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Abstract

Given the announcement by Harvard College to stop publishing difficulty rating for courses [1], a need
has arisen for alternative methods of information gathering among undergraduates. In this paper, we propose
different prediction market mechanisms, detailing user input/output, contract definitions, and payment rules
for each of the proposed mechanisms. The goal of each mechanism is to obtain accurate predictions that could
replace Q-guide data (overall course quality, difficulty rating, and workload rating). We further discuss properties
of each prediction market, such as the truthfulness incentives of for individual agents, individual agent’s optimal
policies, and expected results from each market. We conclude with a discussion and explanation of a simple toy
implementation of the market, detailing design consideration that might affect user behaviour in our market,
and laying the groundwork for future expansion and testing.
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1 Introduction

Financial markets are a well-studied area of economic theory, but with the help of the Internet, a new type of market
has emerged. According to Wolfers and Zitzewitz, these new and emerging forms of financial markets, better known
as prediction markets, information markets, or event futures, have the potential to collect all information about
and event and thereby predict the likelihood of said event accurately [7]. These markets lie somewhere between
large financial markets where the instruments traded are financial assets and smaller, sometimes illegal, gambling
markets.

1.1 Prediction Markets

Despite the question of legality, multiple prediction markets have been implemented. The markets have usually
outperformed other means of information gathering, including surveys of experts. The main area of applications
has thus far focused on political prediction markets, taking advantage of the win/lose binary inherent to elections
to create simple to understand and simple to use open market mechanism. However, more complicated prediction
markets, even for elections, have recently been proposed and tested by Dudkik et al. [4]. Empirical results on
prediction markets have demonstrated their ability to outperform other methods, especially if the markets are
well-designed.
Given the effectiveness of prediction markets, they represent an intriguing solution to the problem of information
gathering for undergraduate students. Specifically, students at Harvard University often optimize their class sched-
ules using information about courses based on previous offerings. While word-of-mouth details play an important
role in the student’s decision-making process, a significant portion of their rational is typically based off the Harvard
Q Guide [6].

1.2 Q-Guide Mechanism

The Q-guide mechanism is essentially a survey based mechanism for information gathering. As discussed by
Dudik et al, this mechanism has been shown to be inferior to a prediction market in many situations [4]. The
Q-guide includes multiple additional questions for students. The questions vary from quantifiable “workload” to
more general feedback request questions. We focus on explaining the process used for the more quantifiable axes:
overall, workload, and difficulty. First, let N be the set of students reporting on the Q-guide. Then the axes are:

• Overall: The scale ranges from 1.0 to 5.0. Each student is asked to given an “overall” rating to a course,
ôi ∈ [1, 5] ∩ Z. As we can see, students are restricted to integer values for reporting. Once all results are in,
the average is calculated and rounded to the nearest tenth. The overall score for a class is given by:

ô =
1

|N |
∑
i∈N

ôi (1)

where ô is rounded to the nearest tenth.

• Workload: The scale ranges from 1.0 to 5.0. Each student is asked to provide an integer number of “hours
spent on coursework outside of class,” formally ŵi ∈ N+. The values are then bucketed into five distinct
buckets each with unique values in the range [1, 5]∩Z. The translation from this space of reports to the score
reported in the Q-guide can be modeled by the function f : N 7→ [1, 5] ∩ Z defined as:

f(ŵi) =


1 : ŵi ∈ [0, 3)
2 : ŵi ∈ [3, 6]
3 : ŵi ∈ [7, 10]
4 : ŵi ∈ [11, 14]
5 : ŵi ∈ [14,∞)

(2)

Given the above assignments, the result is then taken and averaged to the nearest tenth. Formally, the final
workload score reported on the Q-Guide is given by ŵ ∈ [1, 5]:

ŵ =
1

|N |
∑
i∈N

f(ŵi) (3)
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A close look at the buckets leads rise to the following curiosity. What happens if a student reports some
r̂ = 3.5, for example? Well, given the above described mechanism, this value is invalid. Contact with the
college verifies our above assumptions. Only integer values are accepted in the form, and these value are
then bucketed as described (possibly in an attempt to reduce the effect of outliers) and the resulting values
averaged. Therefore, a report ŵi ≥≥ 15 is equivalent to a report ŵi = 15. Intuitively, it appears that this
system would lead to an under-report in workload.

