡ S(Ū)eiθ

′

. (92)
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Traditionally, we separate eiθ to a θ̄ =∞ part eiθ̄ as classic background(BKG) effects and a
0 < θ′ ≪ 1 part eiθ

′

as quantum fluctuation effects,

S-matrix = (BKGeffects) + (fluctuation effects)

⇒ S(U) = S(Ū) + S(A), or U = Ū + A (93)

that is, if θ = ∞, the system could be described in a classic mechanics picture by taking
a classic field Ū to serve the BKG effects, or, if θ ≪ 1, the system could be described in
a quantum mechanics picture by taking a particle A(exactly the gauge field) to serve the
fluctuation effects. But, in the case of eiS = exp{igÔ} with g ≫ 1 6=∞ so that θ̄ ≫ 1 6=∞,
how do we calculate the amplitudes? The question itself is also to say, problems for strong
coupling cases would have combined the classic effects and the quantum effects together
under consideration.

From (93), at least one thing is definite, that is, no matter it’s in the g =∞ case or the
g 6=∞ case, all fluctuations A were defined on a definitely certain BKG. By taking a change
on the form, we could rewrite (93) as

U − Ū = A, (94)

which is to say, when U was treated as a BKG, the particle A was not only a fluctuations, but
also be the renormalized version of the background U(by a cancellation with the anti-BKG

Ũ), or on the other hand, all the effects from A in fact include the background effects from
U .

However, by sequentially taking a generalization on the meaning of U in (94), we could
rewrite (93) as

(BKGeffects)1 − (BKGeffects)2 = (fluctuation effects), (95)

then, it immediately comes to our mind that the situation for the cancelation effects of
particle-antiparticle pairs, written as

(BKGeffects) + (anti-(BKG effects)) = (fluctuation effects) (96)

⇒ U + Ũ = A 6= 0, (97)

which would motivate us that, if U itself became a new effective degree of freedom, then A
needn’t to be isolated out and defined as a new degree of freedom any more, since whose
effects had been innately included in U .

As we all know, it is relative and not absolute to treat a particle as BKG effects or
fluctuation effects, or, in other words to say, the criteria for particles and quasi-particles are
relativistic. The best example is the electron: in the relativistic limit case, say, in decays of
nuclei, the electron was a quantized field degree of freedom, with its partner, the positrons;
in the NR limit case, the energy spectrum of atoms, wer determined by the energy of the
NR motion of electrons, which was seemed as the fluctuation of a BKG, the mass of the rest
electrons; in the case of considering the fine structures of the energy spectrum, the relativis-
tic effects of electrons would appear; and so on.

2.8.3 Where is the Coulomb potential? ∂U ∼ A!

When g → 0, the effects of U should be matched to the effects of Aµ by the matching between
their respective Lagrangian terms, or their respective predictions for the physical amplitudes.
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Renormalization I
As discussed in Section 2.8.1, when g → 0, with the definition of U in (256), U †U ≃ 1, so

now LU is a non-linear σ model for U . In the nonlinear σ model frame, when g = 0, the radial-
direction component of U was stable with taking the value U = 〈U〉, so, the “propagating
effects” of the vacuum(actually the radial-direction component) has been reduced originally,
that means, for the propagator

〈0|TU(y)U(x)|0〉 = 〈|T [1− iφ(y) + ..][1 − iφ(x) + ..]|〉
= 1− 〈0|[iφ(y) + iφ(x)]|0〉+ 〈0|T [iφ(y)iφ(x)]|0〉+ ...

→ 0− 〈0|[iφ(y) + iφ(x)]|0〉+ 〈0|T [iφ(y)iφ(x)]|0〉+ ... , (98)

the infinity from the VEV
∫
d4x · 1 has been renormalized, with 〈0|φ(x)|0〉 = 0. Besides, the

VEV of U don’t influence the interactions induced by ∂U .

The amplitude

Remind that, when U is a group element, in the weak coupling case the gauge interaction
term

gψ̄A/ψ = ψ̄(Ui∂/U †)ψ = ψ̄((1− iO(gǫ))i∂/((1 + iO(gǫ)))ψ
≃ ψ̄∂/[i(U − U †)]ψ, (99)

that means, the two terms,ψ̄(U∂/U †)ψ and ψ̄∂/Uψ both appears in (7), are now numerically
approximately equal. However, are these two terms still give the equivalent results when U
is a particle in (7), and, what are the difference between them?

In the viewpoint of S-matrix, the answer is positive. For detail, in the weak fluctuation
case, there is U ≃ 1− iO(g · ǫ), so that, U †U = UU † ≃ 1 could be inserted into the S-matrix
element, as

S2→2 = exp[i

∫
d4xL] = 1+ :

1

2
(iL)2 : +...

= 1 +
1

2
iβ1iβ2 : ψ̄i∂/U

†ψ · ψ̄i∂/Uψ : +...

= 1 +
1

2
iβ1iβ2 : ψ̄i∂/U

†ψ · (U †U) · ψ̄i∂/Uψ : +...

= 1 +
1

2
iβ1iβ2 : ψ̄Ui∂/U

†ψ · ψ̄U †i∂/Uψ : +... , (100)

that means, now the term ψ̄i∂/U †ψ and ψ̄Ui∂/U †ψ are equivalent.

To answer which term is corresponding to the gauge interaction, or, how to understand
each term in the Lagrangian (7), let’s firstly consider the contributions of the term ψ̄∂/Uψ
to a scattering amplitudes, see Fig. 4-(a).

We can extract the corresponding term for the amplitude straightforward from the Feyn-
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Figure 4: The Feynman diagrams for the leading order tree level processes and for Coulomb
potential in QED.

man rules as

iM∂U = ūs
′

(k′)i(−βQ1iq/)u
s(k) · −i

q4
· ūr′(p′)i(βQ2iq/)u

r(p)

= ūs
′

(k′)i(βQ1γ
µ)us(k) · −iqµqν

q4
· ūr′(p′)i(βQ2γ

ν)ur(p)

L̂
== ūL̂s

′

(L̂k′)i(βQ1γ
µ)uL̂s(L̂k) · −iL̂qµL̂qν

(L̂q)4
· ūL̂r′(L̂p′)i(βQ2γ

ν)uL̂r(L̂p)

= ūL̂s
′

(L̂k′)i(βQ1γ
µ)uL̂s(L̂k) · −iq

2gµν
q4

· ūL̂r′(L̂p′)i(βQ2γ
ν)uL̂r(L̂p)

= ūL̂s
′

(L̂k′)i(βQ1γ
µ)uL̂s(L̂k) · −igµν

q2
· ūL̂r′(L̂p′)i(βQ2γ

ν)uL̂r(L̂p)

L̂−1

==== ūs
′

(k′)i(βQ1γ
µ)us(k) · −igµν

q2
· ūr′(p′)i(βQ2γ

ν)ur(p)

= iMCoulomb, (101)

where L̂ denotes a Lorentz rotation which changed the tensor qνqν to

qνqν → L̂qµL̂qν = (L̂q)2gµν = q2gµν , (102)

with the iM∂U and q2 invariant for the reason of the Lorentz invariance of the Lagrangian
term ψ̄∂/Uψ. And we can find that (101) is just the amplitude of a scattering process
corresponding to the Coulomb potential in QED, as in Fig.4-(b).

So, now we can say, when U is a particle, it’s the term ψ̄∂/Uψ serving for the effects
corresponding to the gauge interaction in QED. And, definitely, with the result from (101),
we can say, the term ψ̄(U∂/U †)ψ in (7) isn’t the leading order contribution corresponding to
the gauge interaction, since the term ψ̄(U∂/U †)ψ is serving for a high order contribution.

It is easy to understand that through the physical picture, followed as the meaning of
Eq.(97):

1.The gauge particle field A, which was originally defined as a d.o.f with U∂U † to denote
the fluctuation effects from the cancelation of BKG U and anti-BKG Ũ , could be a good
degree of freedom only when U was a frozen BKG(or, a classic field, rather than a particle).
But, when U was excited, A wouldn’t be a good degree of freedom, and the isolation of A
from U in Eq.(113) was not available any more.

2.However, the effects corresponding to the “old” A would be still included in the one
particle U , which should be surely determined by term ψ̄∂/Uψ rather than terms ψ̄(U∂/U †)ψ,
which was corresponding to the mixing effects of two particles U and U †(see (81) in next sec-
tions). Or, in other words, when U behaved as a BKG field(or a VEV), the gauge interaction
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absorbed into an effective field A is the all effects of U , but, when U was excited, it is just
a part of the whole effects of U . Anyway, it’s affirmed again that the gauge particles could
be seemed as fluctuation effects of U , either a particle U in a new perspective for g ≫ 1 or
a classic field U in the old perspective for g → 0.

2.8.4 The generation of a linear QED

To generate a QED from LU in (5), the crucial point is a good d.o.f or “block” for construct-
ing Lagrangian.

1. The weak field case

In this case, the gauge connection field Aµ is a good d.o.f, and U †U → 1. We will see,
the good block is not ∂µU → Aµ, but ∂∂U ↔ Fµν .

The variable i∂µU is a gradient field, so it does serve as the gauge transformation Aµ →
Aµ + i∂µU for a gauge field A. However, just because it’s only a gradient field, i∂µU could
never serve as a gauge connection field, even as a longitude component for a gauge field.
The “field strength” of a gradient field would be zero, which could be confirmed in another
way here, as

Fµν = ∂µ(∂νU)− ∂ν(∂µU) = 0 . (103)

So, how would we realize the correspondence for ∂µU → Aµ? Here are two methods:
a. we modify ∂µU to a qualified vector field. As in (120,99), there is Aµ ≡ U∂µU

† ≃ ∂µU
†,

so we can take the Maurer-Cartan 1-form Aµ = U∂µU
† as gauge field; essentially, that is an

operation in the way of extending the number of d.o.f, either ∂µU
† → U∂µU

†, or

Aµ ∼ ∂µU
† → φ(x)∂µU (104)

with φ an arbitrary scalar field, and, particularly, in the case of φ(x)†φ(x) = 1, we can just
treat φ ≃ U . Then, we can rebuild the kinetic energy term for Aαβ ∼ Aµ, as

∂µ∂νU
†∂µ∂νU = ∂µ∂νU

† · φ†φ · ∂µ∂νU
=

[
∂µ(φ

†∂νU
†)− ∂µφ† · ∂νU †] · [∂µ(φ∂νU)− ∂µφ · ∂νU ]

=
[
∂µ(φ

†∂νU
†)− ∂µφ† · ∂νU †] · [∂µ(φ∂νU)− ∂µφ · ∂νU ]

= ∂µAν∂
µAν + (multi-field terms) (105)

For dealing with the lack of a term ∂µAν∂
νAµ in the full kinetic energy term, indeed, for an

Abelian case, we can take a anti-symmetric tensor (complex-valued) Aαβ as the spin-1 field,
which is equivalent to the vector Aµ, as

Aµ ≡ (ǫαβµ − ǫβαµ)
2

Aαβ = φ(x)∂µU . (106)

b. we use the correspondence between ∂µ∂νU and Fµν . As in (298,300), we have defined
U as the Wilson loop,

U(x) ≡ UP (x, x) ≡ exp

[
−ig

∮

P

dzµAµ(x)

]

= exp

[
−ig

2

∫

Σ

dσµνFµν

]

= 1− iǫ2gF12 +O(ǫ3) , (107)
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with the field strength defined as

Fµν ≡ ∂µAν − ∂νAµ ≃
iU(x)

ǫ2
↔ ∂∂U . (108)

Note, it’s not true for ∂∂U = Fµν since ∂∂U is a symmetric tensor but Fµν an anti-symmetric
one, but just for a correspondence in the sense of “block” for constructing Lagrangian.

For the interaction terms in the full Lagrangian (7), we can directly set U → 1, ∂µU1 →
Aµ, and U2 could be seemed as frozen. Or, we can directly omit terms including

U(x) =

∫ x

∞
dzµ∂

µ
z U(z) ∼

∫ x

∞
dzµ

1

φ(z)
Aµ(z) , (109)

since there is a depression for these terms from the small Λ.

2. The strong field case

In this case, g · ǫ ≃ 1, we can’t reduce U to a single gauge field Aµ, for the reason, we
can say, as in (131), now the instanton φ would be excited, so Aµ should be combined with
φ to serve for the full interaction. However, it’s just the significance that we construct a P-4
type model for U , otherwise, our P-4 type model would be trivial.

2.8.5 Matching I: the degree of freedom

It is the crucial point for the construction of (4), that, for g →∞, U is treated as a particle
degree of freedom, while for g → 0, U is treated as a classic field function. For the detail,
when g is small, from (292,306,308,297,300) in Appendix A, we have

U(x + ǫn, x) = 1− igǫnµAµ(x) +O((gǫ)2), (110)

UPij(x, x) = 1− iǫ2gFij +O(ǫ3), (111)

Bµ(x) = U(x)∂µU
†(x) = −igAµ +O(g2), (112)

Dµ = ∂µ +Bµ = ∂µ − igAµ +O(g2), (113)

where in (111) the subscript ij meant a chosen path Pij was in the i− j plane for instance.
We give a list for variables in (110-113) in Table 1.

Then, the Lagrangian of a U(1) gauge theory, for instance, the QED, was expressed in
the form

LQED = −1
4
F µνFµν + ψ̄(iD/−m)ψ, (114)

that is, the physical particle degrees of freedoms are ψ and A, and the theory could be
calculated in the perturbative scheme.

However, for the g →∞ case, that is,

g · ǫ ≥ 1, (115)

the expression of (113) and (114)is unavailable. So, we construc a theory in which U is
treated as a particle degree of freedom for the case g → ∞ as in (4), as mentioned in the
beginning of this section.
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P-4 type P-2 type
{U, Uµ, Uµν} field
∂ · Uµ = 0 gauge fixed condition
∂µUν

∂µU ,U †∂µU
field strength of U
fluctuation of U

Aµ field

∂ · ∂U = 0 ∂ · Aµ = 0 gauge fixed condition
∂µ∂νU stress tensor ∂µAν field strength of A

∂ · ∂Aµ = 0 E.O.M
∂∂ · ∂∂U = 0 E.O.M

Table 1: Correspondence between variables in (110-113) .

2.8.6 Matching II: the canonic commutator

If g → 0, U could be treated as classic field, U and A could be the equivalent d.o.f, and
there could be Aµ ∼ ∂µU

†(x) ∼ U(x)∂µU
†(x); on the other hand, if g → ∞, U should be

treated as particle, U and A could not be good d.o.f at the same time, and in in fact there
is Aµ ∼ ∂µU

†(x) 9 U(x)∂µU
†(x) for g →∞.

Let’s show the two cases in the viewpoint of the relation Aµ ∼ ∂µU
†(x) .

If we just want to get a LQED(g →∞) form which could restore or match the LQED(g →
0) in (114) as g becomes small, there are many different ways to realize that goal. For
example, we can just take B instead of A in (113) and (114),

LQED(g →∞) = (∂µBν − ∂νBµ)
2 + ψ̄(i∂/+ gBB/ −m)ψ, (116)

that is, the physical particle degrees of freedom are ψ and B, but the theory couldn’t be
calculated in the perturbative frame since the coupling constant gB = 1.

Although we can still formally treat A as a physical degree of freedom with whose all
the complicate effects included in B, we should note that, A and B couldn not be physical
degrees of freedom at the same time, since the two canonical quantized conditions couldn’t
be true at the same time, as below

[
B(x), Ḃ(y)

]
= iδ(4)(x− y)

=

[
−igA(x)− g2

2
A(x)2 + ... , −igȦ(y)− g2

2
Ȧ(y)2 + ...

]

= −g2
[
A(x), Ȧ(y)

]
+ i

g3

2

[
A(x)2, Ȧ(y)

]
+ ... .

In another viewpoint, for an Abelian gauge field case, when g is small, we have

[
A(x)µ, Ȧν(y)

]
= iδ(3)(x− y)δµν

≃
[
i

g
U∂µU

†(x),
∂

∂t

[
i

g
U∂νU

†
]
(y)

]

= − 1

g2

{[
U∂µU

†(x), U̇∂νU
†(y)

]
+
[
U∂µU

†(x), U∂νU̇
†(y)

]}

= − 1

g2

{
U(x)

[
∂µU

†(x), U̇∂νU
†(y)

]
+
[
U(x), U̇∂νU

†(y)
]
∂µU

†(x)
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+
[
U(x), U∂ν U̇

†(y)
]
∂µU

†(x) +
[
U(x), U∂ν U̇

†(y)
]
∂µU

†(x)
}

∼

[
U, U̇

]
ǫ · A+

[
U, ∂U̇

]
(ǫ · A)2 + ..., (117)

and [
U, U̇

]
≃

[
1 + gǫ · A, gA · Ȧ

]
= g2(ǫA)µν ·

[
Aµ, Ȧν

]
, (118)

which showed that A and U are equivalent degrees of freedom. Contrarily, when g is large,
A and U couldn’t be good degrees of freedom at the same time. In another point of view,

even
[
Aµ, Ȧν

]
→ ε ∼ 0,

[
U, U̇

]
could still be g2ǫε→∞ ≃ δ(3)(0), which is an indication for

the quantization canonic commutator.

Besides, the kinetics energy term LU in (5) could not be constructed through the way of
directly inserting A ∼ U∂U † into the LA in QED. For instance, there is

(∂µAν)(∂νAµ)

→ Tr
(
[∂µ(∂νUU †)][∂ν(U∂µU

†)]
)

= Tr
(
[∂µU∂νU † + ∂µ∂νUU †][∂νU∂µU

† + U∂ν∂µU
†]
)

= Tr
(
∂µU∂νU † · ∂νU∂µU † + ∂µ∂νU∂νU

†U∂µU
†)

+Tr
(
∂νU∂µU †U∂ν∂µU

† + ∂µ∂νU · U †U · ∂ν∂µU †) , (119)

which could only give the self-interaction terms of U for a general case of U †U 6= 1. Or, in
the weak fluctuation case, U †U ≃ 1, there is a trivial result,

F µν ≡ ∂µAν − ∂νAµ

≃ i

g
(∂µBν − ∂νBµ)

=
i

g

[
∂µ(U∂νU †)− ∂ν(U∂µU †)

]

≃ i

g
[∂µ(1 + igǫnαA

α) · ∂ν(1− igǫnαAα)

−∂ν(1− igǫnαAα) · ∂µ(1− igǫnαAα)]

=
i

g
[igAµ(−ig)Aν − igAν(−ig)Aµ] = 0

or ≃ i

g
(∂µ · 1 · ∂ν · 1− ∂ν · 1 · ∂µ · 1) = 0

g

g→0−−→6= 0 . (120)

In a word, we can’t generate LU from LA!

2.8.7 U ∼ ǫ · A, so, is U a string?

According to the analysis above, and the definition

U(x+ ǫn, x) = 1− igǫnµAµ(x) + ... (121)

we could find that the product ǫ · A as an entire variable might be concentrated on.
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When g → 0, A is a good d.o.f. of particle, then the relation of action

S =

∫
d4x∂µAα∂νAβη

µνηαβ

=

∫
d2x

∣∣∣∣
J(dx1, dx2)

J(ǫ1, ǫ2)

∣∣∣∣ ∂µ(ǫ1Aα)∂ν(ǫ2Aβ)η
µνηαβ

≃
∫
d2x

∣∣∣∣
J(dx1, dx2)

J(ǫ1, ǫ2)

∣∣∣∣ ∂µU∂νUη
µν (122)

might indicate that U is a string if there was
∣∣∣∣
J(dx1, dx2)

J(ǫ1, ǫ2)

∣∣∣∣ = Const. . (123)

Apparently, it’s equivalent to what here we have done, that is, treat U is a “field” for g →∞,
with a different form of (∂∂U)2 as a kinetic energy term, by contrast with the particles A
with (∂A)2 as kinetic energy term; as well as for the case of g → 0. On the other hand,
we might say, the interaction of matter fields ψ coupled to U is a kind of “point-string”
interaction.

The reduction of U → ǫ · A might be seemed as a kind of realization of holographic
principle (take the ADS/CFT duality as an example), that is, both of them worked through
taking a correspondence between different d.o.f or operators with different dimensions. Or,
we might say, the reduction of “string→ point” could be realized by the approximation in
Section 2.7, instead of the compactification.

2.8.8 Multi-vacuum structure for higgs vector Aµ

1. Multi-vacuum structure for Aµ

One thing should be noted. If we write

U(x) = exp[−igǫnµAµ(x)] = cos[gǫnµAµ(x)]− i sin[gǫnµAµ(x)], (124)

then the potential term

V (A) ∼ U(A) + U †(A) = cos[(gǫ)A], (125)

would mean that the dynamics for the field Aµ is of a sine-Gordon type (or, a kind of higgs
vector), see Fig. 1-(2), in which there might be many excitations for A at different vacuums
(or, VEVs), with heavy masses in the large g cases( gǫ ≃ 1) and small masses in the small
g cases.

Similarly, we can write

U(x) = exp[−igǫφ(x)] = cos[gǫφ(x)]− i sin[gǫφ(x)], (126)

for a scalar P-2 type field φ, and give φ the similar results as the ones below for Aµ.

2. Fermion mass spectrum
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Like the mass correction in (91) from U , with the term ψ̄A/ψ, the fermions can get a mass
correction from Aµ,

∆m ∼ αΛ〈A〉 ∼ αΛ
(2n+ 1)π

gǫ
, n = 0, 1, 2, ... . (127)

For instance,
a. if ∆m is the mass differences between the current quarks and the constituent quarks,

then, by setting

g ∼
(2n+ 1)αΛ

∆m · ǫ
O(Λ)∼O(ǫ)−−−−−−→ (2n+ 1)α

∆m
∼ 1 , (128)

with ∆m ∼ 1GeV and n = 0, we have α ∼ 1.
b. if g ∼ 0.01 for the E.W. interaction, then, ∆m ∼ 100GeV , corresponding to the

possible heavy fermions.

