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Several Fourier transformations of functions of one and two variables are evaluated and

then used to derive some integral and series identities. It is shown that certain double Mordell

integrals can be reduced to a sum of products of one-dimensional Mordell integrals. As a

consequence of this reduction, a quadratic polynomial identity is found connecting products

of certain one-dimensional Mordell integrals. An integral that depends on one real valued

parameter is calculated reminiscent of an integral previously calculated by Ramanujan and

Glasser. Some connections to elliptic functions and lattice sums are discussed.

I. Introduction: self-reciprocal Fourier transformations

Define the cosine and sine Fourier transformations by the usual formulas

fc(t) =

√
2

π

∫ ∞
0

f(x) cos tx dx, (1)

fs(t) =

√
2

π

∫ ∞
0

f(x) sin tx dx. (2)

Functions that are equal to their own cosine Fourier transform, i.e. that satisfy the equation f(x) = fc(x),

are called self-reciprocal functions of the first kind, and functions that are equal to their own sine Fourier

transform f(x) = fs(x), are called self-reciprocal functions of the second kind[8]. Some examples of the

functions of the first kind include

1

cosh
√

π
2x
,

cosh
√
πx
2

cosh
√
πx
,

1

1 + 2 cosh
√

2π
3 x

,
cosh

√
3πx
2

2 cosh
√

4π
3 x− 1

,
cosh

√
3π
2 x

cosh
√

2πx− cos
√

3π
. (3)

And here are some functions of the second kind

sinh
√
πx
2

cosh
√
πx
,

sinh
√

π
6x

2 cosh
√

2π
3 x− 1

,
sinh

√
2π
3 x

cosh
√

3π
2 x

,
sinh
√
πx

cosh
√

2πx− cos
√

2π
. (4)

The first three functions of (3) and the first two functions of (4) were known to Ramanujan and their

detailed study can be found in the book [1]. The third function in (4) is taken from the article [9] where

many other hyperbolic self reciprocal functions are given along with a general method for generating

them. The last two functions in (3) and the last function in (4) appear to be new. One can show that

(3) are the only self reciprocal functions of the form coshαx
coshx+c .

There is a well known general recipe to find self reciprocal functions ([11, ch. 9]). Since (fc)c = f , the

sum

f(x) + fc(x)

is a self-reciprocal function of the first kind for an arbitrary function f(x). Obviously this approach works

also for functions of the second kind.

It might seem that this settles the question of finding all self-reciprocal functions completely. However

this is not so because this approach is not helpful in finding interesting particular self-reciprocal functions.

It is much more gratifying to now that the functions in (3) are self-reciprocal as opposed to knowing that

the function

e−x +

√
2

π

1

1 + x2
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is self-reciprocal. A more useful general theory suitable for these purposes of finding particular transfor-

mations has been developed by Goodspeed, Hardy and Titchmarsh (see [11] for a nice account of this

theory).

One might ask, what are these particular transformations useful for? The answer is they lead to some

interesting integral and series transformation formulas, among other things. For example, Hardy and

Ramanujan [8,10] used self reciprocal functions to obtain transformation formulas such as

√
α

∞∫
0

cosh αx
2

coshαx
e−x

2

dx =
√
β

∞∫
0

cosh βy
2

coshβy
e−y

2

dy, αβ = 2π, (5)

√
α

∞∫
0

sinh αx
2

sinhαx
xe−x

2

dx =
√
β

∞∫
0

sinh βy
2

sinhβy
ye−y

2

dy, αβ = 2π. (6)

Another type of identities are obtained by application of the Poisson summation formula, which for an

even function φ(x) can be stated in the symmetric form [11]

√
α

∞∑
n=−∞

φ(αn) =
√
β

∞∑
n=−∞

φc(βn), αβ = 2π. (7)

Similarly, for an odd function ψ(x)

√
α

∞∑
n=1

χ(n)ψ(αn) =
√
β

∞∑
n=1

χ(n)ψs(βn), αβ =
π

2
, (8)

where χ(n) = sin πn
2 is a primitive character of modulus 4. For example, application of (7) to the first

function in (3) gives

√
α

∞∑
n=−∞

1

coshπαn
=
√
β

∞∑
n=−∞

1

coshπβn
, αβ = 1. (9)

Let q = e−πα be the base of elliptic functions with modulus k, k′ =
√

1− k2 the complementary modulus

and K = K(k), K ′ = K(k′) the complete elliptic integrals of the first kind. Then [13, ch. 22.6] q′ = e−πβ

is the base of elliptic functions with modulus k′ and

K =
π

2

∞∑
n=−∞

1

coshπαn
. (10)

So (9) is nothing but q = e−π
K′
K in the more familiar notation of the theory of elliptic functions.