• Difficulty: The scale once again ranges from 1.0 to 5.0. Each students i is asked to report an integer number
representing the “difficulty” of the course, d̂i ∈ [1, 5] ∩ Z. The result is then averaged, with final reported
difficulty d̂ of:

d̂ =
1

|N |
∑
i∈N

d̂i (4)

In general, while better than nothing, the Q-guide mechanism is imperfect. The clearest example of this is the
recent decision by the administration to remove the “difficulty” rating from the Q-guide due to issue of subjectivity
(in addition to concerns that it would lead students away from difficult but beneficial courses).

1.3 Benefits over Q-Guide System

There exists some general benefits to a Harvard Q-Guide Prediction market over the current survey based mecha-
nism. If implemented efficiently, which is discussed later in the paper, the Harvard Prediction Market can provide
benefits over the Q-guide to both students and staff. First, we focus on general benefits for both staff and students:

• Increased influence of knowledgeable actors - Those who have more information about the workload of a
course (professors, teaching staff, etc.) would be have the incentive to influence the market more than those
who are uncertain.

• Real-time updates to scores - With a prediction market, statistics on courses can be tracked continuously as
the semester progresses. In contrast, Q-Guide Scores decrease in relevance as the year progresses. In certain
years, changes to teaching staff or outside events (such as missing days from snow storms leading to significant
changes in the course curriculum) could lead to a significant divergence on course data from previous years.

The market has several benefits for both students and teaching staff.
Possible benefits for students:

• Ability to add or drop classes with accurate information - Instead of basing decision on outdated course
statistics, students can gauge aggregate class statistics before the add/drop or withdrawal deadline. It gives
students a better information mechanism for decision making.

• Fun - Students can compete with each other on who will “win” the most from the prediction market.

Possible benefits for staff:

• Aligning reporting incentives - Unlike the Q-guide (where there is an incentive to complete the survey, rather
than to report truthfully), a prediction market provides a selfish incentive for students to report accurately.

• Knowledge of how to improve the class - With each incoming set of students, the class composition changes
(prior knowledge of each set of students is slightly different). Staff can attempt to modify the course to best
suit incoming classes. However, this introduces a feedback loop issue where students might attempt to game
the system. For example, they could over report the work-load in order to have the course staff modify the
course itself to becomes less time intensive.
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2 Prediction Market Mechanisms

In this section, we explore in detail for different prediction market implementations. The goal of the prediction
market will be to predict three things:

1. Expected Workload Rating

2. Expected Overall Rating

3. Expected Difficulty Rating

We first tackle the problem from a simplistic perspective, utilizing binary contracts as discussed in class with an
automated market maker. As the paper progresses, we explore more complex extensions of the simple binary
contract model, such as generalized many-contract models, and continuous-valued index-contracts. First, we tackle
an important design decision which is assumed throughout the remaining models.

2.1 Clearing the Market

As with any market, an important question to resolve for the Harvard Prediction Market is the clearing mechanism
that will be utilized. Current prediction markets, such as the Iowa Electronic Markets, the TradeSports market,
and Foresight Exchange (to name a few) typically utilize some variation of a continuous double auction [7] for
their trading mechanism. The benefit of a continuous double auction mechanisms lies in its simplicity. Continuous
double auction markets maintain a bid-ask ledger or table for each type of contract traded. An example table is
shown in Table 1.

Bids (Buys) Asks Trades
10 @ $3.45∗ 5 @ $3.44∗ 5 @ $3.445∗

1 @ $3.46 1 @ $3.45 10 @ $3.41
100 @ 4.00 10@ 3.45

Table 1: Simple example of bid-ask chart along with trade history. * marks a trade that is about to occur.