3. Instanton d.o.f is excited

If U is the full effects of gauge symmetry, then it will include the instanton effects. One
of the instanton solution for an non-Abelian gauge field could be written as [8]

Aµ(x) =
i

g
φ(r)U(x)∂µU

−1(x) , (129)

φ(r) =
r2

r2 + λ2
. (130)

So, inversely, we have

U(x)i∂µU
−1(x) = g

1

f(r)
Aµ(x) ≡ φ(r)Aµ(x) , (131)

that means, if one still choose Aµ(x) as d.o.f in the g ≫ 1 case, then, it must be combined
with a φ(r) field to represent the full effects of the U(x)∂µU

−1(x) term.
On the other hand, when g → 0, we can treat the instanton d.o.f is very heavy and frozen.

4. A seesaw mechanism for gauge symmetry and flavor symmetry

See Fig. 1-(2), with (125), for a vacuum at A = 〈A〉i, the potential could be written as

V (A ≃ Ai) ≃ −1 + (gǫ)2(A− Ai) + . . . , (132)

which means the mass of the excitation A′ = A − Ai is of order ∼ m = gǫ. So, we can get
the conclusions below:

I. when g → 0,
a. A′

µ is nearly massless, so the gauge symmetry is restored;
b. the instanton could be treated as very heavy and frozen, as discussed for (131);
c. the VEV 〈A〉i are of very different magnitudes, so, through (127), the fermion masses

would be also of very different magnitudes, including very heavy fermions; this is a kind of
flavor symmetry breaking for fermions;

II. when g →∞,
a. A′

µ is massive, with the diagonal elements in its mass matrix being large, so the gauge
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symmetry is broken;
b. since the instanton in (131) was excited now, the tunnelling(oscillating) effect would

become strong, so the off-diagonal elements in the mass matrix of A′
i become large, too; or,

in another viewpoint, now it’s A′
µ that was frozen, and the instanton was the real d.o.f for

mediating interactions; we can treat the instanton massless or nearly massless according to
the absence of heavy bosons in a hadron;

c. the VEV 〈A〉i in the neighbour minimum are nearly equal, so, there would be a de-
generate for the fermion mass, or, we can say, the flavor symmetry for fermions would be
restored; besides, it’s now allowed for very small fermion masses through (127), which might
be an underlying reason for the feasibility of the “large Nc” or “large Nf” hypothesis for a
real hadron, and for the possible neutrino-Dark Matter oscillation.

So, maybe this is a new kind of dynamical symmetry breaking/restoring mechanism, with
a seesaw for gauge symmetry and flavor symmetry.

2.9 Matter fields and current

2.9.1 New type matter fields

The matter field φ could also be treated as

Φ(x+ ǫn, x) = 1− igǫφ(x) + ... (133)

with kinetic energy term (∂∂Φ)2 transforming to (∂φ)2 for g → 0 case, and, for an interaction
term

α∂Φ†U∂Φ→ α′φ†Uφ (134)

the transition of couplings α→ α′ would be canceled with the redefinition of wave function
Φ ∼ gφ(x)→ φ(x), so indeed we would have

α′ = α . (135)

For fermion field ψ, there is

Ψ(x+ ǫn, x) = 1− igǫψ(x) + ... (136)

with kinetic energy term Ψ̄∂∂∂Ψ transforming to ψ̄∂ψ for g → 0 case, and, for interaction
term there would be

α∂U · ∂Ψ̄∂Ψ→ α′∂U · ψ̄∂ψ , α = α′ . (137)

However, what we want to present here is for the current,5

(current) Jµ(x) = φ†i∂µφ(x)→ Φ†i∂µΦ(x) ≡ Jµ(x) (field) , (138)

Let’s illustrate our motivation for the conversion in (138) with an example, for instance, the
interaction term in(7)

LI = −ρQ 1

M
∂µU1(ψ̄i

←→
∂ µψ)

−ρQ 1

M
∂µU1[ψ̄i∂

µψ − (i∂µψ̄) · ψ] , (139)

5The expansion could also be taken for a non-Abelian case or tensor current case.
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which is a non-renormalized one because of the vertex, with a momentum included in. So,
if we want to convert this interaction to a renormalized one, what should we do to deal
with the ∂U · ψ̄∂ψ term for ∂ ≫ 1 case? If we only take a correspondence of φ → Φ hence
αφ†U∂φ → ∂Φ†U · (Φ − 1), it would give trivial substitution for the “coupling”: ∂φ → ∂Φ,
with the non-renormalizable property (with momentum included in vertex) remained.

But, now, within the P-4 framework, after an extension φ → Φ, it’s allowed to further
treat a current Jµ to a field Jµ, then the term ∂U · Jµ(current) would turn to ∂U · Jµ(field),
and, there would be other terms to represent the interactions, such as ∂∂U ·J(field) ·J(field).

Moreover, there is the expansion,

Θ(x+ ǫn, x) = 1− igǫnµ
1

M
Jµ(x) + ... , (140)

where the charge should be
[
g 1
M

]
, so, that means, when

[
gǫ 1

M

]
∼ 1, the “field” Jµ would

turn back to the P-4 type field Θ, with the conversion ∂U · Jµ(field) → ∂U · i∂(Θ − Θ†),
and, there would be other terms to represent the interactions, such as ∂µU · (Θ†ÔµΘ), with

Ôµ an intrinsic operator of the field Θ to contract with the tensor indices in ∂µU .

2.9.2 Current = Field? A possible way for renormalizable gravity.

Is it feasible for (138)?

Firstly, what’s the difference between a current and a vector field? A field has a E.O.M,
while a current hasn’t; for other things, they could be treated as the same. So, it’s more or
less reasonable for (138).

Secondly, reminding the Maxwell equation,

∂2Aµ ∼ Jµ , (141)

which would be generalized to a new equaiton

∂2Jµ = 0⇒ ∂4Aµ = 0 (142)

we can say, if Jµ became a P-2 type field, then, Aµ would become a P-4 type field (which
would be studied in Section 3). So, it is feasible for (138), based on the foundation for the
dynamics of a P-4 type Aµ.

2.10 The van der Waals-potential: the introduction of
∫
dxA is

trivial!

It’s not necessary to construct van der Waals-potential by introducing new media particles
Φ(bosons or fermions) with new type propagators such as ∼ 1/pN with N < 0(which would
be always converted to an N > 0 case by redefining another new field with an equivalent
dynamics), but only need to set restrictions on the interaction terms.
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For detail, firstly, let’s take the symbol L(LO) to be the Lagragian interaction term

L(LO) ∼ ψ̄ ⊗ Φ⊗ . . .⊗ ∂Φ⊗ . . .⊗ ψ

with the least number of ∂Φ terms, which we call it as “leading order(LO) interaction term”.
Then, for L(LO) includes N ≥ 1 ∂Φ-symbols, we get van der Waals-potential V (r) ∼ 1/rN

(with N > 1) through setting the propagator ∼ 1/p4−α with α > 0 for Φ , for instance,
∼ 1/p3, ∼ 1/p2, ∼ 1/p,and so on, since the amplitude of “2 → 2” scattering process would
be

M ∼ p⊗ 1

p4−α
⊗ p ∼ 1

p2−α
∼ −V(p)

⇒ V (r) ∼

∫
d3pV(p) ∼ p1+α ∼

1

r1+α
. (143)

Particularly, for a field Φ with a propagator ∼ p, we can treat Φ as an extraordinary field
with an integral equation type EOM

1

p̂
Φ(x) =

1

mΦ
Φ(x), with

1

p̂
=

∫ x

∞
dy (144)

It’s allowed to use an integral equations to be the EOM of field Φ in the case of ∂Φ is
ill-defined, for instance, Φ or ∂Φ was a singular function.

However, since our quantization framework is canonic commutator, the EOM should
be always constructed through derivative qeuations rather than integral equations. On the
other hand, we could always define a new effective field and its E.O.M as

U ≡
∫ x

∞
dyΦ(y)⇒ p̂U = mUU (145)

to be the new d.o.f, and the corresponding Lagrangian terms, which could give equivalent
results to the original Φ-terms for all orders( by corresponding L(LO) ∼ ψ̄∂Uψ including one
∂-symbols for U to the equivalent original L(LO) ∼ ψ̄Φψ for Φ), so that, it’s only formally
meaningful but practically trivial to construct fields with integral equation type E.O.M.

3 Field Uµ

3.1 Lagrangian for Uµ

Now we take a generalization of U → Uµ, with the transform property of Uµ under the U(1)
global group element V as

Uµ → V UµV † , (146)

where the indices µ means the transform is for each component of Uµ.

With the gauge fixed condition, for a general complex-valued vector field

U = Re[U ] + i Im[U ] ≡ U1 − i U2 , (147)

whose motion obeying the P-4 type Klein-Gordon equation as for a scalar U field in (40),
the Lagrangian could be written as

LU = +∂α∂βU
†
µ∂

α∂βUµ −m4
UU

†
µU

µ , U †
µU

µ < 1 , (148)
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or

LU = +∂α(aFβµ + bF βµ)
†∂α(aF βµ + bF

βµ
)−m4

UU
†
µU

µ , U †
µU

µ < 1 , (149)

with
a2 + b2 = 1 , (150)

where
F βµ ≡ F βµ(U) ≡ ∂βUµ − ∂µUβ , F βµ ≡ F βµ(U) ≡ ∂βUµ + ∂µUβ . (151)

Particularly, in the case of b = 0 and mU = 0, to get a Maxwell equation, for a specific
irreducible representation of the tensors, we can choose a Lagrangian for F βµ as

LU = +
1

2
(∂αFβµ − ∂βFαµ)†(∂αF βµ − ∂βF αµ)−m4

UU
†
µU

µ

= +
[
∂αF

†
βµ∂

αF βµ − ∂αF †
βµ∂

βF αµ
]
−m4

UU
†
µU

µ

= +
[
∂α(∂βUµ − ∂µUβ)†∂α(∂βUµ − ∂µUβ)− ∂α(∂βUµ − ∂µUβ)†∂β(∂αUµ − ∂µUα)

]

−m4
UU

†
µU

µ

= +
[
∂α∂βU

†
µ∂

α∂βUµ − ∂α∂βU †
µ∂

α∂µUβ − ∂α∂µU †
β∂

α∂βUµ + ∂α∂µU
†
β∂

α∂µUβ

−∂α∂βU †
µ∂

β∂αUµ + ∂α∂βU
†
µ∂

β∂µUα + ∂α∂µU
†
β∂

β∂αUµ − ∂α∂µU †
β∂

β∂µUα
]

−m4
UU

†
µU

µ

= +
[
(∂α∂βU

†
µ∂

α∂βUµ + ∂α∂µU
†
β∂

α∂µUβ − ∂α∂βU †
µ∂

β∂αUµ)

+(−∂α∂βU †
µ∂

α∂µUβ − ∂α∂µU †
β∂

α∂βUµ + ∂α∂µU
†
β∂

α∂βUµ + ∂β∂αU
†
µ∂

β∂µUα

−∂α∂µU †
β∂

β∂µUα)
]
−m4

UU
†
µU

µ

= +
[
∂α∂βU

†
µ∂

α∂βUµ − ∂α∂µU †
β∂

β∂αUµ
]
−m4

UU
†
µU

µ

= +
[
∂α∂βU

†
µ(∂

α∂βUµ − ∂µ∂αUβ)
]
−m4

UU
†
µU

µ

= +
[
∂α∂βU

†
µ(∂

α∂βUµ − ∂α∂µUβ)
]
−m4

UU
†
µU

µ

= +
1

2

{[
∂α∂βU

†
µ(∂

α∂βUµ − ∂α∂µUβ)
]
+ (β ↔ µ)

}
−m4

UU
†
µU

µ

= +
1

2

{[
∂α∂βU

†
µ(∂

α∂βUµ − ∂α∂µUβ)
]
+
[
∂α∂µU

†
β(∂

α∂µUβ − ∂α∂βUµ)
]}
−m4

UU
†
µU

µ

= +
1

2

(
∂α∂βU

†
µ∂

αF βµ + ∂α∂µU
†
β∂

αF µβ
)
−m4

UU
†
µU

µ

= +
1

2

(
∂α∂βU

†
µ − ∂α∂µU †

β

)
∂αF βµ −m4

UU
†
µU

µ

= +
1

2
∂αF

†
βµ∂αF

βµ −m4
UU

†
µU

µ , U †
µU

µ < 1 , (152)

where the underlined indices would be interchanged, and then, we can get the P-4 type
Maxwell equation

(∂4gµν − ∂2∂µ∂ν)Aν = 0 (153)

with an extra minus sign by contrast with (40), see Appendix D.
Note that, for a normal vector field, the sign for mass term in (148) is “+” so that it’s

“−” for each space component Ui, however, here the Uµ is a kind of higgs field, so that the
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sign for mass term should be “−”. Then, the gauge fixed condition and corresponding free
E.O.M would be

p̂ · U = 0 ⇒ +p̂4Uµ −m4
UU

µ = 0, p̂ = i∂, (154)

so, the propagator in momentum space would be

Dµν
F (U) =

+igµν

p4 −m4
U + iǫ

, (155)

rather than Dµν
F (U) = −igµν

p4−m4
U
+iǫ

, with the same reason as for (53,59).

The interaction term of Uµ with the matter could be written as

LI = −αΛψ̄[(U/+ U/†) + i(U/ − U/†)]ψ − α Λ

M
[(U + U †) + i(U − U †)]µψ̄i∂

µψ

−β [F (U+U†)
µν + iF (U−U†)

µν ] · ψ̄[(εµν + σµν) +
1

M
(γµi∂ν − γνi∂µ]ψ

−β [F (U+U†)

µν + iF
(U−U†)

µν ] · ψ̄[gµν + 1

M
(γµi∂ν + γνi∂µ)]ψ

−κ 1

M
ψ̄
[
Λ2(U/†U/)

]
ψ

+(higher-order operators) , (156)

where εµν is an antisymmetric real-valued constant tensor, σµν = i
2
[γµ, γν ], so that for each

µν component, there are (εµν)† = εµν and (σµν)† = σµν .

The self-interaction term of Uµ might be written as

LselfI = −ΛU
[
(ǫρα + gρα)(U + U †)ρF

(U+U†)
βµ F αβµ

(U+U†)

]

−ΛU
[
terms with i(U − U †)

]
. (157)

where the ǫµν in the ΛU term is chosen to be antisymmetric. Since there is at least 3 U -field
for the interaction term, there must be at least 1 or 3 ∂-symbols for constructing a scalar;
however, here we don’t write the terms with only one ∂-symbol, as UµUν∂

µUν or UµU
µ∂νU

ν ,
because, we’ll see in Section 3.4, that they can’t give us a qualified 2nd-order D.E..

Actually, like the definition of the field strength for a non-Abelian gauge field Aiα as

F i
αβt

i = ∂αA
i
βt
i − ∂βAiαti − ig[Aiαti, Ajβtj ] , (158)

we might “fabricate” a formally definition of the “field strength Fαβµ of field strength of Fβµ
of Uµ” as the form

FαβµT
β =

(
∂αFβµT

β − ∂µFβαT β
)
+
[
FναT

ν , FβµT
β
]
, (159)

with T µ a class of group generator-like operators. However, here we would ignore this fictive
construction of (159) and (157), and that would not influence the results we concerned in
this paper (that is, the kinetic energy term of of Uµν and the interaction term of Uµν and
matters in the Lagrangian). For detail, the first term for the r.h.s of (157)

∂αFβµ − ∂µFβα
= ∂α(∂βUµ − ∂µUβ)− ∂µ(∂βUα − ∂αUβ)
= ∂β(∂αUµ − ∂µUα) = ∂βFαµ (160)
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would be a “trivial” construction(for the meaning of “trivial”, it means, ∂αFβµ − ∂µFβα has
only one term in practice, which has been shown in (152)), although the second term would
include ∂U∂U term would give a nontrivial self-interaction term with multi-derivative for
the Uµ fields, like the term U †

αU
†
βU

†
µ∂

αF βµ in (165) a 4-particle coupled term.

For future convenience, as for the scalar U field, for each µ component, we can have the
decomposition

Uµ = Uµ
1 − iUµ

2 , (161)

and the self-interaction terms of Uµ could be written as

LselfI = −ΛUU1α∂βU1µ∂
α∂βUµ

1 − Λ2
UU1αU1βU1µ∂

α∂βUµ
1

+(U2 terms) + (U1 · U2 mixed terms) . (162)

We don’t consider terms as

LI = −αΛUµ
1 ψ̄[σµν(i∂

µ + γµ)]ψ (163)

in this work.

3.2 Version I: anti-symmetric field strength Fµν

3.2.1 Version I.1: the interaction coupled to intrinsic charges

1. Lagrangian

The antisymmetric tensor Fµν has 6 independent components, so, it might serve as the
contribution from two vector field, the strength {E,B} of an off-shell photon. Note, now
the E.O.M for Fµν wouldn’t be true since the Uµ was off-shell, that is,

∂2∂µF
µν = ∂2∂νF

µν 6= 0 . (164)

However, if Uµ was on-shell, then Fµν has 6-4=2 independent component, which might now
again serve as the on-shell state of a photon. Let’s check whether Fµν could serve for the
photon in the sense of the effective interaction form.

The Fµν part of Lagrangian for free particle Uµ could be written as

LU = +
1

2
∂αF

†
βµ∂

αF βµ −m4
UU

†
µU

µ

= +
1

2

[
∂α(∂βU

†
µ − ∂µU †

β)
] [
∂α(∂βUµ − ∂µUβ)

]
−m4

UU
†
µU

µ , (165)

and, the interaction term could be written as

LI = −αΛψ̄[(U/+ U/†) + i(U/− U/†)]ψ
−β ψ̄(εµν + σµν)[F (U+U†)

µν + iF (U−U†)
µν ]ψ

+(higher-order operators), (166)

For future convenience, we write the interaction terms for Uµ
1 obviously, as

LI = −αΛψ̄U/1ψ − β ψ̄(εµν + σµν)F (U1)
µν ψ

+(higher-order operators) . (167)
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2. The E.O.M for tensor theory for Version I.1

See (376-377) in Appendix D, we can get the dynamical equation for the field Uµ as

∂2
[
∂2gστ − ∂σ∂τ

]
U τ (∂·U=0)

====== ∂4Uσ = (i∂)4Uσ = +m4
UU

σ + Jσ (168)

with the gauge fixed condition ∂σU
σ = 0, and

Jσ = αΛψ̄γσψ − 2β ∂τ
[
ψ̄(ετσ + στσ)ψ

]
. (169)

3. Quantization and the effective potential for Version I.1

Now we can write an effective potential mediated by Uµ. By omitting the ǫµν term in
Lagragian (165), the amplitude of the process in Fig. 4-(a) could be written as6

iMa = ūs
′

i[α1Λγ
µgµρ + β1σαµ(iq

αgµρ − iqµgαρ )]us ·
+igρλ

q4

·ūr′i[α2Λγ
νgνλ − β2σβν(iqβgνλ − iqνgβλ)]ur

= ūs
′

i[α1Λγρ + β1(iσαµq
αgµρ − iσαµqµgαρ )]us ·

+igρλ

q4

·ūr′i[α2Λγλ − β2(iσβνqβgνλ − iσβνqνgβλ)]ur

= ūs
′

i[α1Λγ
ρ + β1(qµg

µ
ρ + qαg

α
ρ )]u

s · +ig
ρλ

q4

·ūr′i[α2Λγ
λ − β2(qνgνλ + qβg

β
λ)]u

r

= ūs
′

i(α1Λγ
ρ + 2β1qρ)u

s · +ig
ρλ

q4
· ūr′i(α2Λγ

λ − 2β2qλ)u
r

≃ −i ·
{
4Λ2α1α2

1

|q|4 − 2Λα1β2(v1 − v2) · q
1

|q|4 + 4β1β2
1

|q|2
}

·2mδss′2mδrr′ (170)

with the approximate relations below(Gordon’s identity)

ūp
′

γµup =
1

2m
ūp

′

[(p′ + p)µ + iσµν(p′ − p)ν ] up , (p′ ≡ p+ q)

⇒ ūp
′

[iσµνqν ]u
p = ūp

′

[2mγµ − (p+ q + p)µ] up

= ūp
′

[2mγµ − (2p+ q)µ] up

⇒ [iσµαqα] → [2mγµ − (2p+ q)µ] ≃ −qµ
−
[
iσνβqβ

]
→ [2mγν − (2k − q)ν ] ≃ qν , (k′ ≡ k − q) . (171)

Then, by comparing with the Born approximation to the scattering amplitude in non-
relativistic quantum mechanics, see (69), we can get the effective potential as

V (r) = −4Λ
2α1α2

8π
r +

2λΛα1β2
2π2

log
r

r0
+

4β1β2
4π

1

r
− 2λΛα1β2

2π2
(1− γE) , (172)

where −∞ < λ < +∞ was defined in (67), and, particularly, for NR case, λ ≃ 0. The
interpretation for (172) would be like (72).

6As in (65), for simplicity, here we can only consider the contributions from U1, and, for the contributions
from U2, the result just need a double.
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There is a combination of a linear and a logarithmic potential for the α1 · α2 < 0 case,
which might be corresponding to the confinement for strong-coupled gauge theory, or the
dark matter effects.

Note that, as we only concentrate the non-relativistic case, we have chosen the definite
spinor basis for the outer-line particles as ūs

′

γµus → δss
′

, that means, the spin orientation
hasn’t changed. That’s very important! On one hand, spin changing would be a kind of
relativistic effects, on the other hand, the “charge” βσµνcorresponding to the term ψ̄F µνψ
was a kind of magnetic moment, hence the change of spin orientation would influence the
sign of the coefficient β in (166).

3.2.2 Matching for the d.o.f: generation of a linear QED

1. Can F (U) ∼ ∂U serve for the photon?

According to the square form of the kinetic energy term (∂F )2 and the Coulomb-type
interaction arising from the term ψ̄F (U)ψ in (166), we can say, if Uµ is a field with propagator
∼ 1/p4, then its field strength

F (U) ∼ ∂U (173)

could be treated as a particle d.o.f with propagator ∼ 1/p2 serving for the E.M. force, that
means, F (U) could be the photon.