Functions (3),(4) imply certain symmetric relations for the Lerch zeta function ([1], ch. 18.5). For

example the fourth function in (4) leads to the identity

∞∑
n=−∞

sin
√

2πn
p∣∣∣n+ p√
2

∣∣∣ 12 =

∞∑
n=−∞

sin
√

2πn
q∣∣∣n+ q√
2

∣∣∣ 12 , pq = 1,
1√
2
< p <

√
2. (11)

II. Functions of two variables

One may also consider self reciprocal Fourier functions of two variables. Apart from the non-interesting

factorizable functions of this form there are quite non-trivial functions. To find some of them we use the

following observation: If f(x, y) = f(y, x) and√
2

π

∫ ∞
0

f(x, y) cos ax dx = g(a, y) = g(y, a),
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(in other words, if partial Fourier transform of a symmetric function is symmetric) then f(x, y) is a

self-reciprocal Fourier function of two variables, i.e.

2

π

∞∫
0

∞∫
0

f(x, y) cos ax cos by dxdy = f(a, b).

Example : Since ([6], formula 3.981.8)

∞∫
0

sinxy

sinh
√
πx

cos ax dx =

√
π

2

sinh
√
πy

cosh
√
πy + cosh

√
πa

we get a pair of self-reciprocal Fourier transformations

2

π

∞∫
0

∞∫
0

cos ax cos by

cosh
√
πx+ cosh

√
πy

dxdy =
1

cosh
√
πa+ cosh

√
πa
, (12)

2

π

∞∫
0

∞∫
0

sinxy

sinh
√
πx sinh

√
πy

cos ax cos by dxdy =
sin ab

sinh
√
πa sinh

√
πb
. (13)

Though not a self reciprocal function, note the curious transformation

2

π

∞∫
0

∞∫
0

cosxy

cosh
√

π
2x cosh

√
π
2 y

cos ax cos by dxdy =
sin ab

sinh
√

π
2a sinh

√
π
2 b
. (14)

More self-reciprocal functions of one and two variables can be found in [14].

Poisson summation formula (7) is easily generalized to even functions of two variables as follows

√
αβ

∞∑
m,n=−∞

φ(αm, βn) =
√
γδ

∞∑
m,n=−∞

φc(γm, δn), αγ = βδ = 2π, (15)

where

φc(t, s) =
2

π

∞∫
0

∞∫
0

φ(x, y) cos tx cos sy dxdy.

It is instructive to see what happens if (15) is applied to (14). Straightforward calculation shows that

√
αβ

∞∑
m,n=−∞

cosαβmn

cosh
√

π
2αm · cosh

√
π
2βn

=
√
γδ

∞∑
m,n=−∞

sin γδmn

sinh
√

π
2γm · sinh

√
π
2 δn

, αγ = βδ = 2π.

Here it is assumed that the terms with m = 0 or n = 0 on the RHS of are understood as the limits

limm→0, limn→0. Setting δ = α, γ = β and making the replacement α→
√

2πα, β →
√

2πβ one obtains

(care should be taken to simplify the sum on the right)

∞∑
n=−∞

1

coshπnα

∞∑
n=−∞

1

coshπnβ
=

2

π
+ 4

∞∑
n=1

αn

sinhπnα
+ 4

∞∑
n=1

βn

sinhπnβ
, αβ = 1. (16)

It is known that [13, ch. 22.735]
∞∑
n=1

n

sinhπnα
=
K(K − E)

π2
,
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with the same notations as in (10) and E = E(k) complete elliptic integral of the second kind. Therefore

(16) is Legendre’s relation EK ′ + E′K −KK ′ = π
2 in disguise.

Hyperbolic functions provide many other transformations. Let’s start with the calculation of the

integral

J =

∞∫
0

∞∫
0

cosxy

cosh px cosh πy
p

cos ax cos by dxdy.