At the start of the market, the ledger L begins empty with no bids included. A set of market participants,
N = {1, · · · , n} then enter the market and can place buy orders, b(t)i , or sell orders, s(t)i in sequential order. From
this point forward, we use o(t)i to represent either a buy or sell order. The orders can be thought of as tuples,
o
(t)
i = (x, p), where x is the number of contracts the i-th bidder is looking to buy or sell, and p is the price she’s
willing to pay for each contract. When an agent i places an order oti at time period t, for example, the order
is added on the ledger L so that L′ = L ∪ {oti}. Typically, the ledger is maintained in sorted order where the
buy orders are sorted in increasing order and the sell orders in decreasing order. Maintaining contra-positive sort
property throughout the auction allows for efficient clearing of trades.
Trade clearing occurs when there exists a sell order with a lower price than a buy order. More formally, let
b̃
(ti)
i = (xi, pi) ∈ L and s̃(tj)j = (xj , pj) ∈ L be the buy order with the highest price (out of all buy orders b ∈ L)
and the sell order with the lowest price (out of all sell orders s ∈ L), respectively. Then a trade occurs between
i, j ∈ N where agent i sells min{xi, xj} contracts to agent j at an agreed upont price p̃ when:

pi > pj (5)

The agreed upon price p̃ depends on multiple factors. One possible approach is to give preference to those who
have submitted an order earlier, so that p̃ = pi if ti ≤ tj and p̃ = pj otherwise, where we’ve given preference to buy
orders (if submitted at the same time). However, the market can be designed so that same time submissions are
impossible or made impossible by a system which arbitrarily picks one over the other, and therefore no preference
is given. A second option is to simply have the agreed upon price be the median of the buyer and seller (as is the
case in Table 1:

p̂ =
pi + pj

2
(6)
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In either scenario, no trades are accepted until the transaction is settled by both parties. As we can see from the
formal definition of the continuous double auction mechanism, some benefits immediately become apparent.

• Continuous: Trades occur asynchronously as soon as Equation 5 is satisfied.

• Double: The ledger L can be better thought of as two tables, L = (B,S). We can do this by have that
∀o ∈ L, o = b ∈ B if o is a buy order and o = s ∈ S if o is a sell order. We then maintain an order of B and
S as previously specified. Therefore, this auction has both buyers and sellers participating disjointly, with
trades occurring only between bi ∈ B and sj ∈ S where B ∩ S = ∅.

However, a secondary option for clearing the market is one which utilizes an automated market maker. While
Continuous Double Auctions are simple to design and implement, the issue of liquidity quickly arises. Given that
the vast majority of Harvard courses have classes of small size (average class size of below 40), it seems that this
will be of particular difficulty in a Harvard Predictions Market for Q-Guide data. With this in mind, we now turn
to an exploration of automatic market makers. While the system above would have provided us with a relatively
simple implementation of a market, it would likely have led to low liquidity and by extension an inefficient market
which would have provided little more information.
The idea of an automated market maker is to have an agent disjoint from our set N of current market participants
with whom all trades occur. As opposed to the CDA concept where we have trades occurring between i, j ∈ N
when the market forces dictated, with an automatic market maker, all agents i ∈ N trade only with the market
maker. The market maker is always willing to quote some sell price pi,τ per contract for a query by agent i of xi
contracts of type τ . If paid that price, then the automatic market maker transfers xi contracts of type τ to agent
i. Similarly, the market maker is willing to quote some buy price pii, τ per contract for a query by agent i of xi
contracts of type τ . If paid that amount, the market maker will accept that number of contracts and pay the agent
xipi.
With the above, liquidity is not an issue in the market. Trades can always occur because the market maker is
always willing to buy or sell any amount of a contract at some calculated price. We now several different options
for this mechanism, explaining the benefits and drawbacks of each.