Formally, there is a correspondence on the order of derivative:

Uµ Field Strength−−−−−−−−→ Aµ
Field Strength−−−−−−−−→ {E,B} .

2. An interaction from magnet moment?

Why not? It’s not important that whether an interactions generated by the field strength
would be interpreted as a magnet moment interaction or not; and, the important thing is
the form of the interaction!

we can formally parameterize Fµν to two vector, as

Fµν = AµBν −AνBµ . (174)

So, the effects of Fµν could be corresponding to the process in Fig. 3-(a), that is, an interac-
tion mediated by two particles. The difference is that, for example, when Aµ and Bν are P-2
type field, Fµν gives an interaction of Van der Waals form, which corresponds to the magnet
moment interaction, however, when Aµ and Bν are P-4 type field, Fµν gives an interaction
of Coulomb form, see Appendix C, which would correspond to a P-2 type field propagator.

On another viewpoint, mathematically, as for (106), we can indeed have a correspondence
between Fµν and a P-2 type field Aλ, as

FµνΓ
[µν]
λ = Aλ , Γ[µν]λΓ

[µν]λ = 1 , (175)
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where Γλ[µν] is a 3rd-order constant-valued tensor, anti-symmetric for the µν indices.7 If we

insert (175) into the Lagrangian, it truly generates a kinetic terms for Lagrangian of a P-2
type field Aλ, and, for the interaction terms with Fµν , the charge/current would get a change,
as

ψ̄σµνψ → ψ̄σµνΓλ[µν]ψ → ψ̄γλψ , (176)

which is just the E.M. current in QED!

Actually, the charge for a classic potential is purely put by hand, which might not be the
exact charge at quantum level, but just a correspondence.

Besides, as in (177), for the interaction terms in the full Lagrangian (166), we can directly
set Uµ → 1µ (unit vector), F (U1)µν → Aµ, and U2µ could be seemed as frozen. Or, we can
directly omit terms with

Uµ(x) =

∫ x

∞
dzν∂

ν
zUµ , (177)

since there is a depression for these terms from the small Λ.

3.2.3 Version I.2: the interaction coupled to momentum

The interaction term could be written as

LI = −α Λ

M
[(U + U †)µ + i(U − U †)µ]ψ̄i∂

µψ

−β 1

M
[F

(U+U†)

µν + iF
(U−U†)

µν ]ψ̄(γνi∂µ − γµi∂ν)ψ
+(higher-order operators) . (178)

For future convenience, we write the interaction terms for Uµ
1 obviously, as

LI = −α
Λ

M
U1µψ̄i∂

µψ − β 1

M
F

(U1)

µν ψ̄(γνi∂µ − γµi∂ν)ψ + .... . (179)

We don’t consider terms as

LI = −α
Λ

M
Uµ
1 ψ̄σµνi∂

µψ (180)

in this work.

2. The E.O.M for tensor theory of Version I.2: coupled to momentum

See (388) in Appendix D, we can get the dynamical equation for the field Uµ as

∂4Uσ = m4
UU

σ + Jσ , (181)

with the gauge fixed condition ∂σU
σ = 0, and

Jσ = +α
Λ

M
ψ̄ψ̄i∂σψ

+− 2β
1

M
∂τ [ψ̄(γ

σi∂τ − γτ i∂σ)ψ] + ... . (182)

7Maybe we can treat Γλ
[µν] as a nonzero VEV of the torsion tensor of our universe.
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3. Quantization and the effective potential for Version I.2: gravity?

Now we can write an effective potential mediated by Uµ. The amplitude of the process in
Fig. 4-(a) could be written out(with the underlined terms are generated by the underlined
term in (178)), as8

iMa = ūs
′

i{α1
Λ

M
iikρ + β1

1

M
(iqσgκρ + iqκgσρ)[γ

κiikσ − γσiikκ]}us · +ig
ρρ′

q4

·ūr′i{α2
Λ

M
iipρ′ − β2

1

M
(iqσ′gκ′ρ′ + iqκ′gσ′ρ′)[γ

κ′iipσ
′ − γσ′iipκ′ ]}ur

= −ūs′{−α1
Λ

M
kρ − iβ1

1

M
2[q · kγρ − qσγσkρ]}us ·

+igρρ
′

q4

·ūr′{−α2
Λ

M
pρ′ + iβ2

1

M
2[q · pγρ′ − qσ′γσ

′

pρ′ ]}ur

=
−i
q4
· {Λ

2α1α2k · p
M2

+i
2Λα1β2
M2

{−[q · pγρ′kρ − qσ′γσ
′

p · k] + [q · kγρpρ
′ − qσγσp · k]}

+
4β1β2
M2

[+q · kq · p− q · kp/q/− q · pq/k/+ q2k · p]}

·2mδss′2mδrr′

=
−i
q4
· {Λ

2α1α2k · p
M2

+ i
2Λα1β2p · k

M2
(+qσ′γ

σ′ − qσγσ)

+
4β1β2
M2

(k · p)q2} · 2mδss′2mδrr′

= −i · {Λ
2α1α2k · p
M2

1

q4
+ i

2Λα1β2k · p
M2

(+qσ′γ
σ′ − qσγσ)

1

q4

+
4β1β2
M2

(k · p) 1
q2
} · 2mδss′2mδrr′

≃ −i · {Λ
2α1α2k

0p0

M2

1

|q|4 + i
λ2Λα1β2k

0p0

M2

1

|q|3

−4β1β2k
0p0

M2

1

|q|2} · 2mδ
ss′2mδrr

′

(183)

with α1β2 = α2β1, and the N.R. approximation q · k ≃ q · p ≃ 0, and the definition for λ as
in (67)

+ qσ′γ
σ′ − qσγσ ≃ (v1 − v2) · q ≡ λ|q| ,−∞ < λ < +∞ , (184)

particularly, for NR case, λ ≃ 0.
Then, by comparing with the Born approximation to the scattering amplitude in non-

relativistic quantum mechanics, see (69), by omitting the λ term according to the optical
theorem, we can get the effective potential as

V (r) = −Λ
2α1α2k

0p0

8πM2
r − 4β1β2k

0p0

4πM2

1

r
. (185)

In Ref. [11], a gravity was generated by the antisymmetric F µν of an ordinary vector
field Bµ with a symmetric energy-momentum tensor, which seemed superficially a little non-

8As in (170), for simplicity, here we can only consider the contributions from U1, and, for the contributions
from U2, the result just need a double.
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uniform.

3.2.4 Version I.3: mixing Version I.1 and I.2 for dark matter effect

With the Lagrangian in (166) and (178),

LI(αβ) = −αΛψ̄[(U/ + U/†) + i(U/ − U/†)]ψ
−β ψ̄(εµν + σµν)[F (U+U†)

µν + iF (U−U†)
µν ]ψ

+(higher-order operators) , (166)

and

LI(ξρ) = −ξ Λ

MP lanck

[(U + U †)µ + i(U − U †)µ]ψ̄i∂
µψ

−ρ 1

MP lanck
[F

(U+U†)

µν + iF
(U−U†)

µν ]ψ̄(γνi∂µ − γµi∂ν)ψ

+(higher-order operators) , (178)

where we use the coupling constants as subscripts to denote them, respectively.

We would show that we can list the different kinds of possible potentials generated by
the field Uµ in a table, see Table-(2). In the table, we take m as the mass of fermions, and
the word “imaginary” means this term would be absent according to the optical theorem;
for potentials including only {α, β}, see (172), and, for potentials including only {ξ, ρ}, see
(185). Now we will show the calculations about the mixing effects from both {α, β} and
{ξ, ρ}.

αΛ β ξmΛ/MP lanck ρm/MP lanck

αΛ
−α1α2Λ

2 · r
(confine)

±α1β2Λ · log r
(confine)

+ m
MPlank

α1ξ2Λ
2 · r

(confine)

×
(imaginary)

β
+β1β2 · 1r
(E.M.)

± m
MPlank

β1ξ2Λ · log r
(dark matter)

×
(imaginary)

ξmΛ/MP lanck
− m2

M2
Plank

ξ1ξ2Λ
2 · r

(dark energy)

×
(imaginary)

ρm/MP lanck
− m2

M2
Plank

ρ1ρ2 · 1r
(gravity)

Table 2: Possible potentials generated by field Uµ.

From the amplitude

iMa = ūs
′

i{α1Λγ
µgµρ + β1σαµ(iq

αgµρ − iqµgαρ )

+ξ1
Λ

M
iikρ + ρ1

1

M
(iqσgκρ + iqκgσρ)[γ

κiikσ − γσiikκ]}us · +ig
ρρ′

q4

·ūr′i{α2Λγ
νgνρ′ − β2σβν(iqβgνρ′ − iqνgβρ′)

+ξ2
Λ

M
iipρ′ − ρ2

1

M
(iqσ′gκ′ρ′ + iqκ′gσ′ρ′)[γ

κ′iipσ
′ − γσ′iipκ′ ]}ur , (186)
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it’s apparent to see the {αρ, βρ} terms would give an imaginary-valued effective potential.
For the αξ term, we have

iMa = ūs
′

i{α1Λγ
µgµρ + ξ1

Λ

M
iikρ}us ·

+igρρ
′

q4
· ūr′i{α2Λγ

νgνρ′ + ξ2
Λ

M
iipρ′ ]}ur

= −ig
ρρ′

q4
(α1Λγ

µgµρξ2
Λ

M
iipρ′ + ξ1

Λ

M
iikρα2Λγ

νgνρ′) · 2mδss
′

2mδrr
′

= −i 1
q4

[
−Λ

2

M
α1ξ2(p

0 + k0)

]
· 2mδss′2mδrr′ , (187)

and the effective potential

V (r) = +
Λ2α1ξ2(p

0 + k0)

8πM
r . (188)

And, for the βξ term, we have

iMa = ūs
′

i{β1σαµ(iqαgµρ − iqµgαρ ) + ξ1
Λ

M
iikρ}us ·

+igρρ
′

q4
· ūr′i{−β2σβν(iqβgνρ′ − iqνgβρ′) + ξ2

Λ

M
iipρ′}ur

= −ig
ρρ′

q4
{β12qρξ2

Λ

M
iipρ′ − ξ1

Λ

M
iikρβ22qρ′} · 2mδss

′

2mδrr
′

(β1ξ2 = β2ξ1) ≃ −i
[
2Λβ1ξ2
M

(−p + k) · q 1
q4

]
· 2mδss′2mδrr′

≃ −i
[
2Λλβ1ξ2
M

|q|
|q|4

]
· 2mδss′2mδrr′

(189)

with the definition
(−p + k) · q ≡ λ|q| , (190)

and then the effective potential

V (r) =
2Λλβ1ξ2
MP lanck

[
− 1

2π2
log(

r

r0
) + (1− γE))

]
. (191)

This term is a logarithmic-type potential (with r0 put by hand to balance the dimension), at-
tractive only for λ < 0), which might be corresponding to the dark matter effects(the velocity
dispersions for elliptical galaxies required an attractive force F = −∇V (r) = v2/r ≃ C0/r
required a potential V (r) ∼ log(r/r0), see Ref. [9]). For the sign of λ < 0, we don’t know
much about it, but, we can know, if the clockwise rotated galaxies are corresponding to
λ < 0, then anti-clockwise rotated galaxies must be corresponding to λ > 0, and vice versa.
So, if the universe are rotated, the impulsive version for the potential in (191) might also
serve as the dark energy effects. Besides, it’s allowed to treat r0 as an adjustable parameter,
and, a large r0 of order O(1/MP lanck) would be needed to generate a strong enough attractive
force with the comparable magnitude with Newton’s gravity.
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3.2.5 Unification II: comments on potentials generated by F µν

If we combine the potential terms in (172,185,188,191), then, we can say, the field Uµ with
field strength F µν could provide a wealth of interaction information, as shown in Table 2.

The list of potentials generated by Uµ with field strength F µν

1. for the {αα, αβ, αξ} terms, there is a linear potential of order O(α2Λ2), a logarithmic
potential of order O(αβΛ), and a linear potential of order O(αξm Λ2

MPlanck
), which might be

corresponding to the confinement for strong-coupled gauge theory for the attractive case;
surely these terms would be depressed or enhanced by the energy scale Λ, and, their effects
would only be apparent at long distance range with respect to a Coulomb potential.

2. for the {ββ} term, there is a Coulomb-type potential of order O(β2) which might be
corresponding to the ordinary Coulomb potential.

3. for the {βξ} term, there is a logarithmic potential (with a r0 put by hand to balance
the dimension) of order O(βξm Λ

MPlanck
) which might contribute to the dark matter effects

in the attractive case (see Ref. [9], the velocity dispersions for elliptical galaxies required an
attractive force F = −∇V (r) = v2/r ≃ C0/r required a potential V (r) ∼ log(r/r0)) and
the dark energy effects in the impulsive case; except for Λ, this term would be depressed or
enhanced by the parameter λ and a size parameter r0.

4. for the {ξξ} term, there is a linear potential of order O(ξ2m2 Λ2

M2
Planck

) which might

contribute to the dark energy effects. [6] [7]

5. for the {ρρ} term, there is a Coulomb-type potential of order O(ρ2m2 1
M2
Planck

) which

might be corresponding to Newton’s gravitation potential.

Some notes for the potential
6. the special relativity effects are automatically served by the spinor basis us(p). Since

the coupling β is dimensionless, the β term in Lagrangian (166) would be a U.V. renormaliz-
able one in the sense of superficial degree of divergence (or, in the dimensional regularization
framework).

7. apparently, with different settings for the parameters, different part in the total po-
tential would be the dominant part.

8. the logarithmic potential is determined by both the charge and the velocity of each
particle, so, is this a new way to combine the E.M. and gravity?

9. both the logarithmic and linear potential would not influence the transmit of the free
photons since the E.M. field is a kind of source-free field, but the hyper-hyperfine structure
of the optical spectrum of atoms would be influenced.

10. the logarithmic would give corrections to the impulsive/confined effects generated
from the linear potential part, so that would lead to a nonlinear red-shift, which might give
an approach to understand some cosmological experiment data, such as, an indications of a
spatial variation of the electromagnetic fine structure constant [10].
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Unification II

By comparing (172) and (185), not like the method in ( 72,74), where the unity between
E.M. force and gravity are realized with only two energy scale: Λ and M , here, we can unify
this two kinds of forces by defining a new different energy scale, which has been proposed in
Table (2):

[“each ∂-symbol for the matter field ψ in (195) should be tied with an energy scale M”] ,

with
M =MP lank (for ∂ψ or ∂ψ̄), (192)

as a supplement to (9) for the postulation. Of course, directly to see, the two couplings in
(172) and (185) would spontaneously become equal at a large enough energy scale, as the
case in (74).

3.3 Version II: symmetric field strength F µν for SR Gravity

Although there is a potential form for Newton’s gravity generated in (183), the current in the
corresponding Lagrangian is not the traditional energy-momentum tensor, since the former
one is an antisymmetric tensor while the latter one is a symmetric one. Now we’ll check
whether the symmetric F µν corresponding a symmetric current could serve as a Special Rel-
ativity(SR) gravity or not.

1. The interaction Lagrangian

The symmetric tensor F µν has 10 independent components, so, it might serve as the
contribution from the field strength of an off-shell gravitons. Note, as for Fµν in (164), the
E.O.M for F µν wouldn’t be true since the Uµ was off-shell, that is,

∂2∂µF
µν

= ∂2∂νF
µν 6= 0 . (193)

However, if Uµ was on-shell, then, combining the traceless condition, F µν would have only
10-4-1=5 independent component, which might now again serve as the on-shell state of a
graviton. Let’s check whether F µν could serve for the graviton, in the sense of the effective
interaction form.

With the Lorentz gauge fixed condition, see Appendix D, the F µν part of Lagrangian for
free particle Uµ in an irreducible complete-symmetric tensor representation could be written
as

LU = +
1

2
∂αF

†
βµ∂

αF
βµ −m4

UU
†
µU

µ

−ΛU ·
[
ǫρα(U + U †)ρF

(U+U†)

βµ ∂αF
βµ

(U+U†)

]

= +
1

2

[
∂α(∂βU

†
µ + ∂µU

†
β)
] [
∂α(∂βUµ + ∂µUβ)

]
−m4

UU
†
µU

µ

−ΛU · [...] , (194)

41



and, the interaction term could be written as

LI = −α Λ

M
[(U + U †)µ + i(U − U †)µ]ψ̄i∂

µψ

−β 1

M
[F

(U+U†)

µν + iF
(U−U†)

µν ]ψ̄(−2gµνm+ γνi∂µ + γµi∂ν)ψ

+(higher-order operators), (195)

where F
(U)

µν ≡ F µν(U) is the field strength.9 Note, the term

Lψ = gµνψ̄(γ
µi∂ν − 1

4
gµνmψ)ψ

on−shell−−−−−→
E.O.M

0 (196)

is just the full Lagrangian of a matter field, so we need set m 6= 1
4
mψ in (195), and, we can

just set
m = 0 (197)

according to the following result in (203).
For future convenience, we write the interaction terms for Uµ

1 obviously, as

LI = −α
Λ

M
U1µψ̄i∂

µψ − β 1

M
F

(U1)

µν ψ̄(−2gµνm+ γνi∂µ + γµi∂ν)ψ + .... . (198)

2. The E.O.M for tensor theory of Version II

See (388) in Appendix D, we can get the dynamical equation for the field Uµ as

∂4Uσ = m4
UU

σ + Jσ , (199)

with the gauge fixed condition ∂σU
σ = 0, and

Jσ = +α
Λ

M
ψ̄ψ̄i∂σψ

+− 2β
1

M
∂τ [ψ̄(−2gτσm+ γσi∂τ + γτ i∂σ)ψ] + ... . (200)

3. Quantization and the effective potential for Version II

Now we can write an effective potential mediated by Uµ. The amplitude of the process in
Fig. 4-(a) could be written out(with the underlined terms are generated by the underlined

9The symmetric energy-momentum tensor should be

T µν = ψ̄γνi∂µψ − i∂µψ̄γνψ

rather than here
ψ̄(γνi∂µ + γµi∂ν)ψ ,

but the results would be the same for NR approximation case.
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term in (195)), as10

iMa = ūs
′

i{α1
Λ

M
iikρ + β1

1

M
(iqσgκρ + iqκgσρ)[−2gκσm+ γκiikσ + γσiikκ]}us · +ig

ρρ′

q4

·ūr′i{α2
Λ

M
iipρ′ − β2

1

M
(iqσ′gκ′ρ′ + iqκ′gσ′ρ′)[−2gκ

′σ′m+ γκ
′

iipσ
′

+ γσ
′

iipκ
′

]}ur

= −ūs′{−α1
Λ

M
kρ − iβ1

1

M
2[2qρm+ q · kγρ + qσγ

σkρ]}us ·
+igρρ

′

q4

·ūr′{−α2
Λ

M
pρ′ + iβ2

1

M
2[2qρ′m+ q · pγρ′ + qσ′γ

σ′pρ′]}ur

=
−i
q4
· {Λ

2α1α2k · p
M2

+i
2Λα1β2
M2

{−[2q · km+ q · pγρ′kρ + qσ′γ
σ′p · k] + [2q · pm+ q · kγρpρ

′

+ qσγ
σp · k]}

+
4β1β2
M2

[4q2m2 + 4q · pmq/+ 4q · kmq/+ q · kq · p+ q · kp/q/+ q · pq/k/+ q2k · p]}

·2mδss′2mδrr′

=
−i
q4
· {Λ

2α1α2k · p
M2

+ i
2Λα1β2p · k

M2
(−qσ′γσ

′

+ qσγ
σ)

+
4β1β2
M2

(4m2 + k · p)q2} · 2mδss′2mδrr′

= −i · {Λ
2α1α2k · p
M2

1

q4
+ i

2Λα1β2k · p
M2

(−qσ′γσ
′

+ qσγ
σ)

1

q4

+
4β1β2
M2

(4m2 + k · p) 1
q2
} · 2mδss′2mδrr′

≃ −i · {Λ
2α1α2k

0p0

M2

1

|q|4 + i
λ2Λα1β2k

0p0

M2

1

|q|3

−4β1β2
M2

(4m2 + k0p0)
1

|q|2} · 2mδ
ss′2mδrr

′

(201)

with α1β2 = α2β1, and the N.R. approximation q · k ≃ q · p ≃ 0, and the definition for λ as
in (67)

− qσ′γσ
′

+ qσγ
σ ≃ (v1 − v2) · q ≡ λ|q| ,−∞ < λ < +∞ , (202)

particularly, for NR case, λ ≃ 0.
Then, by comparing with the Born approximation to the scattering amplitude in non-

relativistic quantum mechanics, see (69), by omitting the λ term according to the optical
theorem, we can get the effective potential as

V (r) = −Λ
2α1α2k

0p0

8πM2
r − 4β1β2(4m

2 + k0p0)

4πM2

1

r
, (203)

where we have set m = 0, see (197).

As our expectation, for two particles with the same kind of charges, this potential is
apparently constituted with a linear impulsive part, and a Coulomb-type attractive part,
each of which might correspond to the dark energy effects [7] (since this effect should only

10As in (170), for simplicity, here we can only consider the contributions from U1, and, for the contributions
from U2, the result just need a double.
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display at the cosmological level, by treating the upper limit of the distance L ∼
1
Λ
for the

theory corresponding to the I.R. energy scale Λ as just the size of universe), and the ordinary
Newton’s gravity, respectively. The special relativity effects are automatically served by the
momentum p and the spinor basis us(p).

Now we can say, the introducing for phantom in Ref. [6] [7] and for U or Uµ field in this
paper could give equivalent results for impulsive force rather than attractive force, where the
former one contributed a imaginary unit i in the current(the “charge”), or a whole minus
sign in the kinetic energy, with the propagator of graviton maintaining, while the latter one

contributed a minus sign in the propagator of U or Uµ, as
(

1
p2
≃ 1

−|p|2

)
→

(
1
p4
≃ 1

|p|4

)
for

a space-like momentum p. Indeed, phantom and {U, Uµ} are all non-traditional field, the
former one has a negative kinetic energy term, while the latter one has a negative mass
term(as a higgs field rather than the conventional quantum fluctuation fields).