By formula 3.981.10 from [6]:

J =

∞∫
0

cos by

cosh πy
p

dy

∞∫
0

cosxy

cosh px
cos ax dx

=

∞∫
0

cos by

cosh πy
p

· π
p

cosh πa
2p cosh πy

2p

cosh πa
p + cosh πy

p

dy

=
π

p

cosh πa
2p

cosh πa
p

·
∞∫

0

(
cosh πy

2p

cosh πy
p

−
cosh πy

2p

cosh πa
p + cosh πy

p

)
cos by dy

=
π√
2
·

cosh πa
2p cosh pb

2

cosh πa
p cosh pb

− π

2
· cos ab

cosh πa
p cosh pb

,

so finally

2

π

∞∫
0

∞∫
0

cosxy

cosh px cosh πy
p

cos ax cos by dxdy =
√

2 ·
cosh πa

2p cosh pb
2

cosh πa
p cosh pb

− cos ab

cosh πa
p cosh pb

. (17)

We see that the right hand side is the original function (taken with the minus sign) up to an additional

term, which a factorizable function.

Applying Poisson summation (15) to (17) one finds

√
2

∞∑
m=−∞

1

coshπαm

∞∑
n=−∞

1

coshπβn
=

∞∑
m=−∞

cosh παm
2

coshπαm

∞∑
n=−∞

cosh πβn
2

coshπβn
, αβ = 2. (18)

(18) is equivalent to the modulus transformation of Landen’s transform, i.e. (1 + k1)(1 + k′) = 2 in the

notation of the book [13]. Indeed, if α = K(k′)
K(k) , β = Λ(k1)

Λ(k′
1) , then

Λ′ =
π

2

∞∑
n=−∞

1

coshπβn
,

dn
(
iK′

2 , k
)

=
π

2K

∞∑
n=−∞

cosh παn
2

coshπαn
,

dn
(
iΛ
2 , k

′
1

)
=

π

2Λ′

∞∑
n=−∞

cosh πβn
2

coshπβn
.

Since dn
(
iK′

2 , k
)

=
√

1 + k, eq. (18) reduces to (1 + k)(1 + k′1) = 2, as required.

There is an integral analogous to (17) involving odd functions:

2

π

∞∫
0

∞∫
0

sinxy

cosh px cosh πy
p

sin ax sin by dxdy =
√

2 ·
sinh πa

2p sinh pb
2

cosh πa
p cosh pb

− sin ab

cosh πa
p cosh pb

. (19)
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Just to illustrate what kind of transformations one can get by considering more complicated functions:

4

π

∞∫
0

∞∫
0

cosxy cos ax cos by dxdy

(1 + 2 coshx)(1 + 2 cosh 2πy
3 )

=
√

3 sin ab
cosh b

2

sinh 3b
2

cosh πa
3

sinhπa
− 1 + cos ab

(1 + 2 cosh 2πa
3 )(1 + 2 cosh b)

,

4

π

∞∫
0

∞∫
0

sinxy sin ax sin by dxdy

(1 + 2 coshx)(1 + 2 cosh 2πy
3 )

=

√
3(1− cos ab) cosh b

2 cosh πa
3

sinh 3b
2 sinhπa

− sin ab

(1 + 2 cosh 2πa
3 )(1 + 2 cosh b)

.

III. Case studies of several two-dimensional Mordell integrals

Let’s multiply (17) by e−(a2+b2)/2 and integrate with respect to a and b

∞∫
0

∞∫
0

cosxy

cosh px cosh πy
p

e−(x2+y2)/2 dxdy =

√
2 ·

∞∫
0

∞∫
0

cosh πa
2p cosh pb

2

cosh πa
p cosh pb

e−(a2+b2)/2 dadb−
∞∫

0

∞∫
0

cos ab

cosh πa
p cosh pb

e−(a2+b2)/2 dadb.

This can be written in the following symmetrical form

√
2 ·

∞∫
0

∞∫
0

cos 2xy

coshαx coshβy
e−x

2−y2dxdy =

∞∫
0

cosh αx
2

coshαx
e−x

2

dx ·
∞∫

0

cosh βy
2

coshβy
e−y

2

dy, αβ = 2π. (20)

Note the similarity of (20) with the Landen transform (18). Since Mordell integrals can be understood

as continous analogs of theta functions [1], (20) can be understood as Landen’s transform for Mordell

integrals. However the factorization on the left side of (20) does not occur because of the function cos 2xy

in the integrand (in the discrete case it was possible to choose the parameters so that cos 2xy didn’t have

any mixing effect on the two series, so the double series factorized; unfortunately this is not possible for

an integral).