2.2 Binary Contracts

2.2.1 Contract Definition:

The Harvard Predictions Market’s main goal is to predict the workload, the difficulty, and the overall score of a
particular course. Let us consider some course C ∈ C, the set of all Harvard Course offerings for the upcoming
semester. Then we define ŵC ∈ [0, 168] ∩ Z as the average number of hours per week spent by all students in
course C during the semester. Similarly, we can defined d̂C , ôC ∈ [1, 5] as the reported difficulty and average overall
rating for the course during the semester. We can then consider a set of corresponding random variables for each
quantity, {wC , dC , oC}. All of the previous quantities will be realized when the Q-Guide results are released the
following semester. However, the task of prediction market is to provide information on these random quantities
before their respective events occur.
In order to do this, we design a simple binary contract for each of the above random variables. For simplicity, we
begin our focus with the contract for workload, labeled Tw. We can define some cutoff c for the number of hours
worked per week and then create a binary contract which pays outs:

payment =

{
1 if ŵC > cC

0 otherwise

where ŵC is the realized workload in hours and c a predetermined cutoff value.
We propose a market such that for each class, there is a single contract available for purchase for each of the above
prediction categories, choosing c = c̄C to be the mean workload (mean difficulty, mean overall score) from the
previous year for the course C. Essentially, this contract would predict whether the workload (difficulty, overall
score) from this year is greater or less than the workload (difficulty, overall score) from previous years. Intuitively,
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the market provides a good amount of information, diving the space of possible prediction for each quantity into
two distinct regions by our choice of c.
It’s important to choose c carefully, as if we determined a global c̄, it would offer less information. Consider the
difference between an advanced grad-level CS course and a standard introductory course. It’s reasonable to assume
that the workload of the grad course, ŵG, is greater than that of the introductory course ŵU , so choosing c = c̄
such that

ŵU < c̄ < ŵG

might not offer much additional information, if it’s known with high probability that ŵG > c̄ already. Choosing a
distinct c = c̄C for each class addresses this problem.
The problem detailed above is not purely hypothetical – we can see that while the distribution of our metrics does
tend to stay away from extremes, it nonetheless does vary significantly from course to course. See Figure 1. While
popular values for each metric consist of a set of size 3, given the small support of our data, it’s important to
choose our value of c appropriately. Data is shown for both mean and median.

Figure 1: Histogram of Distribution for Q-Guide Data for 2014.

Another possible choice for c is the median of the above each of the above statistics for each course. Given the
bounded, compact, and small support for our variables, however, the mean and the median should not diverge
significantly. We verify this empirically by comparing observing Figure 2. The workload metric is the one with the
most variation, but even so, the difference for most courses is minor.

Figure 2: Histogram of absolute distance between median and mean for Harvard Course offerings in 2014.

2.2.2 Cost-based Automated Market Maker

We use the construction of a cost-based Automated Market Maker as defined in Parkes and Seuken’s textbook.
[5] The market state is (x1, x2), meaning that there are currently x1 of contract 1 sold, and x2 of contract 2 sold,
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where contract 1 pays out 1 if the realized outcome ŵC is greater than cC , and contract 2 pays out 1 otherwise.
We have the cost function

C(x1, x2) = β ln(ex1/β + ex2/β) (7)

where we can modify β to adjust the sensitivity so that there are no wild price swings from any one bidder (or it
is at least more difficult for the bidder to adjust the results).
If the agent wants to shift the market state to (x′1, x

′
2), then we charge them

C(x′1, x
′
2)− C(x1, x2)

The corresponding instantaneous prices are for each of the contracts i are:

pi(x1, x2) =
exi/β∑2
j=1 e

xj/β
(8)

2.2.3 Desirable Properties

As proven in Parkes and Seuken’s work [5], the LMSR satisfies, liquidity, no arbitrage or round-trip arbitrage,
myopic incentives, and bounded loss to the market maker. In our example for the Harvard Prediction market,
this provides an incentive for truthfulness. Participating students would be encouraged to purchase contracts in a
fashion that would cause the market to approxiamte their own belief. We can even allow for fractional purchases
of contracts.
Furthermore, the cost based automated market maker defined above has the excellent property that for either
contract x1 or x2, we have:

lim
xi→∞

C(x1, x2) = lim
xi→∞

β ln(ex1/β + ex2/β) (9)