If m 6= 0, it might partly serve as the
√−g term in Einstein’s General Relativity(GR).

We will introduce the
√−g term in next section.

3.3.1 Matching for the d.o.f: generation of a linear gravity theory

Can F (U) ∼ ∂U serve for the graviton?

As discussed for F (U) in Section (3.2.2), according to the square form of the kinetic
energy term (∂F )2 and the Coulomb-type interaction arising from the term ψ̄F (U)ψ in
(195), we can say, if Uµ is a field with propagator ∼ 1/p4, then its field strength

F (U) ∼ ∂U (204)

could be treated as a particle d.o.f with propagator ∼ 1/p2 serving for the gravity, that
means, F (U) could be the graviton.

If our E.O.M with ∂4 is true, maybe we can partly understand why Einstein gravity is
secretly the square of Yang-Mills theory. [12] That is, gravity is generated by a field Aµ with
a E.O.M ∂4Aµ = 0, which is the square of ordinary gauge field with a E.O.M ∂2Aµ = 0.
There is another viewpoint for this “square”, see Section 4.1.

3.3.2 Unification III: which is for gravity, Fµν or F µν?

By comparing (185) and (203), we can see that both Fµν and F µν could generate a gravita-
tion, with a crucial reason that, a vector field Uµ, either with a field strength Fµν or F µν , is
corresponding to the same propagator at the tree level with the same gauge fixed condition.
Now we would ask: “which one would be the real origin of gravitation, Fµν or F µν?”

If we treat Fµν being the only origin of both E.M. and gravitation, then the matter
current would be an anti-symmetric one, which is not consistent with the traditional energy-
momentum tensor, unless it’s allowed for a new type of current to generate gravity. If
it’s truly allowed, then, within this framework, we can discuss the unification of E.M. and
gravitation in the viewpoint of currents. As we know, these versions of gravity theory would
be non-renormalizable because of the vertex including a momentum in, however, if we adopt
the procedure in the Section 2.9.2, they would become a renormalizable one. Moreover,
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another interesting result would come with this renormalization, that is, a unification, which
could be illustrated with the “excitation of d.o.f” again: with treating the two currents,

ψ̄[β(εµν + σµν)]ψ and ψ̄[
β

M
(γµi∂ν − γνi∂µ)]ψ

in (166), as two field d.o.f of a same complex field (see Section 2.9.2), we might say, the dif-
ferentiation between the two coefficients, the E.M. constant β and the gravitation constant
β
M
, happened in the case of the latter one “field” frozen, which would serve for the gravity,

while the unification between them happened in the case of the latter one “field” excited,
with the former one “field” was always excited serving for a E.M. force.

On the other hand, if we take Fµν and F µν to serve for E.M. and gravitation respectively,
then the field Uµ would not have a field strength defined in a definite irreducible representa-
tion, that is, the field Uµ would not be a pure Maxwell field. However, this property of Uµ

would also take us a chance to unify E.M. and gravitation, that is, to combine them into a
single field. Within this framework, Uµ has a mixed-type field strength, aFµν + bF µν , which
would give a different magnitude for the coupling coefficients when Fµν and F µν coupled to
two currents with the same magnitude, say,

(aFµν) · β(ψ̄σµνψ) and (bF µν) · β[ψ̄(γµi∂ν + γνi∂µ)ψ] .

Anyway, in both the two viewpoints above, we might say, with respect to the E.M. con-
stant e, the smallness of the gravitation constant (related to the energy scale MP lanck), was
from the smallness of coefficient b with respect to a in (149), that is, we can consider a
relation for MP lanck =

a
b
MEW .

And, under our consideration, for the black holes, there is nothing extraordinary for it
by contrast with the ordinary matter, since the black hole is just a particular concept in the
sense of “the first cosmic speed” of this object at the classic mechanics level, which would
not be a well-defined concept at the quantum level since the “force” on a particle/field would
be ill-defined. Of course, there might be some correspondence for the black holes concept at
the quantum level:

a. which might be the non-perturbative/confined point of the coupling constant, that

is, 4β1β2k0p0

4πM2 ≃ 1, according to (203). Let’s take an estimation for it: if there is a logarithm
enhancement for the running/walking (asymptotic behavior) of the coupling constant, then
the non-perturbative point need not be at k0 ≃M at all!

b. which might be the formation of a stable or meta-stable bound state, including mass-
less particles and driven by only the gravity, in that case, one can always treat a “black hole”
as a short-lived (“fast-evaporated”) bound state!

3.4 Uµ out a nutshell: generation of a non-linear QED

As for the scalar U field shown in (82), with the boundary condition [∂2U ]B 6= 0 for the
nontrivial P-4 type differential E.O.M ∂4Uµ = ... of Uµ, certainly we can’t generate a P-2
type linear E.O.M ∂2Uµ = ... for Uµ.

For short, see (165), if i∂ ≪ ΛU and 〈F λρ〉 ≫ F λρ − 〈F λρ〉, then we can get an approxi-
mately linear E.O.M for a free “P-2” type field Uµ. For detail, that is, if the characteristic
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energy scale µ ∼ pU for physical processes is far less than the energy scale ΛU , then (165)
would be reduced to

LU → −ΛU
[
ǫρα(U + U †)ρF

(U+U†)
βµ ∂αF βµ

(U+U†)
+ (cyclic for indices)

]
−m4

UU
†
µU

µ , (205)

and now, for an intuitively view, if F λρ has a large nonzero vacuum expectation value
〈F λρ〉 = Fǫλρ ≫ F λρ − 〈F λρ〉, then the main part of this kinetic energy term would include
only two ∂ symbol, with the form ∼ U∂∂U , so we can get an approximately linear E.O.M
for a free “P-2” type U(1) gauge field Uµ, see Appendix D.

Firstly we get the nonlinear E.O.M for mU = 0,

−ΛUX(µσ)(αβ) · ∂αF βµ
(U+U†)

= 0 , (206)

through the Euler-Lagrangian equation, where the tensor

X(µσ)(αβ) ≡
[
−ǫµβF (U+U†)

σα − ǫσαF (U+U†)
µβ

]
+ ǫρλF

λρ
(U+U†)

gαβgµσ

6= ǫρλF
λρ [−δρµδλβδλσδρα − δρσδλαδλµδρβ + gαβgµσ] (207)

is symmetric for the indices (µσ) and (αβ) (denoted with a round bracket), respectively.
Now, we can return to the point expressed at the beginning of this section, that is, if F λρ

has a large nonzero vacuum expectation value, 〈F λρ〉 = Fǫλρ + ... ≫ F λρ − 〈F λρ〉, then we
can get the approximately linear E.O.M for a free “P-2” type U(1) gauge field Uµ,

∂αF
ασ = 0 , with 〈F λρ〉 ≫ F λρ − 〈F λρ〉 , (208)

otherwise, we can only get a nonlinear E.O.M (206) with self-interaction for even a U(1)
gauge field Uµ.

Note, if we roughly set

∂αF βµ(U + U †) = 0 , F βµ
(U+U†)

6= 0 (209)

that might not give an nontrivial E.O.M, since the constraint of (209) is too strict, by con-
trast with the Bianchi identity, ∂αF βµ + (cyclic for indices) = 0.

4 Field Uµν

4.1 Lagrangian for Uµν: a form like GR

By taking the Minkovski space as background space, if we take the generalization of U →
Uµν = Uνµ, with the transform property of Uµν under the global group element V as

Uµν → V UµνV † , Uµν = Uµν
1 − iUµν

2 , (210)

where the indices µν means the transform is for each component of Uµν ; besides, the gauge
fixed condition and E.O.M are

p̂µU
µν = p̂νU

µν = 0⇒ −p̂4Uµν = −m4
UU

µν , (211)
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with the propagator in momentum space as [2]

Dµνρσ
F (U) =

−i
p4 + iǫ

ηµρηνσ + ηµσηνρ

2
, (212)

then the corresponding Lagrangian for the higgs-type tensor field Uµν should be

LU = −1
3
∂αF

†
βµν∂

αF βµν +m4
UU

†
µνU

µν

−Λ2
U

[
(U + U †)αν(U + U †)βµ∂

αF βµν
(U+U†)

+ (...)i(U−U†)

]
, U †

µνU
µν < 1 , (213)

where

Fβµν = +∂βUµν + ∂νUβµ + ∂µUβν , (214)

F †
αµν = +∂αU

†
µν + ∂νU

†
αµ + ∂µU

†
αν , (215)

F β
µν = ηβρFρµν = ηβρ (+∂βUµν + ∂νUβµ + ∂µUβν) . (216)

The term U †
ανU

†
βµ∂

αF βµν in (213) is a special 3-particle interaction term, and we will return
to consider this term in sections below, while for here we set ΛU = 0.

Formally, by coincidence, if
Uµν = g̃µν = −gµν (217)

is the metric tensor of the space-time, we can find

F β
µν ∼ 2Γβµν or Fβµν ∼ 2Γβµν (218)

where Γ is just the Christoffel connection

Γβµν =
1

2

(
−∂β g̃µν + ∂ν g̃βµ + ∂µg̃βν

)
, (219)

Γβµν = g̃βρΓρµν =
1

2
g̃βρ

(
−∂β g̃µν + ∂ν g̃βµ + ∂µg̃βν

)
, (220)

where the minus sign in the underlined term is from the different definition for the metric
tensor, see (217). For the detail, we just need see the definition of the affine connection Γ:
firstly, see the definition of a “translation”

Aµ(P → Q) = Aµ(P )− ΓµνλA
ν(P )dxλ , (221)

and, secondly, with the unitary property A2(P → Q) = A2(P ), we can get a D.E. (to the
order of (dx)1),

∂µg̃νλ − g̃αλΓανµ − g̃ναΓαλµ = 0 (222)

so, the different definition for the metric tensor would influence the contraction of indices
and then give an extra minus sign.

However, there is a new result, that is, if we still take the form Γ ∼ U∂U as the gauge
field to construct a gravity theory, then, from the Lagriagian (213), the EOM of gravity wave
would be

∂2Γβµν = 0⇒ ∂4g̃µν = 0, (223)

rather than the Einstein gravity wave equation in weak-field approximation as

∂2g̃µν = 0, (224)
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which is deduced from the Einstein equation or the corresponding action:

Gµν = Rµν −
1

2
Rg̃µν = 0 ⇔ S =

∫
d4x

√
−g̃R , (225)

where

R = g̃µνRµν , (226)

Rµν = Rλ
µνλ, (227)

Rρ
λµν = −∂νΓρλµ + ∂µΓ

ρ
λν − ΓσλµΓ

ρ
σν + ΓσλνΓ

ρ
σµ (228)

are the scalar curvature, Ricci curvature tensor and Riemann curvature tensor, respective-
ly. If our E.O.M with ∂4 is true, maybe we can partly understand why Einstein gravity is
secretly the square of Yang-Mills theory. [12] That is, if we treat the E.O.M ∂4Uµν = 0 for
the classic gravity field, it is just the square of a E.O.M ∂2Aµ = 0 for ordinary gauge fields,
see (23,24), differing from the case in Section 3.3.1.

For the self-interaction of Uµν , like the definition of the field strength for a non-Abelian
gauge field Aiα as

F i
αβt

i = ∂αA
i
βt
i − ∂βAiαti − ig[Aiαti, Ajβtj ] , (229)

and the “field strength Fαβµ of field strength Fβµ of Uµ” in (159), we would give a definition
of the field strength for Fαβµν of field strength Fβµν of Uµν as (anti-symmetric for αν)

Fαβµν = (−∂αFβµν + ∂νFβµα)− ησσ
′

(FσµνFβσ′α − FσµαFβσ′ν) . (230)

with the correspondence to (226,227,228) for the indices as

Fαβµν ≡ RUαβµν ∼ Rβµνα , (231)

UαβFαβµν = RUµν ∼ Rµν , (232)

UµνRUµν = RU ∼ R . (233)

We could also designate

Fσµ[νFβσ′α] ≡ FσµνFβσ′α − FσµαFβσ′ν (234)

for some simplicity. Then the Lagrangian could be written as

LU = −1
3
F †
αβµνF

αβµν +m4
UU

†
µνU

µν

−Λ2
U

[
(U + U †)αν(U + U †)βµi∂

αiF βµν
(U+U†)

+ (...)i(U−U†)

]
. (235)

However, here we would ignore this kind of construction for (230) and the Lagrangian form
in (235), and that would not influence the results we concerned in this paper (that is, the
kinetic energy term of of Uµν and the interaction term of Uµν and matters in the Lagrangian).
For the detail, although the first term for the r.h.s of (230)

−∂αFβµν + ∂νFβµα

= −∂α (−∂βUµν + ∂νUβµ + ∂µUβν) + ∂ν (−∂βUµα + ∂αUβµ + ∂µUβα)

= ∂α∂βUµν + ∂ν∂µUβα − ∂α∂µUβν − ∂ν∂βUµα (236)

would not be a trivial construction, however, if we choose the gauge fixed condition ∂µU
µν =

∂νU
µν = 0 for deducing the E.O.M, then the construction for (236) is really trivial.
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4.2 Version I: Uµν coupled to intrinsic charges

1. The interaction Lagrangian

Like the case of U in (72), we can write the dynamical EOM of Uµν in the form as

∂4Uµν = Jµν (237)

where Jµν is not the energy-momentum tensor Tµν in Einstein equation, and the correspond-
ing interaction term

LI = −αQΛ [(U + U †) + i(U − U †)]µνψ̄η
µνψ

−βQψ̄[F (U+U†)
αµν + iF (U−U†)

αµν ](γαηµν + γµηαν + γνηµα)ψ

+(higher-order operators) . (238)

The second term in (238) means that Uµν doesn’t affect the kinetic energy of matter field
ψ through its VEV 〈Uµν〉 ∼ ηµν = diag(1,−1,−1,−1). For the definition of field strength

F
(U+U†)
αµν = Fαµν(U + U †), see (216).

We don’t consider terms as

LI = −αΛUµν
1 ψ̄[σµασνβ(γ

αi∂β + ηαβ)]ψ (239)

in this work.

2. The E.O.M for Uµν of Version I

With the Lagrangian (213,238), we can get the dynamical equation of Uµν from the
Euler-Lagrangian equation (37), see (416) in Appendix D, as

− ∂4Uσρ = −m4
UU

σρ + Jσρ , (240)

with the gauge fixed condition ∂µU
µν = ∂νU

µν = 0, and

Jσρ = +αQΛ ψ̄ησρψ

−3βQ∂τ ψ̄(γτησρ + γσητρ + γρηστ )ψ . (241)

3. Quantization and the effective potential for Version I

Now we can also write an effective potential mediated by Uµν . The amplitude of the
process in Fig. 4-(a) could be written as11

iMa = ūs
′

i

{
α1 Λ

ηµρηνσ + ηµσηνρ

2
ηµν

+(γβηµν + γµηβν + γνηµβ)

·[iqβ
ηµρηνσ + ηµσηνρ

2
+ (βµν → νβµ) + (βµν → µβν)]

}
us

· −i
q4 + iǫ

ηρρ
′

ησσ
′

+ ησρ
′

ηρσ
′

2

11As in (65,170,201), for simplicity, here we can only consider the contributions from U1, and, for the
contributions from U2, the result just need a double.
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·ūr′i
{
α2 Λ

ηµ
′ρ′ην

′σ′ + ηµ
′σ′ην

′ρ′

2
ηµ

′ν′

−(γβ′

ηµ
′ν′ + γµ

′

ηβ
′ν′ + γν

′

ηµ
′β′

)

·[iqβ′

ηµ
′ρ′ην

′σ′ + ηµ
′σ′ην

′ρ′

2
+ (β ′µ′ν ′ → ν ′β ′µ′) + (β ′µ′ν ′ → µ′β ′ν ′)]

}
ur

= −i ·
{
−4α1α2Λ

2

q4
+ i

18α1β2Λ(v2 − v1) · q
q4

− 108β1β2
q2

}
· 2mδss′2mδrr′

= −i ·
{
−4α1α2Λ

2

|q|4 + i
18λα1β2Λ|q|
|q|4 +

108β1β2
|q|2

}
· 2mδss′2mδrr′ (242)

with (v2−v1) ·q ≡ λ|q|, α1β2 = α2β1 , and, −∞ < λ < +∞ was defined in (67), particularly,
for NR case, λ ≃ 0.

Then, by comparing with the Born approximation to the scattering amplitude in non-
relativistic quantum mechanics, see (69), according to the optical theorem, we can get the
effective potential, as

V (r) = +
Λ24α1α2

4π
r +

108β1β2
4π

1

r
, (243)

Apparently, it’s impulsive for two particles with the same charge. And, we can find the effect
potential form of Uµν in (243) is same as the one of U in (72).

4.3 Version II: Uµν coupled to momentum

1. The interaction Lagrangian

In the case of weak field approximation, still by taking the Minkovski space as background
space, the action is written as

S =

∫
d4xL. (244)

and, another version of the interaction term of Uµν could be written as

LI = −αQΛ[(U + U †) + i(U − U †)]µν) · ψ̄
1

M
(ηµνm+ γµi∂ν + γνi∂µ)ψ

−βQ[F (U+U†) + iF (U−U†)]αµν · ψ̄[
1

M
(ηµνi∂α + ηανi∂µ + ηαµi∂ν)

+
1

M2
(γαi∂µi∂ν + γµi∂αi∂ν + γνi∂αi∂µ) +

1

M3
(i∂αi∂µi∂ν)]ψ

−αQ Λ

M
[(U + U †) + i(U − U †)]µν)V

µν(ψ)

−βQ 1

M
[F (U+U†) + iF (U−U†)]αµνV

αµν(ψ)

+(higher-order operators), (245)

with the definition of field strength F
(U+U†)
αµν = Fαµν(U + U †) in (216). As in (197), we set

m = 0 in (245). And, for a simple calculation, we only consider the terms below,

LI = −αQΛ[(U + U †) + i(U − U †)]µν) · ψ̄
1

M
(γµi∂ν + γνi∂µ)ψ

−βQ[F (U+U†) + iF (U−U†)]αµν · ψ̄[
1

M
(ηµνi∂α + ηανi∂µ + ηαµi∂ν)]ψ . (246)
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The V (...)(ψ) tensors are constructed from the interactive term V (ψ), such as:
a. the scalar-scalar type current-current-coupled term V (ψ) = gψ̄ψφ
(including the mass term V (ψ) = mψψ̄ψ as particular case),

b. the vector-vector type current-source-coupled term V (ψ) = eψ̄γµψA
µ,

c. the vector-vector type current-current-coupled term V (ψ) = Gψ̄γµψ · ψ̄γµψ,
with the corresponding construction for

a. V µν(ψ) = gψ̄vµvνψφ,
b. V µν(ψ) = eψ̄γµψAν ,
c. V µν(ψ) = Gψ̄γµψ · ψ̄γνψ,

respectively. Similarly, we construct
a. V αµν(ψ) = gψ̄vαvµvνψφ,
b. V αµν(ψ) = eψ̄γαγµψAν ,
c. V αµν(ψ) = Gψ̄γαγµψ · ψ̄γνψ,

respectively, where {g, e, G} are coupling parameters and v is the velocity of matter field ψ.
Apparently, if {g, e, G} are small, then contributions from these terms could be omitted. We
might designate the operation of V (ψ)→ V µν(ψ) as “current-ization” (converting an energy
density scalar to an energy current tensor).

We don’t construct the UµνV
µν(ψ) terms as

V (ψ) · Tr
[
Uµν + U †

µν

]

or

V (ψ) ·
√
−det(Uµν + U †

µν),

since the two forms might lose the information of Uµν for the strong field cases.

2. The E.O.M for Uµν of Version II

With the Lagrangian (213,246), we can get the dynamical equation from the Euler-
Lagrangian equation (37), see (422) in Appendix D, as

− ∂4Uσρ = −m4
UU

σρ + Jσρ , (247)

with the gauge fixed condition ∂µU
µν = ∂νU

µν = 0, and

Jσρ = +αQΛψ̄
1

M
(γσi∂ρ + γρi∂σ)ψ

−3βQ∂τ (ψ̄[
1

M
(ησρi∂τ + ητρi∂σ + ητσi∂ρ)]ψ) + ... . (248)

Actually, we can treat the Λ term as the cosmological constant term, see the corresponding
linear impulsive potential in following (250).

3. Quantization and the effective potential for Version II

Now, omitting the contributions from UµνV
µν(ψ) terms in (245), with the Lagrangian

(213,246), we can write the effective potential mediated by Uµν corresponding to the ampli-
tude of the process in Fig. 4-(a), as12

iMa = ūs
′

i

{
α1 Λ

ηµρηνσ + ηµσηνρ

2

1

M
(γµiikν + γνiikµ)

12As in (242), for simplicity, here we can only consider the contributions from U1, and, for the contributions
from U2, the result just need a double.
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+
1

M
(ηµνiikβ + ηβνiikµ + ηµβiikν)

·[iqβ
ηµρηνσ + ηµσηνρ

2
+ (βµν → νβµ) + (βµν → µβν)]

}
us

· −i
q4 + iǫ

ηρρ
′

ησσ
′

+ ησρ
′

ηρσ
′

2

·ūr′i
{
α2 Λ

ηµ
′ρ′ην

′σ′ + ηµ
′σ′ην

′ρ′

2

1

M
(γµ

′

iipν
′

+ γν
′

iipµ
′

)

− 1

M
(ηµ

′ν′iipβ
′

+ ηβ
′ν′iipµ

′

+ ηµ
′β′

iipν
′

)

·[iqβ′

ηµ
′ρ′ην

′σ′ + ηµ
′σ′ην

′ρ′

2
+ (β ′µ′ν ′ → ν ′β ′µ′) + (β ′µ′ν ′ → µ′β ′ν ′)]

}
ur

≃ −i ·
{
−Λ

24α1α2k
0p0

M2

1

q4
− i6Λα1β2k

0p0(v2 − v1) · q
M

1

q4
− 18k0p0β1β2

M2

1

q2

}

·2mδss′2mδrr′

≃ −i ·
{
−Λ

24α1α2k
0p0

M2

1

|q|4 − i
6Λα1β2k

0p0λ|q|
M

1

|q|4 +
18k0p0β1β2

M2

1

|q|2
}

·2mδss′2mδrr′ (249)

with (v2 − v1) · q ≡ λ|q| and α1β2 = α2β1.
Then, by comparing with the Born approximation to the scattering amplitude in non-

relativistic quantum mechanics, see (69), we can get a similar form for the effective potential
as the one in (242),

V (r) = +
Λ24α1α2k

0p0

M24π
r +

18β1β2k
0p0

M24π

1

r
, (250)

where α1,2, β1,2 > 0, and, −∞ < λ < +∞ , particularly, for NR case, λ ≃ 0, as in (242).