Combining (20) with (5) leads to

∞∫
0

∞∫
0

e−x
2−y2 cos 2xy

coshαx cosh(2πy/α)
dxdy =

α

2
√
π

 ∞∫
0

cosh αx
2

coshαx
e−x

2

dx

2

. (21)

Corollary 1.
∞∫

0

∞∫
0

cos π2

(
nx2 − y2

n

)
cosπxy

coshπx coshπy
dxdy =

√
n

2
I2

1 −
√
n

2
I2

2 +
√
nI1I2,

∞∫
0

∞∫
0

sin π
2

(
nx2 − y2

n

)
cosπxy

coshπx coshπy
dxdy =

√
n

2
I2

2 −
√
n

2
I2

1 +
√
nI1I2,

where I1 =

∞∫
0

cosh πx
2

coshπx
cos

πnx2

2
dx, I2 =

∞∫
0

cosh πx
2

coshπx
sin

πnx2

2
dx, n > 0.

In analogous manner, one can deduce from (19) and (6) that

∞∫
0

∞∫
0

xye−x
2−y2 sin 2xy

coshαx cosh(2πy/α)
dxdy =

α

2
√
π

 ∞∫
0

sinh αx
2

coshαx
xe−x

2

dx

2

. (22)
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Corollary 2.
∞∫

0

∞∫
0

cos π2

(
nx2 − y2

n

)
sinπxy

coshπx coshπy
xy dxdy =

√
n3

2

(
I2

4 − I2
3 + 2I3I4

)
,

∞∫
0

∞∫
0

sin π
2

(
nx2 − y2

n

)
cosπxy

coshπx coshπy
xy dxdy =

√
n3

2

(
I2

3 − I2
4 + 231I4

)
,

where I3 =

∞∫
0

x sinh πx
2

coshπx
cos

πnx2

2
dx, I4 =

∞∫
0

x sinh πx
2

coshπx
sin

πnx2

2
dx, n > 0.

Ramanujan showed that integrals I1 − I4 have closed form expressions when n ∈ Q [1]. So the corre-

sponding two-dimensional integrals also have closed form expressions.

Examples.
∞∫

0

∞∫
0

cos π2

(
3x2 − y2

3

)
cosπxy

coshπx coshπy
dxdy =

√
3− 1

2
√

6
,

∞∫
0

∞∫
0

sin π
2

(
3x2 − y2

3

)
cosπxy

coshπx coshπy
dxdy =

2−
√

3

4
√

2
,

∞∫
0

∞∫
0

cos π2
(
x2 − y2

)
sinπxy

coshπx coshπy
xy dxdy =

1

8
√

2π2
.

It is possible to calculate even more general integrals. In analogy with Ramanujan’s integral analogs

of theta functions [1] define

Φα,β (θ, φ) =

∞∫
0

∞∫
0

cosπxy cosπθx cosπφy

coshπx coshπy
e−π(αx2+βy2)/2 dxdy. (23)

Then √
αβ eπθ

2/(2α)+πφ2/(2β) Φα,β (θ, φ) + Φ1/α,1/β(iθ/α, iφ/β)

=
√

2

∞∫
0

cosh πx
2 cosh πθx

α

coshπx
e−πx

2/(2α) dx ·
∞∫

0

cosh πy
2 cosh πφy

β

coshπy
e−πy

2/(2β) dy. (24)

Equation (24) generalizes (21). Now one can apply the method developed by Ramanujan [1] to the

function Φα,β (θ, φ). From the definition of Φα,β (θ, φ), it follows that

Φα,β (θ + i, φ) + Φα,β (θ − i, φ) = e−πθ
2/(2α)

√
2

α

∞∫
0

cosπφy cosh πθy
α

coshπy
e−π(β+1/α)y2/2 dy. (25)

Now combine (24) and (25) to get√
β

2

(
eπθ Φα,β (θ + α, φ) + e−πθ Φα,β (θ − α, φ)