≈ ln(exi) (10)
≈ xi (11)

Therefore, in order to influence the aggregate belief by a significant amount, the student would have to purchase
(or sell) a significant amount of one type of contract. This near-linear relation between the strength of a belief and
the cost of shifting the market to that belief gives us a market that’s resilient to manipulations. We can further
guarantee this by maintaining a credit system where points tend to be difficult to come by.
Furthermore, we’ll have that the price paid for a set of contracts, given Equation 11, will tend to reflect the overall
change in the state-space:

C(x′1, x
′
2)− C(x1, x2) ≈ |x′1 + x′2 − x1 − x2| (12)

This model would be appropriate if we want to determine the expected difficulty rating or overall rating, where
the number is more or qualitative, and the accuracy of the expected outcomes is less meaningful.
Though we could use this to determine whether or not workload has increased from last year, this might not be as
much information as students or instructors desire. To do this, we can generalize this "bucketing" strategy to the
continuous realm by having an infinite number of buckets, as defined in the exposition that follows.

2.3 Generalization to Multiple-Contracts

The immediate solution to the above problem is a straight-forward generalization of Equation 7. If we want to
bucket the outcomes into n buckets, with thresholds 0 < ci ≤ n such that xi is the number of contracts purchased
that pay out 1 point if ci−1 < w ≤ ci. A natural division point for the Q-Data pertaining to difficulty and overall
difficulty could be contracts where we have ci = i for i ∈ {0, · · · , 5} (so we set n = 5). Similarly, for the workload,
we could create integer division points. This would mimick the input students already see in the Q-Guide. For
Workload, we can have n = 100 so ci = i for i ∈ {0, · · · , 100}.
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We can then define a simple state vector ~x ∈ Rn which represents the current state of the market. For a change of
state to ~x′, the cost to the students would be:

C(~x′)− C(~x) (13)

where the cost function is now a vector function C : Rn → R:

C(~x) = β ln

(
n∑
i=1

e~xi

)
(14)

A “quote” of a price in our new system would likely serve best to quote all contract prices pertaining to a class for
a given prediction metric. The reasoning behind this would be that a student could then use the values of each
contract to obtain a reasonable approximation of the probability density function of the course:

~∇~xC(~x) =

(
ex1/β∑n
i=1 e

~xi
, · · · , exn/β∑n

i=1 e
~xi

)T
(15)

Due to the simple generalization from the binary contract market, using an automated market maker as defined
above retains the same beneficial properties discussed earlier. Now, we explore some possible drawbacks.

2.3.1 Event Definition and Agent Response

Note that the above bucketing strategy would pose no additional challenges in terms of defining our events – in fact,
while Q-Guide data is typically presented in a summarized fashion, the result for each reported value is released
alongside. For each metric, for each class, for each contract, we would then simply payout 1 for those contracts
that fell into the correct bucket. Again, this is a straightforward generalization of the binary contract case.
It might be interesting to note, however, that contract regions are no longer evenly divided. Recall that in the
binary contract, we picked the median of the values (or even the mean). Looking at the Q-Guide data from last
year, as seen in Figure 3, we note that it is incredibly unlikely for a course to receive a score in the first bucket
for any of our measures. We might intuit that this would lead to some issues with the model – however, this data
is also publicly available. Students would typically be discouraged from buying contracts of type 1, unless they
had information about a particular course offering no-one else did. Then it would be in their interest to purchase
contracts of type 1, which assuming a distribution similar to that of previous years, would be significantly cheaper
than other contracts.