Apparently, it’s impulsive for two particles with the same charge. And, we can find the
effect potential form of Uµν is same as the one of U in (72).

4.4 Matching of d.o.f: generation of a linear 3rd-order tensor ver-
sion QED

1. Detection and matching of d.o.f

If the metric tensor gµν corresponds the Uµν field in this section, then the gauge fields
would not be gµν but F α

µν defined in (216) or Γλµν defined in (220), and, gµν is just the BKG
effect (rather than field strength) of F λ

µν or Γλµν .

For the detection of gravity wave, by a analogy of the relation between the gauge field
Aµ and BKG field U , we can say that the Christoffel connection field Γλµν is a good d.o.f (the
real graviton) rather than gµν in the weak coupling case, however, since gµν with two tensor
indices corresponding to a quadrupole moment effect has been quite difficult to detect, the
Γλµν with three tensor indices would be more difficult to detect!
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2. The generation of a linear 3rd-order tensor version QED

In the weak field approximation, we can parameterize Uµν as

Uµν(x, x+ ǫ) = 1− igǫnαµνAαµν + ... , (251)

where Aαµν is a spin-1 particle for the index α.
By comparing (243) and (250) with (72), we can find that the effect potential form of

Uµν is same as the one of U . So, by treating each component of Uµν as a scalar U field, and
taking the field strength F α

µν defined in (216) to correspond to the gauge field, like (106),
maybe we can use the new field

Aαµν ≡
(ǫ[ρσα] − ǫ[σρα])

2
A[ρσ](µν) = φ(x)F α

µν , φ(x)
†φ(x) ≃ 1 , (252)

to generate a linear QED with respect to the index α for each µν component of Aαµν , where
the square and round brackets are used for the anti-symmetric and symmetric indices, re-
spectively. And, with the kinetic energy term form (∂F )2, the E.O.M of a free Aαµν would
be

p̂2Aαµν = m2Aαµν . (253)

4.5 Uµν out a nutshell: the generation of Einstein’s GR

4.5.1 A classic field Uµν

Assuming Uµν is a real-valued field, we can define the decompositions

uµν1 ≡ gµν ≡ ηµν + hµν , (254)

uµν2 ≡
√
−gηµν = ηµν + (

√
−g − 1)ηµν , (255)

Uµν ≡ uµν1 + uµν2 = 2ηµν + hµν + (
√
−g − 1)ηµν , (256)

for a general case of (256), it’s allowed to set the mixing angle as tuning parameter, as

Uµν ≡ cos θ · uµν1 + sin θ · uµν2 . (257)

Here, for dealing with the complex term
√−g =

√
−det(gµν) =

√
−det(uµν1 ), we introduced

a new tensor field uµν2 (actually a scalar one, nevertheless with the consistent propagator
form and attractive forces with uµν1 ) as a “gauge singlet” (while the spin-2 u2 in a adjoint
representation) of the underlying gauge group corresponding to the interaction mediated by
U = u1 + u2.

We don’t introduce a spin-1 field for Uµν in (256), since that would correspond to an
anti-symmetric tensor, which could be corresponding to the vector Uµ case, as shown in
(106) or (175).

Then, for the weak field approximation, we could concentrate only on the fluctuation
part of Uµν , as

Uµν = 2ηµν + V µν , (258)

V µν = hµν + (
√−g − 1)ηµν . (259)
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Based on a flat space background, with the coupling constant such as gravitational constant
G absorbed in the kinetic energy term of Uµν or V µν , the Lagrangian term L0 without V µν

and the interaction term LV with coupling to V µν could be written as

L0 = ηµνψ̄γµi∂νψ − ψ̄mψ , (260)

LV = hµνψ̄γµi∂νψ

+(
√
−g − 1)ηµνψ̄γµi∂νψ − (

√
−g − 1)ψ̄mψ , (261)

L = L0 + LV = gµνψ̄γµi∂νψ − ψ̄mψ
+(
√−g − 1)(g − h)µνψ̄γµi∂νψ − (

√−g − 1)ψ̄mψ

=
√
−ggµνψ̄γµi∂νψ −

√
−gψ̄mψ

−(
√
−g − 1)hµνψ̄γµi∂νψ

√−g≃1−−−−→ ≃
√
−ggµνψ̄γµi∂νψ −

√
−gψ̄mψ , (262)

then the action would be

S =

∫
d4x
√
−g

(
gµνψ̄γµi∂νψ − ψ̄mψ

)
, (263)

like the term given in Ref. [13].

Besides, we list two more points about u1 and u2:
1. Are u1 and u2 independent? Yes! Since that u1 could determine u2, but not vice

versa.
2. What is u2, and how to detect u2? Surely u1 and u2 are both massless particles,

however, from the interaction Lagrangian term, their effects are mixed together and not able
to isolated from each other.

Generally to say, there could be many different ways to construct the action (or kinetic
energy term) of the field Uµν or V µν , which surely depends on one’s interpretation on the
interaction and the d.o.f, for instance, we might treat (262) as a nonlinear σ model type
theory, then the transition to a theory based on a curved space background would be s-
traightforward by taking uµν1 = gµν as the metric tensor and hiding the effect of uµν2 in the
space measure, just as the Einstein’s version.

4.5.2 Uµν out a nutshell: generation of a non-linear tensor field theory

As in (205,206) in Section 3.4, Einstein’s GR would be a non-linear E.O.M for tensor field
Uµν out of a nutshell.

In our framework, the Einstein’s version indeed holds just as a particular case, with some
evidences listed below:

1. From (225), Einstein’s action

S =

∫
d4x
√
−gR(gµν) =

∫
d4x

1

4
ηµνu

µν
2 R(u1) (264)

is a mixed term of u1 and u2, without the pure terms for u1 and u2.
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2. From (225), even in the flat space, Einstein’s action and equation

S =

∫ (
d4x
√
−g

)
R →

∫
d4xR =

∫
d4xgανgβµR

αβµν

Gµν = Rµν −
1

2
Rgµν → Rµν = 0 ∼ (g∂∂g)µν = 0 (nonlinear D.E.) (265)

is a non-linear differential equation(D.E.) constituent with only multi-field coupled terms(for
kinetics information mixed with interaction information) rather than an linear differential
E.O.M of field gµν with the crucial term p̂Ngµν with N a positive integer (for pure kinetics
information)

p̂Ngµν = 0 (linear D.E.) , (266)

which seems like the former one (265), Einstein’s GR, is an uncompleted version for the
E.O.M, but only a part picked from a complete dynamical E.O.M. For a more obvious view,
just like (205, 208), we can take the E.O.M of a non-Abelian gauge field for example, as

∂µF
iµν + gǫijkAjµF

kµν = Jν

= ∂µ(∂
µAiν − ∂νAiµ) + gǫijkAjµ(∂

µAkν − ∂νAkµ) ,
(if i∂ ∼ k ≪ 1)→ gǫijkAjµ(∂

µAkν − ∂νAkµ) = Jν . (267)

Actually, the action for free graviton in flat space in (265), is just corresponding to
the second term in the complete Lagrangian (213)! Well, the term UµνUαβR

αβµν
U is truly a

3-particle interaction term, but, it’s really a term with the least number of derivative for
generating the E.O.M, RUµν = 0, although which is a non-linear one as in (265).

3. Besides, if we define U = u1 + u2 as in (256) for the complete information of gravity,
then the term

L = u2 · R(u1) =
1

4
ηρλu

ρλ
2 · u1µνu1αβRαβµν

u1 (268)

is really the term with the least number of derivative for including complete information
from both u1 and u2, otherwise, for instance, either ηαβR

αβµν
u1

or ηµνR
αβµν
u1

would lose the
complete tensor-information of u1.

4.5.3 Is that true for gµν = Uµν?

Note that, in (258),
Uµν = 2ηµν + V µν , (269)

strictly speaking, the ηµν term separated from Uµν would contribute to the complete inter-
action rather than be roughly omitted for the strong field cases especially, or contribute to
mass corrections for particles for the weak-coupled cases.

I. Indistinguishability between metric gµν and field Uµν .

If we define the Minkovski metric tensor as

ηµν = η̄µν + 〈Uµν〉, (270)

where η̄µν could be treated as the absolute flat background space metric tensor independent
of 〈Uµν〉, then the complete metric tensor for the space could be

gµν = η̄µν + Uµν . (271)
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That means, the VEV of Uµν could contribute to the mass of particles. Besides, if there is
multi-vacuum structure for Uµν , then all the different VEV of Uµν might contribute to the
mass of particles.

However, if we don’t configure a flat background space metric tensor η̄µν independent of
〈Uµν〉, that is, η̄µν = 0, then, in the case of very strong gravity, since 〈Uµν〉 = 0, all matters
even the graviton, do not have the kinetic energy term η̄µν∂

µφ†∂νφ hence the E.O.M. At
that time, we would ask what is the d.o.f, and how to define the particle? Maybe we should
turn to Section 2.9, that is, now the current is the real field!

It’s difficult to check whether η̄µν = 0 or not, since it is usually mixed with Uµν ≃ 〈Uµν〉
for most cases. However, the point of Einstein’s equivalence principle is just to define
η̄µν = 0 and ηµν = 〈Uµν〉, that means, the flat background space was defined as gravity field
takeing the VEV. So, in the case of very strong gravity, when the decomposion of

gµν = ηµν + hµν

is unavailable, with hµν the fluctuation effects corresponding to gravity, that might generate
the picture that all matters do not have a kinetics term ηµν∂

µφ†∂νφ, with a doubt on what
matters should be. And, just in the case of very strong gravity, we might detect the breaking
of Einstein’s equivalence principle.

II. what is gµν, metric tensor or gravity field? Either-or!

The energy-momentum tensor are part of generators (“charge”) of the Lorentz group [14],
whose corresponding global group parameters could be a constant 2nd-order tensor εµν ,
which could be parameterized to be proportional to the metric tensor of Minkovski space,
εµν = Cηµν , rather than the coordinates. In this sense, the physical correspondence of εµν
could be treated as the “light speed”, which corresponding different kind of space, and might
not be unique. However, after localization, εµν → εµν(x), it is not metric any more but just
a field. So, there is no necessary reason for us to interpret the field gµν(x) = ηµν + εµν(x) as
the metric tensor. In analogy with the case of electromagnetic field, that is, a global group
parameter, labeling the electric quantum number of particles, becomes the electromagnetic
field after localization.

So, what is gµν , metric tensor or gravity field? Now, it’s Either-or! If gµν is metric
tensor, only being used to raise and lower the indices, then the theory is purely a geometric
dynamics (dynamics in curved space), without the need for a gravity field, but just a need
for constraint conditions to represent the curved character of the world, for instance, the
Einstein equation is just a most fundamental constraint. If gµν is a field, then, it isn’t innate
to be all the metric tensor but just a field defined on the space background. Ultimately, the
two kind of description should be equivalent. To be a field, gµν doesn’t directly impact the
curvature of space, but indirectly impact the space by coupling to the kinetic energy term
of matter, according to the equivalence principle(kinetic energy for inertia, interaction for
acceleration). Or, we can say, to take gµν for a covariant derivative and for a curved space
background metric tensor, should be equivalent.

The mass terms with no tensor indices interact with gravity field by coupling to a scalar
field,

√−g, constructed with gµν . Why is
√−g rather than other scalar variables? Because√−g represent the core properties of gµν , that is, on one hand, the core character of a

constant tensor εµν as the group parameter is the light speed, which could be corresponding
to g, the determinant of εµν for the most simpleness, on the other hand, the substantial
deviation of gµν from εµν , after a local Lorentz transformation, is the diagonal elements,
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more especially, the g00 and g33 component. Like the generalization of U → Uµ, we can treat√−g → gµν as a similar generalization.
Now that we have treated gµν just as a ordinary field, we should forget the concept of

curved space, and take the integration measure just as d4x rather than d4x
√−g, for avoiding

double counting of the effects of field gµν . And, all the indices should be raised and lowered
by ηµν , as they are defined in the flat Minkovski background space.

III. An ηµν for convenience.

Nevertheless, taking a flat space background independent from the gravity field is a good
choice for convenience to construct theories, on the other hand, the evolution of the (local
and topological) structure of space could be represented in a flat background space frame-
work by modifying the parameters and constraints of a theory, including the dimension of
space which might inevitably need to evolute as a dynamical operator in some cases, rather
than treating the metric tensor gµν with a definite rank as all the mixed information for
space and gravity, which might be troublesome and probably insufficient for some cases. In
a word, the metric tensor gµν serves for all the information of the space, but the gravity field
Uµν isn’t innate to be all the gµν but just a field defined on the space background.

5 Massive {U ,Uµ,Uµν} for superconductor

5.1 Effective potential for Cooper pair

(a) (b) (c)k1 k2

k′1 k′2

q

k1

k′1
k′2

k2 k2

k′2k′1

k1

(M,K,Γ)

Figure 5: The Feynman diagrams for the evolution of a Cooper pair.

In Ref. [15], a constant valued evolution amplitude(or, a square-well type potential in mo-
mentum space) was introduced as

iM ∼ −i e
2

M2
[θ(|k| − |k0|)− θ(|k| − |km|)]

with k =
1

2
(k2 − k1) , |k0| ≤ |k| ≤ |km| (272)

for the evolution of electron pair, that means, the pair maintains through an effective 4-
fermion-contacted interaction or an mutual interaction mediated by the vacuum, see Fig.
5-(a). Now we write (272) in the q space, where q = k1− k′1 = −(k2 − k′2) is the momentum
transfer between two electrons. With the relations

k =
1

2
(k2 − k1) =

1

2
[(k′2 − q)− (k′1 + q)] = k′ − q , |k0| ≤ {|k|, |k′|} ≤ |km| (273)

⇒ 0 ≤ |q = k′ − k| ≤ (|km| − |k0|) , (274)
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we have

iM ∼ −i e
2

M2
[θ(|q| − |q1|)− θ(|q| − |q2|)], with |q1| < |q2|, (275)

with |q1| = 0 and |q2| = |km| − |k0| ≡ m, M an unknown mass for balancing the dimension,
and the corresponding effective potential in coordinate space as

V (r) ∼
e2

M2

1

r3
[(|q2|r) · sin(|q2|r)− (|q1|r) · sin(|q1|r) + cos(|q2|r)− cos(|q1|r)]

=
e2

M2

1

r3
[(mr) · sin(mr) + cos(mr)− 1] . (276)

It’s allowed to model the evolution amplitude (275) as a “2 → 2” scattering amplitude,
with the time-like s-channel and space-like t-channel as

iMs−channel ∼ (ie)2
i

K2 − (M − iΓ
2
)2

∼ (ie)2(2π)δ(K2 − (M − iΓ
2
)2)

∼ −ie2 2π
Γ
{−θ[K2 + (M − iΓ

2
)2] + θ[K2 − (M − iΓ

2
)2]}

with K2 > 0, (277)

iMt−channel ∼ (ie)2
−ig00
q2 −m2

∼
ie2

q2 −m2
∼ −ie2 1

|q|2 +m2
,with q2 < 0 (278)

respectively. Then we get two points:
1. In the time-like channel (277), see Fig. 5-(b), M could be seemed as the mass and Γ

the width for an effective quasi-state |M〉 which mediated the evolution of electron pair, or
the M in (275), and K the time-like momentum approximately constrained in the vicinity
of the shell K2 = M2 to concentrate only the resonance enhancement part of the whole
amplitude (or, only the effects from the pole of the propagator ∼ i/(K2 −M2)) rather than
the K2 ≪M2 part as in Ref. [15].

2.On the other hand, if we treat the quasi-state |M〉 as a bound state constituted by the
electron pair, then we can model (275) to be (278), which is corresponding to a scattering
process mediated by a scalar particle, see Fig. 5-(c), with the propagator∼ i/(q2−m2) rather
than a symmetry-broken version QED with a massive photon propagator ∼ −igµν/(q2−m2),
for the reason that the Coulomb type potential is impulsive for two electrons while the
Yukawa type is attractive.

Now we will move on to our model in (7) and (166). As in (72,172,243), we can get the
amplitudes for massive {U, Uµ, Uµν},

iM0 ≃ −i
(
−Λ2α1α2

1

|q|4 −m4 + iǫ
− iΛλα1β2

|q|
|q|4 −m4 + iǫ

+ β1β2g
00 |q|2
|q|4 −m4 + iǫ

)

·2mδss′2mδrr′, (279)

iM1 ≃ −i ·
(
4Λ2α1α2

1

|q|4 −m4 + iǫ
− 2Λλα1β2

|q|
|q|4 −m4 + iǫ

+ 4β1β2
|q|2

|q|4 −m4 + iǫ

)

·2mδss′2mδrr′, (280)

iM2 ≃ −i ·
(
−4α1α2Λ

2 1

|q|4 −m4 + iǫ
− i · 18Λλα1β2

|q|
|q|4 −m4 + iǫ

+ 108β1β2
|q|2

|q|4 −m4 + iǫ

)

·2mδss′2mδrr′, (281)

58



and, in the finite temperature case,13 with picking up the real parts of the integration
results in Appendix C we can get the non-relativistic effective potentials (according to the
optical theorem),

V0(r) = −Λ
2α1α2

8πm2r
(cosmr − e−mr)− λΛα1β2

8πmr
[−(e−mr + sinmr)]

+
β1β2
8πr

(cosmr + e−mr), (282)

V1(r) =
4Λ2α′

1α
′
2

8πm2r
(cosmr − e−mr)− 2Λλ′α′

1β
′
2

8πmr
cosmr

+
4β ′

1β
′
2

8πr
(cosmr + e−mr), (283)

V2(r) = −4Λ
2α′′

1α
′′
2

8πm2r
(cosmr − e−mr) + 18Λλ′′α′′

1β
′′
2

8πmr
[−(e−mr + sinmr)]

+
108β ′′

1β
′′
2

8πr
(cosmr + e−mr) , (284)

where we can still treat Λ ≃ 0 so that the potentials would include only the β1β2 terms.
Now, we write two new potentials: one for a sign opposite,

V (r) = −V0(r) , (285)

and one for a combination,
V (r) = V0(r) + V1(r) , (286)

which would be used for a comparison in the figure below. The shape of potentials in (276),
(282- 283) and (285-286) are roughly plotted in Fig.(6).

2 4 6 8 10
r

-0.5

0.5

VHrL

Figure 6: The shape of different potentials. With setting e2

M2 = β1β2
8π

=
4β′

1β
′
2

8π
=

108β′′
1 β

′′
2

8π
= 1

and m = 1, the thin-solid, dotted, dashed and thick-solid lines are for (276), (282), (285)
and (286), respectively.

Mathematically, the reason for why the massive photon Aµ in a symmetry broken version
QED couldn’t give attractive potential as Uµ, is the different forms so that the singularity
structure of the propagator for Aµ and Uµ, for the former one a single pole while the latter
one two poles.

13See Section 2.2.2, the discussions about poles in propagator.
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5.2 What are {U, Uµ, Uµν}?
What are the quasi-particles {U, Uµ, Uµν} with mass m?

1.According to Fig. 6, the shapes of (276) and (282) are truly similar, so, we can employ
U to serve for the attractive forces in the s-wave pairing superconductors(low-temperature
superconductors).

2. Where is the effects from photon/phonon? Both U and Uµ aren’t photon, and, in
our framework, “photon/phonon” is a false concept, while only the {U, Uµ, Uµν} fields are
real. However, as in (101) we treat ∂U for massless U as the photon, here, from (282),
based on the fact that it’s attractive for even the same kind of charges, we can consider the
fluctuation ∂U for massive U as the phonon, and U as a kind of field(or quasi-particle) with
its corresponding “charge” for interaction is electric charge.

3. From (172,283), we can consider Uµ as a kind of field(or quasi-particle) with mass m,
and and its corresponding “charge” for interaction is a kind of moment, see (166).

4. Surely it’s allowed for the combination of the two effects from U and Uµ in the same
system. From Fig.(6), we can see that both the field U and Uµ could mediate attractive
interaction for two particles, the former one only for the charges while the latter one only for
the magnetic moments. We define the combined potential (286) to serve for the attractive
forces in the d-wave pairing superconductors(high-temperature superconductor).

5.The field U filled the coordinate space as a media for transferring interactions between
electrons in the condensate matters, with impulsive forces generated by massless U when
m ∼ km − k0 was small enough to be ignored, while attractive forces generated by massive
U when m ∼ km − k0 couldn’t to be ignored.

6. The core differences between U and Uµ are their masses and the couplings β. If the
couplings are corresponding to electric charges, then what is it that determined the mass?
As in Ref. [15], there is m ∼ km− k0, where k0 corresponds to the Fermi surface, so that, we
might get the relations below:

the stronger fluctuation of Fermi surface

⇔ the larger m (m ∼ km − k0)
⇔ the larger region for the allowed momentum q(since q < m) . (287)

However, there should be

(287) < the closer distance allowed for the two electrons

⇔ the stronger interaction between the two electrons , (288)

because of the non-perturbative properties for the Cooper-pair system, which would be dis-
cussed below.

5.3 Supplement to the matching for d.o.f

1. A ∼ ∂U ⇒ U ∼

∫
dxA.

Now that A ∼ ∂U could be corresponding to the photon, see (101), we can again confirm
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that U ∼

∫
dxA could be corresponding to a string, see (122).