)
eπφ

2/(2β)+πα/2

= −
∞∫

0

cosπθy cosh πφy
β

coshπy
e−π(α+1/β)y2/2dy +

√
2 eπα/8 cosh

πθ

2
·
∞∫

0

cosh πy
2 cosh πφy

β

coshπy
e−πy

2/(2β) dy. (26)
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Thus when α/i ∈ Q is a rational number, formulas (24-26) reduce the problem to the calculation of one-

dimensional Mordell integrals. This shows that when α/i ∈ Q and β/i ∈ Q are both rational, Φα,β (θ, φ)

can be calculated in closed form. Similar formulas exist for

Ψα,β (θ, φ) =

∞∫
0

∞∫
0

sinπxy sin θx sinφy

coshπx coshπy
e−π(αx2+βy2)/2 dxdy.

IV. Reduction of certain family of double Mordell integrals to combination of one-dimensional

Mordell integrals

Consider the following generalization of (23)

Φ
(γ)
α,β =

∞∫
0

∞∫
0

cosπγxy

coshπx coshπy
e−π(αx2+βy2)/2 dxdy.

We want to find a combination of parameters γ, α, β such that this integral reduces to a sum of products

of one-dimensional Mordell integrals which we define according to Ramanujan [1] as

φα(θ) =

∞∫
0

cosπθx

coshπx
e−παx

2

dx. (27)

(27) satisfies the transformation formula ([1], Entry 14.3.1)

φα(θ) =
1√
α
e−πθ

2/(4α)φ1/α(iθ/α).

First, we apply a series of transformations to Φ
(γ)
α,β:

Φ
(γ)
α,β =

∞∫
0

e−πβy
2/2

coshπy
φα/2(γy) dy

=

√
2

α

∞∫
0

e−π(β+γ2/α)y2/2

coshπy
φ2/α(2iγy/α) dy

=

√
2

α

∞∫
0

∞∫
0

e−2πx2/α−π(β+γ2/α)y2/2

coshπx coshπy
cosh

2πγxy

α
dxdy.

It is convenient to extend integration over the whole plane:

Φ
(γ)
α,β =

√
1

8α

∞∫
−∞

∞∫
−∞

e−2πx2/α−2πγxy/α−π(β+γ2/α)y2/2

coshπx coshπy
dxdy

=

√
1

8α

∞∫
−∞

∞∫
−∞

e−2π(x+γy/2)2/α−πβy2/2

coshπx coshπy
dxdy

=

√
1

8α

∞∫
−∞

∞∫
−∞

e−2πx2/α−πβy2/2

coshπ(x− γy/2) coshπy
dxdy

=

√
1

32α

∞∫
−∞

∞∫
−∞

e−2πx2/α−πβy2/2

coshπy

(
1

coshπ(x− γy/2)
+

1

coshπ(x+ γy/2)

)
dxdy
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=

√
1

8α

∞∫
−∞

∞∫
−∞

e−2πx2/α−πβy2/2 coshπx

coshπ(x− γy/2) coshπ(x+ γy/2)

cosh πγy
2

coshπy
dxdy.

After the change of variables ξ = x − γy/2, η = x + γy/2, considerable simplification occurs when

αβ = γ2:

Φ
(γ)
α,γ2/α =

1

n

√
1

8α

∞∫
−∞

∞∫
−∞

e−π(ξ2+η2)/α cosh π(ξ+η)
2

coshπξ coshπη

cosh π(ξ−η)
2

cosh π(ξ−η)
γ

dxdy.

To complete the process of reduction we set γ = 4n+ 2, n ∈ N0:

Φ
(4n+2)
α,(4n+2)2/α =

1

4n+ 2

√
1

8α

∞∫
−∞

∞∫
−∞

e−π(ξ2+η2)/α cosh π(ξ+η)
2

coshπξ coshπη

n∑
k=−n

(−1)keπk(ξ−η)/(2n+1) dxdy

=
1

2n+ 1

√
1

2α

∞∫
0

∞∫
0

e−π(ξ2+η2)/α

coshπξ coshπη

n∑
k=−n

(−1)k cosh π(2n+2k+1)ξ
4n+2 cosh π(2n−2k+1)ξ

4n+2 dxdy.