Figure 3: Distribution of Scores for Q-Guide 2014 Data

The agent response to this change, therefore, should be minor. The difficulty would arise in the size of the number
of contracts that a student buys. If we were to implement the above market solutions, we would be asking for
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Figure 4: Random sampling of four course offerings at Harvard.

a student to participate, on average, in the consideration for purchase of at least 60 different contracts (to cover
the an expected 4 courses). No only would such a complex market likely lead to low participations (decreasing
the effectiveness of our predictions), but the sheer complexity might lead to unexpected real-world results do to
irrational decisions on the part of the participants (for concreteness, an example of what is meant by this is the
follow: suppose dealing with some many contracts is too complicated for most people, however, they still wish to
participate. Then it might be likely that most people will focus there efforts on buying only one type of contract,
leading to a more extreme distribution).
A solution to this, as discussed by Parkes [5], is to set up a combinatorial market that allows for complex yet
succinct bidding strategies. With a combinatorial market, agents can express dependence of some contracts on
others, thereby minimizing the risk of irrational behavior. However, while a combinatorial market as explored by
Parkes is a valid alternative, we focus on exploring another possible venue for belief reporting.
Our approach attempts to more directly models the belief distribution over each of our metrics without requiring
excessive student/participant input. We lose the ability to succinctly express combinatorial dependence.

2.4 Predicting the Distribution

A simple approach would be to generalize the above idea. As can be seen from the data, it appears that the results
are normally distributed. A few sample courses chosen at random are shown in Figure 4. They corroborate the
idea that the distribution of our metrics tend to follow a Gaussian distribution. Intuitively, this also makes sense
in the context of a model which assumes that the reasons for a course rating are complex enough as to be modeled
by a random variable per student. Then each of the reported scores in the Q-Guide s ∈ {1, · · · , 5}, we have a sum
of random variables.
As such, we can restrict our market by making a few assumption. Suppose we know the following to be the case
(we drop the C in an effort to be succinct):

w ∼ N(µw, σw) (16)
d ∼ N(µd, σd) (17)
o ∼ N(µo, σo) (18)

If we present the above data to participants, it appears safe to assume that their beliefs will also be single-peaked,
and possibly distributed normally (or at least, given the data). Therefore, as opposed to relying in a market
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mechanism that has market participants report their belief of discrete values, we can instead as the participants to
report a set of values {µ} and {σ} to approximate their belief distribution. In this sense, we reduce the expected
number of contracts a user has to consider down to just 24 (6 per course, 2 for each of our predictors) .In this way,
we can gather a significant amount of data from the market participants with as little input as possible.
Furthermore, if predicting the variance is considered a significant cognitive hurdle, we can use other variables. We
can instead ask participants to predict X2, then use the formula Var(X) = E(X2) − µ2 to calculate the variance
(this is as suggested by Parkes and other [5], [4]).
While this idea is good theoretically, the assumption appears rather restrictive. We therefore extend the idea
further, following the literature on predicting the value continuous, real-valued variables.

2.5 Real-valued Predictions

When dealing with continuous outcomes, we must generalize from our simple binary or discrete case. To do this,
we note that by reporting q for a binary-valued outcome is equivalent to describing the distribution on the value
of the indicator random variable X:

Pr(X = 1) = q, Pr(X = 0) = 1− q

We can generalize by allowing the bidders to report their believed distribution over the space X of possible outcomes.
In our case of workload, X is a subset of the real line - in particular, we think it reasonable to set

X = [0, 100]

as we think that the average workload of any class will not exceed 100.
Assume for the moment that reporting a distribution is easily done by the users. We shall propose a way of
implementing a tool to do this reasonably efficiently later in Section 3.