2. U ∼ AA?
That is to ask:
“Could {U, Uµ, Uµν} be treated as spin-0, spin-1 and spin-2 bound states of di-photon,
respectively? Or, is there exist the effects for massive/massless photon condensation in a
symmetry maintained/broken version for QED?”

We should note that, as discussed in Section 2.8.3,only in the sense of that U is a group
element or a classic field, the parameterization, of taking U∂µU

† as the very one allowed
gauge particle degree of freedom Γµ, U∂µU

† = Γµ, is valid. However, in the sense of U is a
particle, the term ψ̄(U∂/U †)ψ in fact gives an effects mediated by two particles, U and U †.
Or, in another viewpoint , the parameterization of U∂µU

† = Γµ indicate the existence of a
composite gauge particle Γµ with the flavor quantum number {U, U †}, although a massless
bound states(with zero bound energy) is very bizarre.

3. U ∼ AÃ?
In the viewpoint of anti-particle, according to (26) and (27), U might be a composite of AÃ,
with Ã a tachyon(possibly corresponding to the quantum entanglement effects) or a phantom.

5.4 An origin of non-perturbative property.

With the Schrodinger equation, Cooper had given the binding energy of the ground state
for an clectron pair [15], as

E0 ∼
1

eb/g2 − 1
. (289)

The exponential form rather than a polynomial form indicates the sensitivity of the depen-
dence on the coupling g for the energy E0. For the reason, we might concentrate on the
multi-vacuum structure of the potential, see Fig. 6, that is, when g is small, the “position”
and existence of the ground state would even be sensitive on the depths of the potential
well(corresponding to the magnitude of g), needlessly to say the energy of the state or the
perturbative calculation in the vicinity of g = 0. Contrarily, when g is large, the “position”
of the ground state would be “frozen” in a definite well, so now the energy E0 seems able to
be computed perturbatively in the power expansion of 1/g in the vicinity of g =∞.

5.5 Cooper pair → Cooper cluster?

Now that we have the effective potential, it’s allowed to take further consideration on the
multi-body problems. We won’t give a complete calculation, but give some discussions.

As discussed in Section 2.6.2, the multi-body processes in Fig. 2-(d) could be renor-
malized by the restricted kinetics phase space in our framework, and, since there exist an
attractive force between each two electrons, it should be allowed for the existence of Coop-
er’s electron chain or cluster, just like the baryons with attractive three quarks for the
non-Abelian gauge theory case.

Is it in a stronger or weaker binding for (tetra/multi)-electron clusters than for Cooper’s
electron pairs? Well, that need a calculation to give a certain answer.
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6 Conclusion

An introduction for a new class of higgs type fields {U, Uµ, Uµν} , with a fourth order (P-4
type) differential equation as its equation of motion, motivated by the linear potential in the
lattice gauge theory, could provide a wealth of interaction forms, with some postulations on
convergence being taken.

In the case of U coupled to the intrinsic charges of matter fields, electromagnetic (E.M.)
Coulomb potential with an extra linear potential and Newton’s gravitation could be generat-
ed with the operators of different orders from the dynamics of U , respectively; that the two
kinds of forces appear in a single model with a relation on the coupling coefficients, might
be seemed as a kind of unification; besides, the linear potential generated in the E.M. case,
would correspond to the confinement/dark energy effects. Meanwhile, a nonlinear Klein-
Gordon equation could be generated as a low energy approximation of the dynamics of U .
Moreover, in the weak field case, the gauge symmetry could superficially arise, and a linear
QED could be generated by relating the field strength of U to the corresponding gauge field.

For the matter fields, with the multi-vacuum structure of a sine-Gordon type vector
field Aµ induced from U , a seesaw mechanism for gauge symmetry and flavor symmetry of
fermions could be generated, in which the heavy fermions could be produced. Besides, after
a P-4 generalization, by treating the fermion current as a P-2 type field, a possible way for
a renormalizable gravitation could be proposed.

The Coulomb potential in electromagnetism and gravitation could be generated by the
anti-symmetric part F µν of the field strength of a P-4 type vector field Uµ, when F µν is
coupled to the intrinsic charge current and momentum current of the matter fields, respec-
tively; and, it might be seemed as the second kind of unification for E.M. and gravitation by
generalizing the two currents as the two d.o.f of a same field; except for the Coulomb part in
each case, there is a linear and a logarithmic part in the E.M. case which might correspond
to the confinement in strong QED, while there is a linear and a logarithmic part in the
gravitation case which might correspond to the dark energy effects in the impulsive case and
dark matter effects in the attractive case, respectively. Besides, the symmetric part F

µν
of

the field strength of Uµ could also generate the same gravitation form as the F µν case; so,
it might be the third version for unification if we consider F µν only for E.M. and F

µν
only

for gravitation as two parts of a same field strength with different proportions, respectively.
Moreover, a nonlinear version QED could be generated as a low energy approximation of the
dynamics of Uµ, and a linear gravitation could be generated by relating the field strength of
Uµ to the corresponding gauge field.

There could be a linear 3rd-order tensor version QED generated, with the field strength
F αµν of a P-4 type tensor field Uµν corresponding to the gauge fields; for something out
our expectation, one thing should be noted, that is, at the quantum level, there wasn’t an
attractive potential generated by Uµν as in the case of GR at classic level, but an impulsive
Coulomb-type one combined with a linear part. Besides, Einstein’s general relativity could
be generated as a low energy approximation of the dynamics of Uµν . For an antisymmetric
tensor Uµν , that could be corresponding to the vector Uµ case.

For the massive {U, Uµ} in finite temperature case, attractive potentials for particles with
the same kind of charges could be generated, which might serve as candidate for interactions

62



maintaining Cooper pairs in superconductors, with the U case for the s-wave pairing ones
by taking the electric charge as interaction charge, and the Uµ case for the d-wave pairing
ones by taking the magnetic moment as interaction charge; etc.

About the framework of model-building itself, if the results in our calculations are effec-
tive for the real physical processes, then it would be said that the 1/p4 framework is a more
effective and more general one, by contrast to the the 1/p2 one.

From the redefinition for the d.o.f, x → φ = eip·x for the first quantization in quantum
mechanics, and φ→ U = eiφ in this paper, could we ask, whether there is a principle about
this redefinition of d.o.f (maybe we can call it “exponential-ization” or “wave-lization”)?
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A The covariant derivative

See Ref. [2] (the Chapter 15 in it).

The comparator U(y, x) and the definition of Dµ

Define the transformation property of the matter field ψ(x) as

ψ(x)→ V (x)ψ(x) = eiα(x)ψ(x). (290)

The derivative of ψ(x) in the direction of the vector nµ is defined by the limiting procedure

nµ∂µψ = lim
ǫ→0

1

ǫ
[ψ(x+ ǫn)− ψ(x)] , (291)

while the covariant derivative as

nµDµψ = lim
ǫ→0

1

ǫ
[ψ(x+ ǫn)− U(x+ ǫn, x)ψ(x)] , (292)

where
U(y, x) = eiφ(y,x), (293)

is defined as an abstract comparator U(y, x), with the restriction

U(x, x) = 1, [U(x, y)]† = U(y, x), (294)

and
U(y, x)→ eiα(y)U(y, x)e−iα(x). (295)

Note that, generally the value of U(x, z) can’t be directly derived from the product U(x, y)U(y, z),
and we denote that by U(x, y)U(y, z) ; U(x, z) for simplicity.

U(y, x) defined as Wilson line and Wilson loop

The U(y, x) can be realized in different forms, for example, the so-called Wilson line,
defined as

UP (y, x) ≡ exp

[
−ig

∫

P

dzµAµ(x)

]
, (296)

where the subscript P means the integral is taken along any path P that runs from x to yor,
the expansion form

U(x+ ǫn, x) = 1− igǫnµAµ(x) +O((gǫ)2) (297)

when an arbitrarily extracted constant g is small.
Sometimes, to obtain locally gauge invariant bricks, we take the path P in ( 296 ) to be

a closed one, and then we get the Wilson loop, defined as

UP (x, x) ≡ exp

[
−ig

∮

P

dzµAµ(x)

]
, (298)

where P is a closed path that returns to x. Similarly, one can work out the the expansion
form for UP (x, x) according to the Stokes’s theorem, for instance, by setting the path is the
small square in the (1, 2) plane

UP (x, x) = exp

[
−ig

2

∫

Σ

dσµνFµν

]
(299)

= 1− iǫ2gF12 +O(ǫ3). (300)
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where Σ is a surface that spans the closed loop P , dσµν is an area element on this surface,
and

Fµν = ∂µAν − ∂νAµ (301)

is the field tensor.
And now, consequently, we can get the transformation property

UP (x, x)→ eiα(x)UP (x, x)e
−iα(x), (302)

and, particularly for the Abelian group case here, we have

UP (x, x)→ UP (x, x), (303)

showing the gauge invariance of UP (x, x), and, for the non-Abelian group case, we just have

Tr[UP (x, x)]→ Tr[UP (x, x)]. (304)

Apparently, U(y, x) is introduced as the simplified version of UP (y, x) (since UP (y, x) is
not only the function of x and y but also of the path P , while U(y, x) is only the function
of x and y corresponding to ǫ and n), and, Wilson loop UP (x, x) is a kind of special Wilson
line UP (y, x)( since the value is invariant when the endpoint, where the integrand function
Aµ(x) takes a limited value, was taken out).

U(y, x) in the expression of Dµ

Apparently, there are

nµDµψ = lim
ǫ→0

1

ǫ
[ψ(x+ ǫn)− U(y, x)ψ(x)] , (y = x+ ǫn)

= lim
ǫ→0

1

ǫ
[ψ(x+ ǫn)− U(x, x)ψ(x) + U(x, x)ψ(x)− U(y, x)ψ(x)]

= lim
ǫ→0

1

ǫ
[ψ(x+ ǫn)− ψ(x) + U(y, x)[U(x, y)− U(x, x)]ψ(x)] (305)

= nµ
[
∂µψ(x) + U(y, x)∂µU

†(y, x)ψ(x)
]
, . (306)

It should be paid some attention to (305), in which the factor

U(x, y)− U(x, x) = U(x, y)− U(y, y) = [U(y, x)]−1 − [U(x, x)]−1

(with U(y, y) = U(x, x) = 1), (307)

was picked out since we have treat the second variable x to be the only argument of UP (y, x),
that is, we should keep the first variable the same.

Actually, UP (x, y) is more general than UP (x, x), since for some UP (x, x) there would be
UP (x, x) = 0 in the case of lattice size a→ 0.

Reminding the definition of the connection field as a MaurerCCartan 1-form of the gauge
group element V ,

Bµ(x) = V (x)∂µV
†(x), (308)

we can get the traditional definition of covariant derivative from (306)

Dµ = ∂µ +Bµ , (309)

and get a map from (306), see the underlined term, as

U(x, y) = eiφ(y,x) → V (x) = eiα(x) . (310)
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B Integration formulas for Fourier transformation

B.1 mU = 0

See Ref. [2].

We have
∫

d3q

(2π)3
eiq·x

1

|q|2

=
1

4π2

∫ ∞

0

dq q2
eiqr − e−iqr

iqr

1

q2

=
1

4π2ir

∫ ∞

0

dq (eiqr − e−iqr)1
q

=
1

4π2ir

∫ +∞

−∞
dq eiqr

1

q

=
1

4π2ir
(iπ) (311)

=
1

4πr
, (312)

and
∫

d3q

(2π)3
eiq·x

1

|q|4

=
1

4π2

∫ ∞

0

dq q2
eiqr − e−iqr

iqr

1

q4

=
1

4π2ir

∫ ∞

0

dq (eiqr − e−iqr) 1
q3

=
1

4π2ir

∫ +∞

−∞
dq eiqr

1

q3

=
1

4π2ir
(
−iπr2

2
) (∼ iπ · (ir)

2

2
6= i2π · (ir)

2

2
)

= − 1

8π
r , (313)

here we use the differential property of the Fourier transformation to get (313) from (312),
as14

14Note, for the integration

1

4π2ir

∫ ∞

0

dq (eiqr − e−iqr)
1

q3

=
1

4π2ir

∫ ∞

0

dq
i2sin qr

q3

=
1

2π2r

∫ ∞

0

dq
sin qr

q3

=
1

2π2r
r2

∫ ∞

0

d(qr)
sin qr

(qr)3

=
1

2π2r
r2

∫ ∞

0

dz
sin z

z3
=? > 0? (314)

if we choose the contour contain z = 0, then Res=0; but, the integration shouldn’t be 0 ! So, that reminds
us the contour may not be the right one!
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1

q
↔ iπ · sign(x) , (see Eq. (311))

in
dn

dqn
F (q) ↔ xnf(x) (315)

i2
d2

dq2
1

q
= −2 · 1

q3
↔ x2 · iπ · sign(x)

1

q3
↔ −iπx2

2
· sign(x) (316)

Besides, we have

∫
d3q

(2π)3
eiq·x

1

|q|3

=
1

4π2

∫ ∞

0

dq q2
eiqr − e−iqr

iqr

1

q3

=
1

4π2ir

∫ ∞

0

dq (eiqr − e−iqr) 1
q2

=
1

4π2ir

∫ +∞

−∞
dq eiqr

[
θ(q)− θ(−q)

q2

]
(θ is the Heaviside step funtion)

=
1

4π2ir
[−i2r(log r + γE − 1)] (Euler constant γE ≃ 0.577)

= − 1

2π2
(log r + γE − 1) . (317)

In a intuitive view, since there is 1
q2
[θ(q)− θ(−q)]q=0 ∼ δ(q), the constant in (317) would

arise from the δ(q) in the integrand function; and, in the sense of derivative for the Fourier
transformation, as shown in (315), a logarithm is allowed to arise in this integration.

B.2 mU 6= 0

Firstly, we do the expansion

1

q4 −m4 + iǫ
=

1

(q − q(1))(q − q(2))(q − q(3))(q − q(4))
(318)

q(1) = −im− ǫ, q(2) = im+ ǫ, q(3) = −m+ iǫ, q(4) = m− iǫ . (319)

Then, with

(q(2) − q(1))(q(2) − q(3))(q(2) − q(4)) = −i4m3, (320)

(q(3) − q(1))(q(3) − q(2))(q(3) − q(4)) = −4m3, (321)

we can get

∫
d3q

(2π)3
eiq·x

1

|q|4 −m4 + iǫ

=
1

4π2

∫ ∞

0

dq q2
eiqr − e−iqr

iqr

1

q4 −m4 + iǫ

=
1

4π2ir

∫ ∞

0

dq (eiqr − e−iqr) q

q4 −m4 + iǫ
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=
1

4π2ir

∫ +∞

−∞
dq eiqr

q

q4 −m4 + iǫ

=
1

4π2ir

∮

C

dq eiqr
q

q4 −m4 + iǫ

=
1

4π2ir
2πi(Res(2) +Res(3))

=
1

4π2ir
2πi(

q(2)e
iq(2)r

−i4m3
+
q(3)e

iq(3)r

−4m3
)

=
1

8πm2r
(−e−mr + e−imr)

=
1

8πm2r
[(cosmr − e−mr)− i sinmr], (322)

where the contour of the integrals
∮
C
was closed above in the complex plane and the residue

of the simple pole at q(2) and q(3) were picked up.

∫
d3q

(2π)3
eiq·x

|q|
|q|4 −m4 + iǫ

=
1

4π2

∫ ∞

0

dq q2
eiqr − e−iqr

iqr

q

q4 −m4 + iǫ

=
1

4π2ir

∫ ∞

0

dq (eiqr − e−iqr) q2

q4 −m4 + iǫ

=
1

4π2ir

∫ +∞

−∞
dq eiqr

[
q2[θ(q)− θ(−q)]
q4 −m4 + iǫ

]
(θ is the Heaviside step funtion)

=
1

4π2ir
2πi(Res(2) +Res(3))

=
1

4π2ir
2πi(

q2(2)e
iq(2)r

−i4m3
+
−q2(3)eiq(3)r

−4m3
)

=
1

8πmr
(−ie−mr + e−imr)

=
1

8πmr
[cosmr − i(e−mr + sinmr)], (323)

and
∫

d3q

(2π)3
eiq·x

|q|2
|q|4 −m4 + iǫ

=
1

4π2

∫ ∞

0

dq q2
eiqr − e−iqr

iqr

q2

q4 −m4 + iǫ

=
1

4π2ir

∫ ∞

0

dq (eiqr − e−iqr) q3

q4 −m4 + iǫ

=
1

4π2ir

∫ +∞

−∞
dq eiqr

q3

q4 −m4 + iǫ

=
1

4π2ir
2πi(Res(2) +Res(3))

=
1

4π2ir
2πi(

q3(2)e
iq(2)r

−i4m3
+
q3(3)e

iq(3)r

−4m3
)

=
1

4π2ir
2πi(
−im3e−mr

−i4m3
+
−m3e−imr

−4m3
)

69



=
1

8πr
(e−mr + e−imr)

=
1

8πr
[(cosmr + e−mr)− i sinmr]. (324)

C Loop integrations

C.1 Loop integrations A

Define

Il =

∫
d4l

1

l4(l − q)4 . (325)

With the Feynman parameters(F.P.) and Wick rotation(W.R.), we can compute Il as

Il =

∫
d4l

1

(l2)2[(l − q)2]2
(F.P.)
=====

∫
d4l

∫ 1

0

dx
x(1 − x)

[xl2 + (1− x)(l − q)2]4
Γ(2 + 2)

Γ(2)Γ(2)

= 6

∫ 1

0

dx x(1− x)
∫
d4l

1

[xl2 + (1− x)(l − q)2]4

= 6

∫ 1

0

dx x(1− x)
∫
d4l

1

{[l − (1− x)q]2 + [x(1− x)]q2}4

l → l′
===== 6

∫ 1

0

dx x(1− x)
∫
d4l′

1

{l′2 + [x(1− x)]q2}4

(W.R.)
===== i6

∫ 1

0

dxx(1 − x)
∫
d4lE

1

{−l2E + [x(1− x)]q2}4

= i6

∫ 1

0

dx x(1− x)
∫
dΩ

∫
d|lE|

|lE |3
(l2E +∆2)

4

= i12π2

∫ 1

0

dx x(1− x)
∫ +∞

0

d|lE|
|lE|3

(l2E +∆2)
4

(I.R.)−−−−→
(lE ≥ µ)

i12π2

∫ 1

0

dx x(1− x) ∆2 + 3µ2

12 (∆2 + µ2)3

= iπ2

∫ 1

0

dx x(1− x) ∆2 + 3µ2

(∆2 + µ2)3
, (326)

with the variables

q2 < 0 ⇒ ∆2 = −[x(1− x)]q2 > 0 , (327)

l→ l′ = l − (1− x)q ⇔ l = l′ + (1− x)q, (328)

and the relations

q · l = −qE · lE , qE · lE =

3∑

i=0

qiEl
i
E , (329)
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where the 4-dimensional Euclidean lE-integration was taken in the spherical coordinates,
denoted as [2]

x = r(sinω sin θ cosφ, sinω sin θ sinφ, sinω cos θ, cosω)

with 0 ≤ ω, θ < π, 0 ≤ φ < 2π, (330)

d4x = drr3 · dΩ = drr3 · (dω sin2 ωdθ sin θdφ), (331)∫
dΩ = 2π2 . (332)

Since there is only infrared divergences in this integration like (79), here we impose a
very large µ (say, µ > αΛ) as the infrared cutoff to renormalize the infrared divergences,
with the result of the integration

∫ +∞

µ

lE
3

(lE
2 +∆2)4

dlE

=

∫ +∞

µ

lE
2

2
· (2lE)

(lE
2 +∆2)4

dlE =
1

2

∫ +∞

µ2

lE
2

(lE
2 +∆2)4

dlE
2

=
1

2

∫ +∞

µ2

t

(t+∆2)4
dt =

1

2

∫ +∞

µ2+∆2

z −∆2

z4
dz (z = t +∆2 , t = z −∆2)

=
1

2

∫ +∞

µ2+∆2

1

z3
dz − ∆2

2

∫ +∞

µ2+∆2

1

z4
dz

=
1

2
·
[
− 1

2z2

]+∞

µ2+∆2

− ∆2

2
·
[
− 1

3z3

]+∞

µ2+∆2

=
1

2
·
[

1

2 (µ2 +∆2)2

]
− ∆2

2
·
[

1

3 (µ2 +∆2)3

]

=
1

4 (µ2 +∆2)2
− ∆2

6 (µ2 +∆2)3

=
∆2 + 3µ2

12 (∆2 + µ2)3
. (333)

Let’s finish the integration of x, as

Il = iπ2

∫ 1

0

dx x(1− x) ∆2 + 3µ2

(∆2 + µ2)3

= iπ2

∫ 1

0

dx x(1− x) q2(x− 1)x+ 3µ2

(q2(x− 1)x+ µ2)3

= iπ2

∫ 1

0

dx f(x) ,

=
iπ2

(q2)3
· 1
2
[(2a1 log |1− xa| − 2a1 log | − xa|)

+

(
2a2

xa − 1
− 2a2

xa

)
+

(
a3
x2a
− a3

(xa − 1)2

)

+ (2b1 log |1− xb| − 2b1 log | − xb|)

+

(
2b2

xb − 1
− 2b2

xb

)
+

(
b3
x2b
− b3

(xb − 1)2

)
]

(I.R.)−−−−→
(lE ≥ µ)

iπ2

(q2)3
·
(
q4

4µ2

)
= −iπ

2

4

1

q4
·
(−q2
µ2

)
, (334)
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where

f(x) = x(1− x) q2(x− 1)x+ 3µ2

(q2(x− 1)x+ µ2)3

=
1

(q2)3

[
a1

(x− xa)
+

a2
(x− xa)2

+
a3

(x− xa)3

+
b1

(x− xb)
+

b2
(x− xb)2

+
b3

(x− xb)3
]
, (335)

with

xa =
1

2
−

√
1

4
− µ2

q2
< 0 , xb =

1

2
+

√
1

4
− µ2

q2
> 1 , (336)

and

a3 = −(xa − 1)xa[3µ
2 + q2(xa − 1)xa]

(xa − xb)3
,

a2 =
3µ2 [x2a + 2xa(xb − 1)− xb]− q2(xa − 1)xa (x

2
a − 4xaxb + xa + 2xb)

(xa − xb)4
,

a1 = −3µ
2 [x2a + xa(4xb − 3) + (xb − 3)xb] + q2 [x2a (6x

2
b − 6xb + 1) + 2xa(2− 3xb)xb + x2b ]

(xa − xb)5
,

b3 =
(xb − 1)xb[3µ

2 + q2(xb − 1)xb]

(xa − xb)3
,

b2 =
3µ2[xa(2xb − 1) + (xb − 2)xb]− q2(xb − 1)xb (−4xaxb + 2xa + x2b + xb)

(xa − xb)4
,

b1 = −a1 .
(337)

C.2 Loop integrations B.