Thus, we have proved the first reduction formula

Φ
(4n+2)
1/α,(4n+2)2α =

1

2n+ 1

√
α

2

({
φα
(
i
2

)}2
+ 2

n∑
k=1

(−1)kφα

(
2n+2k+1

4n+2 i
)
φα

(
2n−2k+1

4n+2 i
))

, n ∈ N0. (28)

There is a transformation formula between two functions Φ
(γ)
α,β that we will now derive. First, iterating

the gaussian integral 4.133.2 from [6]

∞∫
0

e−x
2/(4c) cos ax cosh bx dx =

√
πc ec(b

2−a2) cos(2abc),

where Re c > 0, one can show that

∞∫
0

∞∫
0

e−(x2+y2)/2 cos(qxy) cos ax cos bx dxdy =
π

2
√

1 + q2
exp

{
− a2 + b2

2(1 + q2)

}
cos

qab

1 + q2
.

Then multiplying this integral by 1/
(
cosh(

√
π
2
a
α) cosh(

√
π
2
b
β )
)

and integrating wrt a and b we come to

αβ

∞∫
0

∞∫
0

e−(x2+y2)/2 cos(qxy)

cosh(
√

π
2αx) cosh(

√
π
2βy)

dxdy =
1√

1 + q2

∞∫
0

∞∫
0

exp

{
− x2 + y2

2(1 + q2)

}
cos qxy

1+q2 dxdy

cosh(
√

π
2
x
α) cosh(

√
π
2
y
β )
.

This implies the following general three-parameter transformation for Φ
(γ)
α,β:

Φ
(2q/
√
αβ)

2/α,2/β =

√
αβ

1 + q2
Φ

(2q
√
αβ/(1+q2))

2α/(1+q2),2β/(1+q2).

Combining with (28) we find another family of double Mordell integrals that reduce to a combination of

one-dimensional integrals

√
(4n+ 2)α ·Φ(1/(2n+1))

1/α,α/(2n+1)2 =
{
φ1/(2α)

(
i
2

)}2
+2

n∑
k=1

(−1)kφ1/(2α)

(
2n+2k+1

4n+2 i
)
φ1/(2α)

(
2n−2k+1

4n+2 i
)
, n ∈ N0.

(29)
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This is second reduction formula. (28) and (29) are main formulas of this section. Note that both double

Mordell integrals in (28) and (29) are of the type Φ
(
√
αβ)

α,β .

Two examples of the reduction formula (29) are shown below:

i) n = 0: In this case we recover (20).

ii) n = 1:√
3

α

∞∫
0

∞∫
0

cos(πxy/3)

coshπx coshπy
e−παx

2−πy2/(36α) dxdy

=

( ∞∫
0

cosh πx
2

coshπx
e−παx

2

dx

)2

− 2

∞∫
0

cosh πx
6

coshπx
e−παx

2

dx

∞∫
0

cosh 5πx
6

coshπx
e−παx

2

dx.

There is a curious consequence of the formula above:

√
α
{
φα
(
i
2

)}2 − 2
√
αφα

(
i
6

)
φα
(

5i
6

)
=
√
β
{
φβ
(
i
2

)}2 − 2
√
β φβ

(
i
6

)
φβ
(

5i
6

)
, αβ = 1/36.

This is a quadratic relation connecting 6 different Mordell integrals. Linear relations between one-

dimensional Mordell integrals have been studied before (e.g., [12]) and two-dimensional Mordell integrals

have been investigated recently in connection with vector-valued higher depth quantum modular forms

[3]. However, it seems the fact that there are non-trivial reductions of certain two-dimensional Mordell

integrals to one-dimensional Mordell integrals, or the fact that there are non-trivial quadratic relations

between one-dimensional Mordell integrals have not been recognized in the existing literature.

V. Absolute value of the Mordell integral

In this section we study integrals of the type

∞∫
0

eiαx
2

coshπx
dx,

where α ∈ R. The square of the absolute value of this integral can be transformed in the following way:

4

∣∣∣∣∣
∞∫

0

eiαx
2

coshπx
dx

∣∣∣∣∣
2

=

∞∫
−∞

eiαx
2

coshπx
dx

∞∫
−∞

e−iα(x+y)2

coshπ(x+ y)
dy

=

∞∫
−∞

∞∫
−∞

e−iαy
2−2iαxy

coshπx coshπ(x+ y)
dxdy

=

∞∫
−∞

∞∫
−∞

e−2iαxy

coshπ(x− y/2) coshπ(x+ y/2)
dxdy

= 2

∞∫
−∞

dy

∞∫
−∞

e−2iαxy

cosh 2πx+ coshπy
dx

= 2

∞∫
−∞

sinαy2

sinhπy sinhαy
dy.