Define

Il =

∫
d4l

1

l2(l − q)4 . (338)

With the Feynman parameters(F.P.) and Wick rotation(W.R.), we can compute Il as

Il =

∫
d4l

1

l2[(l − q)2]2
(F.P.)
=====

∫
d4l

∫ 1

0

dx
2(1− x)

[xl2 + (1− x)(l − q)2]3

=

∫ 1

0

dx [2(1− x)]
∫
d4l

1

{[l − (1− x)q]2 + [(1− x)− (1− x)2]q2}3
l → l′
=====

∫ 1

0

dx [2(1− x)]
∫
d4l′

1

{l′2 −∆2}3
(W.R.)
===== i

∫ 1

0

dx [2(1− x)]
∫
d4lE

1

{−l2E −∆2}3

= −i
∫ 1

0

dx [2(1− x)]
∫
d4lE

1

{l2E +∆2}3
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= −i
∫ 1

0

dx [2(1− x)]
∫
dΩ

∫
d|lE|

|lE|3
{|lE|2 +∆2}3

= −i(2π2)

∫ 1

0

dx [2(1− x)]
∫ +∞

0

d|lE|
|lE|3

{|lE|2 +∆2}3
(I.R.)−−−−→

(lE ≥ µ)
−i(2π2)

∫ 1

0

dx [2(1− x)]
[

∆2 + 2µ2

4 (∆2 + µ2)2

]

= −iπ2

∫ 1

0

dx (1− x)
[
∆2 + 2µ2

(∆2 + µ2)2

]
(339)

where

l′ = l − (1− x)q ⇔ l = l′ + (1− x)q , (340)

q2 < 0 ⇒ ∆2 = −[(1− x)− (1− x)2]q2 > 0 . (341)

Since there is only infrared divergences in this integration like (79), here we impose a very
large µ (say, µ > αΛ) as the infrared cutoff to renormalize the infrared divergences, with the
result of the integration

∫ +∞

µ

lE
3

(lE
2 +∆2)3

dlE

=

∫ +∞

µ

lE
2

2
∗ (2lE)

(lE
2 +∆2)3

dlE =
1

2

∫ +∞

µ2

lE
2

(lE
2 +∆2)3

dlE
2

=
1

2

∫ +∞

µ2

t

(t+∆2)3
dt =

1

2

∫ +∞

µ2+∆2

z −∆2

z3
dz (z = t+∆2, t = z −∆2)

=
1

2

∫ +∞

µ2+∆2

1

z2
dz − ∆2

2

∫ +∞

µ2+∆2

1

z3
dz

=
1

2

(
−1
z

)+∞

µ2+∆2

− ∆2

2

(
− 1

2z2

)+∞

µ2+∆2

=
1

2

(
1

(µ2 +∆2)

)
− ∆2

2

(
1

2 (µ2 +∆2)2

)

=

(
1

2 (µ2 +∆2)
− ∆2

4 (µ2 +∆2)2

)

=
∆2 + 2µ2

4 (∆2 + µ2)2
. (342)

Let’s finish the integration of x, as

Il = −iπ2

∫ 1

0

dx (1− x)
[
∆2 + 2µ2

(∆2 + µ2)2

]

= −iπ2

∫ 1

0

dx (1− x)
[
q2(x− 1)x+ 2µ2

(q2(x− 1)x+ µ2)2

]

= −iπ2

∫ 1

0

dx f(x)

= −iπ2 · 1

(q2)2

{
[a1 log(1− xa)− a1 log(−xa)] +

(
a2

xa − 1
− a2
xa

)
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+ [b1 log(1− xb)− b1 log(−xb)] +
(

b2
xb − 1

− b2
xb

)}

(I.R.)−−−−→
(lE ≥ µ)

−iπ2 · 1

(q2)2

(
q4

µ2

)
= +iπ2 · 1

q2

(−q2
µ2

)
, (343)

where

f(x) = (1− x)
[
q2(x− 1)x+ 2µ2

(q2(x− 1)x+ µ2)2

]

=
1

(q2)2

[
a1

(x− xa)
+

a2
(x− xa)2

+
b1

(x− xb)
+

b2
(x− xb)2

]
, (344)

with

xa =
1

2
−

√
1

4
− µ2

q2
< 0 , xb =

1

2
+

√
1

4
− µ2

q2
> 1 , (345)

and

a2 = −(xa − 1)[2µ2 + q2(xa − 1)xa]

(xa − xb)2
,

a1 =
2µ2(xa + xb − 2)− q2(xa − 1) (x2a − 3xaxb + xa + xb)

(xa − xb)3
,

b2 = −(xb − 1)[2µ2 + q2(xb − 1)xb]

(xa − xb)2
,

b1 = −2µ
2(xa + xb − 2) + q2 (3xax

2
b − 4xaxb + xa − x3b + xb)

(xa − xb)3
. (346)

C.3 Loop integrations C

Define

Il =

∫
d4l

v · l
l4(l − q)4 . (347)

With the Feynman parameters(F.P.) and Wick rotation(W.R.), we can compute Il as

Il =

∫
d4l (v · l) 1

(l2)2[(l − q)2]2
(F.P.)
=====

∫
d4l (v · l)

∫ 1

0

dx
x(1 − x)

[xl2 + (1− x)(l − q)2]4
Γ(2 + 2)

Γ(2)Γ(2)

= 6

∫ 1

0

dx x(1− x)
∫
d4l (v · l) 1

[xl2 + (1− x)(l − q)2]4

= 6

∫ 1

0

dx x(1− x)
∫
d4l (v · l) 1

{[l − (1− x)q]2 + [x(1− x)]q2}4

l → l′
===== 6

∫ 1

0

dx x(1− x)
∫
d4l′ [v · (l′ + (1− x)q)] 1

{l′2 + [x(1− x)]q2}4

= 6

∫ 1

0

dx x(1− x)
∫
d4l

v · l
{l2 + [x(1 − x)]q2}4
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+6

∫ 1

0

dx x(1− x) · [(1− x)v · q]
∫
d4l

1

{l2 + [x(1− x)]q2}4

= 0 + 6

∫ 1

0

dx x(1− x) · [(1− x)v · q]
∫
d4l

1

{l2 + [x(1− x)]q2}4

(W.R.)
===== i6

∫ 1

0

dxx(1 − x) · [(1− x)v · q]
∫
d4lE

1

{−l2E + [x(1 − x)]q2}4

= i6

∫ 1

0

dx x(1− x) · [(1− x)v · q]
∫
dΩ

∫
d|lE|

|lE|3
(l2E +∆2)

4

= i12π2

∫ 1

0

dx x(1− x) · [(1− x)v · q]
∫
d|lE|

|lE|3
(l2E +∆2)

4

(I.R.)−−−−→
(lE ≥ µ)

i12π2(v · q) ·
∫ 1

0

dx [x(1− x)2] ∆2 + 3µ2

12 (∆2 + µ2)3

= iπ2(v · q) ·
∫ 1

0

dx [x(1− x)2] ∆2 + 3µ2

(∆2 + µ2)3
, (348)

with
l′ = l − (1− x)q ⇔ l = l′ + (1− x)q. (349)

Let’s finish the integration of x, as

Il = iπ2(v · q) ·
∫ 1

0

dx [x(1− x)2] ∆2 + 3µ2

(∆2 + µ2)3

= iπ2(v · q) ·
∫ 1

0

dx [x(1− x)2] q
2(x− 1)x+ 3µ2

(q2(x− 1)x+ µ2)3

= iπ2(v · q) ·
∫ 1

0

dx f(x) ,

= iπ2(v · q) · 1

(q2)3
1

2
{[2a1 log(1− xa)− 2a1 log(−xa)]

+

(
2a2

xa − 1
− 2a2

xa

)
+

(
a3
x2a
− a3

(xa − 1)2

)

+ [2b1 log(1− xb)− 2b1 log(−xb)]

+

(
2b2

xb − 1
− 2b2

xb

)
+

(
b3
x2b
− b3

(xb − 1)2

)}

(I.R.)−−−−−→
(lE ≥ µ)

iπ2(v · q) · 1

(q2)3

(
−q

6 − 3q4µ2

8µ4

)

(q ≪ µ)−−−−→ iπ2(v · q) · 1

(q2)3

(
3q4

8µ2

)
= −i3π

2

8
· v · q
(q2)2

(−q2
µ2

)
, (350)

where

f(x) = [x(1− x)2] q
2(x− 1)x+ 3µ2

(q2(x− 1)x+ µ2)3

=
1

(q2)3

[
a1

(x− xa)
+

a2
(x− xa)2

+
a3

(x− xa)3

+
b1

(x− xb)
+

b2
(x− xb)2

+
b3

(x− xb)3
]
, (351)
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with

xa =
1

2
−

√
1

4
− µ2

q2
< 0 , xb =

1

2
+

√
1

4
− µ2

q2
> 1 , (352)

and

a3 =
(xa − 1)2xa [3µ

2 + q2(xa − 1)xa]

(xa − xb)3
,

a2 =
(xa − 1) [3µ2[xa(2− 3xb) + xb] + q2(xa − 1)xa (2x

2
a − 5xaxb + xa + 2xb)]

(xa − xb)4
,

a1 =
1

(xa − xb)5
{
3µ2

[
x2a(3xb − 2) + xa

(
3x2b − 8xb + 3

)
+ (3− 2xb)xb

]

+q2(xa − 1)
[
x4a + x3a(1− 5xb) + x2a

(
10x2b − 5xb + 1

)
+ 4xa(1− 2xb)xb + x2b

]}
,

b3 = −(xb − 1)2xb [3µ
2 + q2(xb − 1)xb]

(xa − xb)3
,

b2 = −(xb − 1) [µ2[xa(9xb − 3)− 6xb]− q2(xb − 1)xb (−5xaxb + 2xa + 2x2b + xb)]

(xa − xb)4
,

b1 = − 1

(xa − xb)5
{
3µ2

[
x2a(3xb − 2) + xa

(
3x2b − 8xb + 3

)
+ (3− 2xb)xb

]

+q2(xb − 1)
[
x2a

(
10x2b − 8xb + 1

)
+ xaxb

(
−5x2b − 5xb + 4

)
+ x2b

(
x2b + xb + 1

)]}
.

(353)

D The derivation for E.O.M

We write the Euler-Lagrange equation in (37) here, as

∂LU
∂U
− ∂µ

∂LU
∂(∂µU)

+ ∂µ∂ν
∂LU

∂(∂µ∂νU)
= 0 . (354)

D.1 Scalar U

From (5) and (7), we can have the expansion

LU = −∂µ∂νU †∂µ∂νU − Λ4
U(U + U †) +m4

UU
†U

= −∂µ∂νU †gµµ
′

gνν
′

∂µ′∂ν′U − Λ4
U(U + U †) +m4

UU
†U , (355)

and the variational derivative

∂LU
∂(∂λ∂τU †)

= −δµλδντgµµ′gνν′∂µ′∂ν′U = −∂λ∂τU , (356)

then the term

∂λ∂τ
∂LU

∂(∂λ∂τU †)
= −∂4U . (357)

For the interaction part, we have the expansion

LI = −αQ−1Λ ψ̄(U + U †)ψ − βQ ψ̄(∂/U + ∂/U †)ψ

+(higher-order operators)

= −αQ−1Λ ψ̄(U †)ψ − βQ ψ̄(+∂µU †)gµµ
′

γµ′ψ + ... , (358)
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where the “...” corresponding to the higher order terms and irrelevant terms in all this
section, and the variational derivative

∂L
∂(∂τU †)

= −βQ ψ̄(+δµτ )gµµ
′

γµ′ψ + ...

= −βQ ψ̄γτψ + ... , (359)

then the term

∂τ
∂L

∂(∂τU †)
= −βQ∂τ

(
ψ̄γτψ

)
+ ... = 0 , (360)

with the current conservation law ∂τ
(
ψ̄γτψ

)
= 0. Indeed, if we do the variational derivative

∂L
∂ψ̄

= −αQ−1Λ (U + U †)ψ − βQ∂µ(U + U †)γµψ + ... , (361)

∂L
∂ψ

= −αQ−1Λ ψ̄(U + U †)− βQ ψ̄∂µ(U + U †)γµ + ... , (362)

we can get the E.O.M for the matter field ψ as

(i∂/ −mψ)ψ = αQ−1Λ (U + U †)ψ + βQ∂µ(U + U †)γµψ (363)

ψ̄(i
←−
∂/ −mψ) = αQ−1Λ ψ̄(U + U †) + βQ ψ̄∂µ(U + U †)γµ (364)

then, with the E.O.M, we can truly get the current conservation law [2]

∂τ
(
ψ̄γτψ

)
= : ∂τ ψ̄γτψ + ψ̄γτ∂τψ :=: −ψ̄←−∂ γτψ + ψ̄γτ∂τψ :

= : i
[
mψψ̄ + αQ−1Λ ψ̄(U + U †) + βQ ψ̄∂µ(U + U †)γµ

]
ψ

−iψ̄
[
mψψ + αQ−1Λ (U + U †)ψ + βQ∂µ(U + U †)γµψ

]
:

= : i
[
ψ̄mψ + αQ−1Λ ψ̄(U + U †) + βQ ψ̄∂µ(U + U †)γµ

]
ψ

−iψ̄
[
mψψ + αQ−1Λ (U + U †)ψ + βQ∂µ(U + U †)γµψ

]
:

= 0 , (365)

with the definition of [2]

ψ̄
←−
∂ ≡ −∂ψ̄ . (366)

Besides, we have the term

∂(LU + LI)
∂U † = −Λ4

U +m4
UU − αQ−1Λ ψ̄ψ . (367)

Then, we can get the dynamical equation for the field U as

− ∂4U = Λ4
U −m4

UU + αQ−1Λ ψ̄ψ . (368)
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D.2 Vector Uµ

D.2.1 ΛU = 0 case

From (152,165)and (166), by setting ΛU = 0, we have the expansion

LU =
1

2
∂αF

†
βµ∂

αF βµ −m4
UU

†
µU

µ

=
1

2

[
∂α(∂βU

†
µ − ∂µU †

β)
] [
∂α(∂βUµ − ∂µUβ)

]
−m4

UU
†
µU

µ

=
1

2

[
∂α(∂βU

†
µ − ∂µU †

β)
]
gαα

′

gββ
′

gµµ
′

[∂α′(∂β′Uµ′ − ∂µ′Uβ′)]

−m4
UU

†
µg

µµ′Uµ′

=
1

2

[
∂α∂βU

†
µg

αα′

gββ
′

gµµ
′

∂α′∂β′Uµ′ − ∂α∂µU †
βg

αα′

gββ
′

gµµ
′

∂α′∂β′Uµ′

−∂α∂βU †
µg

αα′

gββ
′

gµµ
′

∂α′∂µ′Uβ′ + ∂α∂µU
†
βg

αα′

gββ
′

gµµ
′

∂α′∂µ′Uβ′

]

−m4
UU

†
µg

µµ′Uµ′ , (369)

and the variational derivative

∂LU
∂(∂λ∂τU †σ)

=
1

2

[
δαλδβτδµσg

αα′

gββ
′

gµµ
′

∂α′∂β′Uµ′ − δαλδµτδβσgαα
′

gββ
′

gµµ
′

∂α′∂β′Uµ′

−δαλδβτδµσgαα
′

gββ
′

gµµ
′

∂α′∂µ′Uβ′ + δαλδµτδβσg
αα′

gββ
′

gµµ
′

∂α′∂µ′Uβ′

]

=
1

2
[∂λ∂τUσ − ∂λ∂σUτ − ∂λ∂σUτ + ∂λ∂τUσ]

= [∂λ∂τUσ − ∂λ∂σUτ ] (370)

then the term

∂λ∂τ
∂LU

∂(∂λ∂τU †σ)

=
[
∂4Uσ − ∂2∂σ∂τUτ

]
= ∂2

[
∂2gτσ − ∂σ∂τ

]
Uτ

(∂·U=0)
====== ∂4Uσ = (i∂)4Uσ (371)

with the gauge fixed condition ∂σU
σ = 0.

1. Fµν part: a generation of QED

For the interaction Lagrangian in (166), we have the expansion

LI = −αΛψ̄(U/+ U/†)ψ − β ψ̄(εµν + σµν)[Fµν(U) + Fµν(U
†)]ψ

+(higher-order operators)

= −αΛψ̄(+U †
µg

µµ′γµ′)ψ − β ψ̄(εµν + σµν)g
µµ′gνν

′

(∂µ′U
†
ν′ − ∂ν′U

†
µ′)ψ

+... , (372)

and the variational derivative

∂LI
∂(∂τU †σ)

= −β ψ̄(εµν + σµν)g
µµ′gνν

′

(δµ′τδν′σ − δν′τδµ′σ)ψ + ... , ,

= −2β ψ̄(ετσ + στσ)ψ + ... , (373)
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then the term

∂τ
∂LI

∂(∂τU †σ)
= −2β ∂τ

[
ψ̄(ετσ + στσ)ψ

]
. (374)

Besides, we have the term

∂(LU + LI)
∂U †σ = −m4

Uδµσg
µµ′Uµ′ − αΛψ̄(δµσg

µµ′γµ′)ψ

= −m4
UU

σ − αΛψ̄γσψ . (375)

Then, we can get the dynamical equation for the field Uµ as

∂4Uσ = m4
UU

σ + Jσ (376)

with
Jσ = αΛψ̄γσψ − 2β ∂τ

[
ψ̄(ετσ + στσ)ψ

]
(377)

and the gauge fixed condition ∂σU
σ = 0.

For the E.O.M, another convenient method is rewrite the action as(ignoring the mass
term here) [2]

S0 =

∫
d4xLU

=

∫
d4x

[
1

2
∂αF

†
βµ∂

αF βµ

]

=
1

2

∫
d4x

[
∂α(∂βU

†
µ − ∂µU †

β)
] [
∂α(∂βUµ − ∂µUβ)

]

=
1

2

∫
d4x

{
∂α[(∂βU

†
µ − ∂µU †

β)∂
α(∂βUµ − ∂µUβ)]

−(∂βU †
µ − ∂µU †

β)∂α[∂
α(∂βUµ − ∂µUβ)]

}

= −1
2

∫
d4x

{
(∂βU

†
µ)∂α[∂

α(∂βUµ − ∂µUβ)]

−(∂µU †
β)∂α[∂

α(∂βUµ − ∂µUβ)]
}

= −1
2

∫
d4x

{
∂β{U †

µ∂α[∂
α(∂βUµ − ∂µUβ)]}

−U †
µ∂β{∂α[∂α(∂βUµ − ∂µUβ)]}

−∂µ{U †
β∂α[∂

α(∂βUµ − ∂µUβ)]}

+U †
β∂µ{∂α[∂α(∂βUµ − ∂µUβ)]}

}

=
1

2

∫
d4x

{
+U †

µ∂β{∂α[∂α(∂βUµ − ∂µUβ)]}

−U †
β∂µ{∂α[∂α(∂βUµ − ∂µUβ)]}

}
(378)

where the underlined derivative term were omitted, and then we can get the E.O.M by the
Euler-Lagrangian equation.
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For the free propagator, with the E.O.M in (376), we can get the equation for Feynman
propagator Dνρ

F

(∂4gµν −m4
U + ....)Dνρ

F (x− y) = iδρµδ
(4)(x− y) (379)

or (p4gµν −m4
U + ....)D̃νρ

F (p) = iδρµ (380)

which has the solution

D̃µν
F (p) =

+i(gµν + ...)

p4 −m4
U + iǫ

, (381)

where the “...” denoted the gauge free term which would be omitted in the Lorentz gauge
condition. As the case for (53,59), please pay attention to the extra minus sign in D̃µν

F (p)
by contrast to the propagator of a P-2 type vector field.

2. F µν part: a generation of SR gravity
The E.O.M for a free Uµ in F µν case would be the same as in Fµν case.

The Lagrangian for free particle Uµ in an full-symmetric irreducible representation could
be written as

LU =
1

12

[
(∂αF βµ + ∂βF αµ + ∂µF αβ)

†(∂αF
βµ

+ ∂βF
αµ

+ ∂µF
αβ
)
]
−m4

UU
†
µU

µ

=
1

12

[
(∂αF

†
βµ∂

αF
βµ

+ ∂αF
†
βµ∂

βF
αµ

+ ∂αF
†
βµ∂

µF
αβ
)

+(∂βF
†
αµ∂

αF
βµ

+ ∂βF
†
αµ∂

βF
αµ

+ ∂βF
†
αµ∂

µF
αβ
)

+(∂µF
†
αβ∂

αF
βµ

+ ∂µF
†
αβ∂

βF
αµ

+ ∂µF
†
αβ∂

µF
αβ
)
]
−m4

UU
†
µU

µ

= +
1

12

[
(∂αF

†
βµ∂

αF
βµ

+ ∂βF
†
αµ∂

βF
αµ

+ ∂µF
†
αβ∂

µF
αβ
)

+(∂αF
†
βµ∂

βF
αµ

+ ∂βF
†
αµ∂

αF
βµ

+ ∂µF
†
αβ∂

βF
αµ
)

+(∂αF
†
βµ∂

µF
αβ

+ ∂βF
†
αµ∂

µF
αβ

+ ∂µF
†
αβ∂

αF
βµ
)
]
−m4

UU
†
µU

µ

=
3

12
(∂αF

†
βµ∂

αF
βµ

+ ∂αF
†
βµ∂

βF
αµ

+ ∂αF
†
βµ∂

µF
βα
)−m4

UU
†
µU

µ

=
3

12
∂αF

†
βµ(∂

αF
βµ

+ ∂βF
αµ

+ ∂µF
βα
)−m4

UU
†
µU

µ

=
3

12
∂αF

†
βµ[∂

α(∂βUµ + ∂µUβ) + ∂β(∂αUµ + ∂µUα) + ∂µ(∂βUα + ∂αUβ)]

−m4
UU

†
µU

µ

=
6

12
∂αF

†
βµ(∂

α∂βUµ + ∂α∂µUβ + ∂β∂µUα)−m4
UU

†
µU

µ

=
1

2
∂αF

†
βµ(∂

αF
βµ

+ ∂β∂µUα)−m4
UU

†
µU

µ , U †
µU

µ < 1 , (382)

where the underlined term could be omitted with the Lorentz gauge condition ∂αU
α = 0.