This can be written as

∞∫
0

sinαx2

sinhπx sinhαx
dx =

( ∞∫
0

cosαx2

coshπx
dx

)2

+

( ∞∫
0

sinαx2

coshπx
dx

)2

, α ∈ R. (30)
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Analogous considerations lead to other formulas of similar kind

∞∫
0

sin 2αx2

sinhπx sinhαx
dx =

∞∫
0

cos 2αx2

coshπx coshαx
dx =

∣∣∣∣∣
∞∫

0

cosh πx
2

coshπx
eiαx

2/2 dx

∣∣∣∣∣
2

, α ∈ R, (31)

π

∞∫
0

sin 3αx2

4π coth x
2 coth αx

2 −
1√
3

cos 3αx2

4π

(1 + 2 coshx)(1 + 2 coshαx)
dx =

∣∣∣∣∣
∞∫

0

e3iαx2/(4π)

1 + 2 coshx
dx

∣∣∣∣∣
2

, α ∈ R, (32)

and to the following curious closed form

∞∫
0

tanhπx tanhαx cos 2αx2 dx = 0, α ∈ R. (33)

Here we give an explanation for the first equality in (31) and for (33). For the first, starting from (14)

we put b = αa

2

π

∞∫
0

∞∫
0

cosxy

cosh
√

π
2x · cosh

√
π
2 y

cos ax cosαay dxdy =
sinαa2

sinh
√

π
2a · sinh

√
π
2αa

and integrate with respect to a from 0 to ∞ to obtain

∞∫
0

cos 2αx2

coshπx coshαx
dx =

∞∫
0

sin 2αx2

sinhπx sinhαx
dx.

For the second, starting from (13) and its sine analog

2

π

∞∫
0

∞∫
0

cosxy

sinh
√
πx sinh

√
πy

sin ax sin by dxdy =
1

2
tanh

√
πa

2
tanh

√
πb

2
− 1− cos ab

sinh
√
πa sinh

√
πb
, (34)

(by the way, (34) implies the self reciprocal function 1−cosxy
sinh
√
πx sinh

√
πy

) we put b = αa in both, take the

sum of (13) multiplied by eiαa
2/2 and (34) multiplied by ieiαa

2/2, integrate from 0 to ∞ using formulas

∞∫
0

cos ax cosαay eiαa
2/2 da =

√
πi

2α
e−i(x

2+α2y2)/(2α) cosxy,

∞∫
0

sin ax sinαay eiαa
2/2 da = i

√
πi

2α
e−i(x

2+α2y2)/(2α) sinxy,

to obtain

0 =
i

2

∞∫
0

tanh

√
πa

2
tanh

√
παa

2
eiαa

2/2 da+

∞∫
0

−i(1− cosαa2) + sinαa2

sinh
√
πa sinh

√
παa

eiαa
2/2 da.

From this, it is straightforward to deduce (33) and as a byproduct

∞∫
0

2 sin αx2

2

sinhπx sinhαx
dx =

∞∫
0

tanhπx tanhαx sin 2αx2 dx, α ∈ R.
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Note the equivalent formulation of (33):

∞∫
0

cosh (π − α)x

coshπx coshαx
cos 2αx2 dx =

1

4

√
π

α
, α > 0. (35)

Formulas (33) and (35) are reminiscent of the integral of Ramanujan

∞∫
0

coshαx

coshπx
cosαx2 dx =

1

2
cos

α

4
, α ∈ R, (36)

([7], see also generalizations in [4,5]). (33), (35) and (36) contain trigonometric function of the argument

αx2 and hyperbolic functions of the arguments πx and αx. However the crucial difference between them

is that the integrand in (33) has poles not only at the zeroes of coshπx, but also at the zeroes of coshαx.

Integrals of this sort are related to integrals for the product of two hyperbolic self-reciprocal functions

studied by Ramanujan ([10], formula (10)). To show this we put b = αa in (17) and (19) and integrate

with respect to a. The result is

√
2

∞∫
0

cosαx2

coshπx coshαx
dx =

∞∫
0

cosh πx
2

coshπx
·

cosh αx
2

coshαx
dx, α ∈ R, (37)

√
2

∞∫
0

sinαx2

coshπx coshαx
dx =

∞∫
0

sinh πx
2

coshπx
·

sinh αx
2

coshαx
dx, α ∈ R. (38)

VI. Connection to lattice sums

Multiplying (17) and (19) by
1√
ab

and integrating with respect to a and b leads to

√
2

∞∫
0

∞∫
0

cos x
2y2

π dxdy

coshx2 cosh y2
=

 ∞∫
0

cosh x2

2

coshx2
dx

2

, (39)

√
2

∞∫
0

∞∫
0

sin x2y2

π dxdy

coshx2 cosh y2
=

 ∞∫
0

sinh x2

2

coshx2
dx

2

. (40)

The RHS of (39) and (40) contain integral representation of certain Dirichlet L-series, while the LHS

are 2D-lattice sums of Bessel and Neumann functions, as shown below on a formal level. Evaluation of

double sums of Bessel functions in terms of Dirichlet L-series is well known [2].

Consider the double integral on the LHS of (39). First, the functions sech x2 are expanded into the

powers of e−x
2

. This results in a double sum of double integrals

∞∫
0

∞∫
0

e−(2m+1)x2−(2n+1)y2 cos
x2y2

π
dxdy,

where m and n are non-negative integers. The integral over y is easily calculated

∞∫
0

e−(2n+1)y2 cos
x2y2

π
dy =

π

2

(
1√

π(2m+ 1) + ix2
+

1√
π(2m+ 1)− ix2

)
.
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To calculate the integral over x we need formula 3.364.3 from [6]

∞∫
0

e−(2n+1)x2√
π(2m+ 1)± ix2

dx =
1

2
(−1)m+ne∓

3πi

4 K0

(
∓πi

2
(2m+ 1)(2n+ 1))

)
.

Note that K0(ix) = −π
2 (Y0(x) + iJ0(x)), x ∈ R. As a result the double integral in (39) reduces to a

combination of double sums
∞∑

m,n=0

Z0

(π
2

(2m+ 1)(2n+ 1)
)
,

where Z0 is either Bessel J0 or Neumann Y0 function.

Acknowledgements. The author of this paper wish to thank Dr. Lawrence Glasser for valuable corre-

spondence and comments.

1 B. Berndt and G.E. Andrews, Ramanujan’s lost notebook, part IV, Springer New York (2005).
2 J.M. Borwein, M.L. Glasser, R.C. McPhedran, J.G. Wan, I.J. Zucker, Lattice sums then and now, Cambridge

University Press (2013).
3 K. Bringmann, J. Kaszian, A. Milas, Vector-valued higher depth quantum modular forms and higher Mordell

integrals, Journal of Mathematical Analysis and Applications, Volume 480, Issue 2, p. 123397 (2019).
4 M. L. Glasser, Generalization of a definite integral of Ramanujan, J. Indian Math. Soc., 37, 351 (1973).
5 M. L. Glasser, A Remarkable Definite Integral, arXiv:1308.6361v2 (2013).
6 I.S. Gradshteyn, and I.M. Ryzhik, Table of Integrals, Series, and Products, 6th ed., Academic Press, Boston

(2000).
7 S. Ramanujan, Some definite integrals, J. Indian Math. Soc., XI, 81-87 (1919).
8 G.H. Hardy, Note on the function

∫∞
x
e

1
2 (x

2−t2)dt, Quart. J. Pure Appl. Math., 35, 203 (1903).
9 B. Cais, On the transformation of infinite series (unpublished).

10 S. Ramanujan, Some definite integrals, Mess. Math., XLIV, 10 - 18 (1915).
11 E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd.ed., Oxford University Press (1948).
12 G. N. Watson, Generating functions of class-numbers, Compositio Mathematica, v. 1, p. 39-68, (1935).
13 E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Cambridge university press (1996).
14 www.someformulas.blogspot.com

http://arxiv.org/abs/1308.6361
www.someformulas.blogspot.com

	Introduction: self-reciprocal Fourier transformations
	Functions of two variables
	Case studies of several two-dimensional Mordell integrals
	Reduction of certain family of double Mordell integrals to combination of one-dimensional Mordell integrals
	Absolute value of the Mordell integral
	Connection to lattice sums
	References