After an expansion,

LU = +
1

2
∂αF

†
βµ∂

αF
βµ −m4

UU
†
µU

µ

= +
1

2

[
∂α(∂βUµ + ∂µUβ)

†∂α(∂βUµ + ∂µUβ)
]
−m4

UU
†
µU

µ

= +
1

2

[
∂α∂βU

†
µ∂

α∂βUµ + ∂α∂βU
†
µ∂

α∂µUβ + ∂α∂µU
†
β∂

α∂βUµ + ∂α∂µU
†
β∂

α∂µUβ
]
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−m4
UU

†
µU

µ

= +
1

2

[
2∂α∂βU

†
µ∂

α∂βUµ + 2∂α∂βU
†
µ∂

α∂µUβ
]
−m4

UU
†
µU

µ

= +∂α∂βU
†
µ(∂

α∂βUµ + ∂α∂µUβ)−m4
UU

†
µU

µ , (383)

we can know that the propagator would now be the same as that in the Fµν case, with the
Lorentz gauge condition being taken.

For the interaction Lagrangian in (195), we have the expansion

LI = −α Λ

M
Uµψ̄ψ̄i∂

µψ

−β 1

M
F

(U)

µν ψ̄(−2gµνm+ γνi∂µ + γµi∂ν)ψ + ...

= −α Λ

M
Uµψ̄g

µµ′ψ̄i∂µ′ψ

−β 1

M
F

(U)

µν g
µµ′gνν

′

ψ̄(−2gµ′ν′m+ γν′i∂µ′ + γµ′i∂ν′)ψ + ...

= −α Λ

M
Uµψ̄g

µµ′ψ̄i∂µ′ψ

−β 1

M
(∂µUν + ∂νUµ)g

µµ′gνν
′

ψ̄(−2gµ′ν′m+ γν′i∂µ′ + γµ′i∂ν′)ψ + ... , (384)

and the variational derivative

∂LI
∂(∂τUσ)

= −β 1

M
(δµτδνσ + δντδµσ)g

µµ′gνν
′

ψ̄(−2gµ′ν′m+ γν′i∂µ′ + γµ′i∂ν′)ψ + ...

= −2β 1

M
ψ̄(−2gτσm+ γσi∂τ + γτ i∂σ)ψ + ... , (385)

then the term

∂τ
∂LI

∂(∂τUσ)
= −2β 1

M
∂τ

[
ψ̄(−2gτσm+ γσi∂τ + γτ i∂σ)ψ

]
+ ... , (386)

Besides, we have the term

∂LI
∂Uσ

= −α Λ

M
δµσψ̄g

µµ′ψ̄i∂µ′ψ = −α Λ

M
ψ̄ψ̄i∂σψ , (387)

Then, we can get the dynamical equation for the field Uµ as

∂4Uσ = m4
UU

σ + Jσ (388)

with

Jσ = +α
Λ

M
ψ̄ψ̄i∂σψ

+− 2β
1

M
∂τ [ψ̄(−2gτσm+ γσi∂τ + γτ i∂σ)ψ] + ... , (389)

and the gauge fixed condition ∂σU
σ = 0.
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D.2.2 ΛU 6= 0 case: generation of a nonlinear QED

For the ΛU term, we can have the expansion

LU → −ΛU
[
ǫρα(U + U †)ρF

(U+U†)
βµ ∂αF βµ

(U+U†)
+ (cyclic for indices)

]
−m4

UU
†
µU

µ , (390)

so we have the variational derivative
∂LU

∂(∂λ∂τU †σ)

=
∂

∂(∂λ∂τU †σ)

{
−ΛU

[
ǫρα(U + U †)ρF

(U+U†)
βµ ∂αF βµ

(U†)

]
+ ...

}

= −ΛUgαα
′

gββ
′

gµµ
′ ∂

∂(∂λ∂τU †σ)

[
ǫρα(U + U †)ρF

(U+U†)
βµ (∂α′∂β′U †

µ′ − ∂α′∂µ′U
†
β′)

]
+ ...

= −ΛUgαα
′

gββ
′

gµµ
′
[
ǫρα(U + U †)ρF

(U+U†)
βµ (δα′λδβ′τδµ′σ − δα′λδµ′τδβ′σ)

]
+ ...

= −ΛUǫρλ
[
(U + U †)ρF (U+U†)

τσ − (U + U †)ρiF (U+U†)
στ

]
+ ...

= −2ΛUǫρλ
[
(U + U †)ρF (U+U†)

τσ

]
+ ... , (391)

with the term

∂λ∂τ
∂LU

∂(∂λ∂τU †σ)
= −2ΛUǫρλ∂λ∂τ

[
(U + U †)ρF (U+U†)

τσ

]
+ ...

= −2ΛUǫρλ∂λ∂τ
[
(U + U †)ρF (U+U†)

τσ

]
+ ... , (392)

and the variational derivative
∂LU

∂(∂τU †σ)

=
∂

∂(∂λ∂τU †σ)

{
−ΛU

[
ǫρα(U + U †)ρF

(U†)
βµ ∂αF βµ

(U+U†)

]
+ ...

}

=
∂

∂(∂τU †σ)

{
−ΛU

[
ǫρα(U + U †)ρF

(U†)
βµ ∂αF βµ

(U+U†)

]
+ ...

}

= −ΛUgαα
′

gββ
′

gµµ
′ ∂

∂(∂τU †σ)

[
ǫρα(U + U †)ρ(∂β′U †

µ′ − ∂µ′U
†
β′)∂αF

(U+U†)
βµ

]
+ ...

= −ΛUgαα
′

gββ
′

gµµ
′
[
ǫρα(U + U †)ρ(δβ′τδµ′σ − δµ′τδβ′σ)∂αF

(U+U†)
βµ

]
+ ...

= −ΛU
[
ǫρα(U + U †)ρ(∂αF (U+U†)

τσ − ∂αF (U+U†)
στ )

]
+ ...

= −2ΛU
[
ǫρα(U + U †)ρ∂αF (U+U†)

τσ

]
+ ... , (393)

with the term

∂τ
∂LU

∂(∂τU †σ)
= −2ΛU∂τ

[
ǫρα(U + U †)ρi∂αF (U+U†)

τσ

]
+ ...

= −2ΛUǫρα∂τ
[
(U + U †)ρ∂αF (U+U†)

τσ

]
+ ... . (394)

Besides, we have the term

∂LU
∂U †σ = −m4

Uδ
µσgµµ′U

µ′ − ΛU

[
ǫραδ

ρ
σF

(U+U†)
βµ ∂αF βµ

(U+U†)

]
+ ...

= −m4
UUσ − ΛU

[
ǫσαF

(U+U†)
βµ ∂αF βµ

(U+U†)

]
+ ...

= −m4
UUσ − ΛUǫσα

[
F

(U+U†)
βµ ∂αF βµ

(U+U†)

]
+ ... . (395)
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Then, we can get the dynamical equation for the field Uµ as

−2ΛUǫρλ∂λ∂τ
[
(U + U †)ρF (U+U†)

τσ

]

−m4
UUσ − ΛUǫσα

[
F

(U+U†)
βµ ∂αF βµ

(U+U†)

]

= −2ΛUǫρα∂τ
[
(U + U †)ρ∂αF (U+U†)

τσ

]
+ (cyclic for indices) . (396)

Let’s continue the simplification, for the first term in the l.h.s of (396), it is

−2ΛUǫρλ∂λ∂τ
[
(U + U †)ρF (U+U†)

τσ

]
+ ...

= −2ΛU∂τ
[
ǫρλ∂

λ(U + U †)ρF (U+U†)
τσ + ǫρλ(U + U †)ρ∂λF (U+U†)

τσ

]
+ ...

= −2ΛU∂τ
[
1

2
(ǫρλ − ǫλρ)∂λ(U + U †)ρ

]
F (U+U†)
τσ + ...

= −ΛUǫρλ∂τ
[
∂λ(U + U †)ρ − ∂ρ(U + U †)λ

]
F (U+U†)
τσ + ...

= −ΛUǫρλ∂τ
[
F λρ
(U+U†)

F (U+U†)
τσ

]
+ ...

= −ΛU
[
ǫρλ∂

τF λρ
(U+U†)

F (U+U†)
τσ + ǫρλF

λρ
(U+U†)

∂τF (U+U†)
τσ

]
+ ...

(C.D.I) = −ΛU
[
gµφ′gβϕ′ǫφ

′ϕ′

∂αF βµ
(U+U†)

gακ′gσξ′F
κ′ξ′

(U+U†)

+gρ′φ′gλ′ϕ′ǫφ
′ϕ′

F λ′ρ′

(U+U†)
gαβgσµ∂

αF βµ
(U+U†)

]
+ ...

= −ΛU
[
gµφ′gβϕ′ǫφ

′ϕ′

gακ′gσξ′F
κ′ξ′

(U+U†)

+gρ′φ′gλ′ϕ′ǫφ
′ϕ′

F λ′ρ′

(U+U†)
gαβgσµ

]
∂αF βµ

(U+U†)
+ ...

(C.D.I) = −ΛU
[
ǫµβF

(U+U†)
ασ + ǫρλF

λρ
(U+U†)

gαβgσµ

]
∂αF βµ

(U+U†)
+ ... , (397)

where “C.D.I” denotes the operation for “changing the dummy indices”,and the term un-
derlined is just the r.h.s of (396). If we set mU = 0, then we have the E.O.M

0 = −ΛU
[
ǫµβF

(U+U†)
ασ + ǫρλF

λρ
(U+U†)

gαβgσµ

]
· ∂αF βµ

(U+U†)

−ΛU ǫσαF (U+U†)
βµ · ∂αF βµ

(U+U†)

= −ΛU
[
−ǫµβF (U+U†)

σα − ǫσαF (U+U†)
µβ + ǫρλF

λρ
(U+U†)

gαβgµσ

]
· ∂αF βµ

(U+U†)

≡ −ΛUX(µσ)(αβ) · ∂αF βµ
(U+U†)

, (398)

where the terms “(cyclic for indices)” were dropped since the indices αβµ are in fact dummy
indices, and the tensor

X(µσ)(αβ) ≡
[
−ǫµβF (U+U†)

σα − ǫσαF (U+U†)
µβ

]
+ ǫρλF

λρ
(U+U†)

gαβgµσ

6= ǫρλF
λρ [−δρµδλβδλσδρα − δρσδλαδλµδρβ + gαβgµσ] (399)

is symmetric for the indices (µσ) and (αβ) (denoted with a round bracket), respectively.
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D.3 Tensor Uµν

1. From (213-216) and (238), that is,

LU = −1
3
∂αF

†
βµν∂

αF βµν − Λ2
U

[
(U + U †)αν(U + U †)βµi∂

αiF βµν
]
+m4

UU
†
µνU

µν , (400)

where

Fβµν = +∂βUµν + ∂νUβµ + ∂µUβν , (401)

F †
αµν = +∂αU

†
µν + ∂νU

†
αµ + ∂µU

†
αν , (402)

F β
µν = ηβρFρµν = ηβρ (+∂βUµν + ∂νUβµ + ∂µUβν) , (403)

we can expand the first term of LU as

LU1 = −1
3
∂αF

†
βµνg

αα′

gββ
′

gµµ
′

gνν
′

∂α′Fβ′µ′ν′

= −1
3

[
(+∂α∂βU

†
µν + ∂α∂νU

†
βµ + ∂α∂µU

†
βν)g

αα′

gββ
′

gµµ
′

gνν
′

(+∂α′∂β′Uµ′ν′ + ∂α′∂ν′Uβ′µ′ + ∂α′∂µ′Uβ′ν′)]

= −1
3

[
(+∂α∂βU

†
µν)g

αα′

gββ
′

gµµ
′

gνν
′

(+∂α′∂β′Uµ′ν′)

+(+∂α∂βU
†
µν)g

αα′

gββ
′

gµµ
′

gνν
′

∂α′∂ν′Uβ′µ′

+(+∂α∂βU
†
µν)g

αα′

gββ
′

gµµ
′

gνν
′

∂α′∂µ′Uβ′ν′

+∂α∂νU
†
βµg

αα′

gββ
′

gµµ
′

gνν
′

(+∂α′∂β′Uµ′ν′)

+∂α∂νU
†
βµg

αα′

gββ
′

gµµ
′

gνν
′

∂α′∂ν′Uβ′µ′

+∂α∂νU
†
βµg

αα′

gββ
′

gµµ
′

gνν
′

∂α′∂µ′Uβ′ν′

+∂α∂µU
†
βνg

αα′

gββ
′

gµµ
′

gνν
′

(+∂α′∂β′Uµ′ν′)

+∂α∂µU
†
βνg

αα′

gββ
′

gµµ
′

gνν
′

∂α′∂ν′Uβ′µ′

+∂α∂µU
†
βνg

αα′

gββ
′

gµµ
′

gνν
′

∂α′∂µ′Uβ′ν′

]
, (404)

then we can do the variational derivative

∂LU1

∂(∂λ∂τU †σρ)

= −1
3

[
(+δαλδβτδµσδνρ)g

αα′

gββ
′

gµµ
′

gνν
′

(+∂α′∂β′Uµ′ν′)

+(+δαλδβτδµσδνρ)g
αα′

gββ
′

gµµ
′

gνν
′

∂α′∂ν′Uβ′µ′

+(+δαλδβτδµσδνρ)g
αα′

gββ
′

gµµ
′

gνν
′

∂α′∂µ′Uβ′ν′

+δαλδντδβσδµρg
αα′

gββ
′

gµµ
′

gνν
′

(+∂α′∂β′Uµ′ν′)

+δαλδντδβσδµρg
αα′

gββ
′

gµµ
′

gνν
′

∂α′∂ν′Uβ′µ′

+δαλδντδβσδµρg
αα′

gββ
′

gµµ
′

gνν
′

∂α′∂µ′Uβ′ν′

+δαλδµτδβσδνρg
αα′

gββ
′

gµµ
′

gνν
′

(+∂α′∂β′Uµ′ν′)

+δαλδµτδβσδνρg
αα′

gββ
′

gµµ
′

gνν
′

∂α′∂ν′Uβ′µ′

+δαλδµτδβσδνρg
αα′

gββ
′

gµµ
′

gνν
′

∂α′∂µ′Uβ′ν′

]

= −1
3
[(+1) · (+∂λ∂τUσρ) + (+1) · ∂λ∂ρUτσ + (+1) · ∂λ∂σUτρ
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+(+∂λ∂σUρτ ) + ∂λ∂τUσρ + ∂λ∂ρUστ

+(+∂λ∂σUτρ) + ∂λ∂ρUστ + ∂λ∂τUσρ]

= − (∂λ∂τUσρ) + ∂λ∂σUτρ + ∂λ∂ρUστ ) , (405)

and get the term

∂λ∂τ
∂LU

∂(∂λ∂τU †σρ)
= −∂λ∂τ (∂λ∂τUσρ + ∂λ∂σUτρ + ∂λ∂ρUστ )

(∂·U=0)
====== −∂λ∂τ∂λ∂τUσρ = −∂4Uσρ = −(i∂)4Uσρ , (406)

with the gauge fixed condition ∂µU
µν = ∂νU

µν = 0.

2. For the mass term, we have the expansion

LU = +m4
UU

†
µνg

µµ′gνν
′

Uµ′ν′ . (407)

and the derivative

∂LU
∂U †σρ = +m4

Uδµσδνρg
µµ′gνν

′

Uµ′ν′ = +m4
UU

σρ . (408)

3. For the free propagator, with the E.O.M in (422), we can get the equation for Feynman
propagator Dµνρσ

F

−[∂4 −m4
U + ....]

1

2
(gµρgνσ + gµσgνρ)D

µνρσ
F (x− y) = iδρµδ

(4)(x− y) (409)

or − [p4 −m4
U + ....]

1

2
(gµρgνσ + gµσgνρ)D̃

µνρσ
F (p) = iδρµ (410)

which has the solution

D̃µνρσ
F (p) =

1

2
(gµρgνσ + gµσgνρ + ...)

−i
p4 −m4

U + iǫ
, (411)

where the ... denoted the gauge free term which would be omitted in the Lorentz gauge con-
dition. As the case for (53,59,60), please pay attention to the extra minus sign in D̃µνρσ

F (p)
by contrast to the propagator of a P-2 type tensor field.

4. For the LI part, we have the expansion for Version I in (238), as (for simplicity, here we
treat Uµν as a real-valued field)

LI = −αQΛUµνψ̄ηµνψ
−βQψ̄F (U)

αµν(γ
αηµν + γµηαν + γνηµα)ψ + ...

= −αQΛUµνgµµ
′

gνν
′

ψ̄ηµ′ν′ψ

−βQψ̄(+∂αUµν + ∂νUαµ + ∂µUαν)g
αα′

gµµ
′

gνν
′

(γα′ηµ′ν′ + γµ′ηα′ν′ + γν′ηµ′α′)ψ + ... ,(412)

and the variational derivative

∂LI
∂(∂τUσρ)

= −βQψ̄(δατδµσδνρ + δντδασδµρ + δµτδασδνρ)g
αα′

gµµ
′

gνν
′

(γα′ηµ′ν′ + γµ′ηα′ν′ + γν′ηµ′α′)ψ + ...

= −βQψ̄(gτα′

gσµ
′

gρν
′

+ gσα
′

gρµ
′

gτν
′

+ gσα
′

gτµ
′

gρν
′

)(γα′ηµ′ν′ + γµ′ηα′ν′ + γν′ηµ′α′)ψ + ... ,

(413)
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with the term

∂τ
∂LI

∂(∂τUσρ)
= −βQ∂τ ψ̄(gτα

′

gσµ
′

gρν
′

+ gσα
′

gρµ
′

gτν
′

+ gσα
′

gτµ
′

gρν
′

)

·(γα′ηµ′ν′ + γµ′ηα′ν′ + γν′ηµ′α′)ψ + ...

= −3βQ∂τ ψ̄(γτησρ + γσητρ + γρηστ )ψ + ... . (414)

Besides, we have the term

∂LI
∂Uσρ

= −αQΛ δµσδνρgµµ
′

gνν
′

ψ̄ηµ′ν′ψ = −αQΛ ψ̄ησρψ . (415)

Then, we can get the dynamical equation for the field Uσρ with interaction of Version I as

− ∂4Uσρ = −m4
UU

σρ + Jσρ , (416)

with

Jσρ = +αQΛ ψ̄ησρψ

−3βQ∂τ ψ̄(γτησρ + γσητρ + γρηστ )ψ , (417)

and the gauge fixed condition ∂µU
µν = ∂νU

µν = 0.

5. For the LI of Version II in (246), with (213-216), we have the expansion as (for simplicity,
here we treat Uµν as a real-valued field)

LI = −αQΛUµν) · ψ̄
1

M
(γµi∂ν + γνi∂µ)ψ

−βQF (U)
αµν · ψ̄[

1

M
(ηµνi∂α + ηανi∂µ + ηαµi∂ν)]ψ

= −αQΛUµν)g
µµ′gνν

′

ψ̄
1

M
(γµ′i∂ν′ + γν′i∂µ′)ψ

−βQ(+∂αUµν + ∂νUαµ + ∂µUαν)g
αα′

gµµ
′

gνν
′

·ψ̄[ 1
M

(ηµ′ν′i∂α′ + ηα′ν′i∂µ′ + ηα′µ′i∂ν′)]ψ + ... , (418)

and the variational derivative

∂LI
∂(∂τUσρ)

= −βQ(+δατδµσδνρ + δντδασδµρ + δµτδασδνρ)g
αα′

gµµ
′

gνν
′

ψ̄[
1

M
(ηµ′ν′i∂α′ + ηα′ν′i∂µ′ + ηα′µ′i∂ν′)]ψ + ...

= −βQ(gτα′

gσµ
′

gρν
′

+ gσα
′

gρµ
′

gτν
′

+ gσα
′

gτµ
′

gρν
′

)

ψ̄[
1

M
(ηµ′ν′i∂α′ + ηα′ν′i∂µ′ + ηα′µ′i∂ν′)]ψ + ... , (419)

with the term

∂τ
∂LI

∂(∂τUσρ)
= −3βQ∂τ (ψ̄[

1

M
(ησρi∂τ + ητρi∂σ + ητσi∂ρ)]ψ) + ... . (420)

Besides, we have the term

∂LI
∂Uσρ

= −αQΛψ̄
1

M
(γσi∂ρ + γρi∂σ)ψ . (421)
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Then, we can get the dynamical equation for the field Uσρ with interaction of Version II as

− ∂4Uσρ = −m4
UU

σρ + Jσρ , (422)

with

Jσρ = +αQΛψ̄
1

M
(γσi∂ρ + γρi∂σ)ψ

−3βQ∂τ (ψ̄[
1

M
(ησρi∂τ + ητρi∂σ + ητσi∂ρ)]ψ) + ... , (423)

and the gauge fixed condition ∂µU
µν = ∂νU

µν = 0.
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