2.5.1 Proper Scoring Rule for Distributions

First, we have an exposition on scoring rules on distributions, which is more general than we need, but we think
is important for the understanding of the reader. We borrow this definition of proper scoring rule on distributions
from "Proper Local Scoring Rules". [3]
For valid state space X , we want to determine an estimate of the distribution Q over X . Nature will determine
the realized value x ∈ X, and we want to elicit user’s believed distribution over the values, P ∈ P, where P is the
space of distributions over X .
We wish to find a proper scoring rule S : X × P → R to gauge the quality of your quote. This will be useful later
when defining an Automated Market Maker with this scoring rule in Section 2.5.3.
The expected value of S is smaller the closer that Q is to the actual distribution P , so in order to calculate payoffs
in our mechanism, we must negate it, and make affine transformations later.
Before we define one, we note that for each proper scoring rule S, we have two components that are automatically
associated with it:

H(P ) := S(P, P ) (19)
d(P,Q) := S(P,Q)−H(P ) (20)

H(P ) will turn out to be the Shannon entropy function, and d(P,Q) denotes the divergence function.
This yields the following useful properties:

• H(P ) is concave in P .

• d(P,Q)− d(P,Q0) is affine in P .

• d(P,Q) ≥ 0, with equality achieved at Q = P .
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Let L : X × A → R be a loss function, where A is an action space (further exposition on the action space can be
found here)[2].
We overload L to be defined for P ∈ P:

L(P, a) := EX∼P [L(X, a)]

Define the scoring rule to be
S(x,Q) := L(X, aQ)

where aQ is defined as arg infa∈A L(P, a).
From an agent’s perspective, if the agent has belief P , she wants to report Q to minimize the scoring rule (which
is the "error" of their quote Q) in order to maximize their payment, −S(x,Q).
Why is S strictly proper?
By definition,

S(x,Q) = L(x, aQ)→ EP [S(x,Q)] = L(P, aQ)

S(x, P ) = L(x, aP )→ EP [S(x, P )] = L(P, aP )

Since aP = arg infa∈A L(P, a, we have that

L(P, aP ) ≤ L(P, aQ)

which means that the rule is proper.
The Bregman Scoring Rules [3] is a subclass of this general class of proper scoring rules for a specific set of actions.
They are of the form

S(x,Q) := φ′{q(x)}+

∫
[φ{q(x)} − q(x)φ′{q(x)}] dx

with φ : R+ → R concave and differentiable.
Our (generalized) familiar logarithmic scoring rule

S(x,Q) = − ln(q(x))

is a Bregman Scoring rule with φ(s) = −s ln s that also happens to also be strictly proper, the proof of which is
outside the scope of this paper.

2.5.2 Market Scoring Rule Construction

How do we apply our proper scoring rule on distributions?
To define all the parameters and function definitions of Definition 18.3 of the Parkes textbook[5] in terms of this
specific application, we choose to use the logarithmic scoring rule S(x,Q) = − ln(q(x)), which is a specific instance
of a Bregman Scoring Rule, which is proven to be proper on pg. 4 of the Parry paper[3]. Here, q(x) is the probability
density function (or probability mass function) of x under distribution Q.
We define

R(Q, x) := −S(x,Q) = ln(q(x)) (21)

and the ith agent to trade

• Receives Qi−1 of the previous agent

• Makes a belief report Qi,

• Receives payment R(x,Qi)−R(x,Qi−1) when the outcome is realized.

As before, the part of the payment dependent on Qi−1 is fixed, so agent i is trying to maximize R(x,Qi), which is
a proper scoring rule over distributions.
Thus, defining the automated market maker in this way elicits an agent’s true beliefs.
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2.5.3 Automated Market Maker

From the literature [cost-based], its clear that there exists a strong equivalence between a proper market scoring
rule and automated cost-based market makers. We now propose a cost-based market maker for our scoring rule on
continuous-valued contracts as discussed in Section 2.5.1.
The AMM we now propose is a generalization of that discussed in Section 2.3. Let us consider how to define the
AMM for X ∈ {o, w, d} (for one of our proposed class measures). First, we let S(X) = σ(X), where σ(X) = {X |
Pr(X) > 0} (ie, the support of X).
We then define a state s : S(X)→ R+ which is a function which when given a τ ∈ S(X) (a contract of type τ), we
have the s(τ) is the number of contracts of type τ currently sold by the AMM. Let C be the space of all integrable,
invertible functions whose inverse is differentiable. Then we have that ∀s ∈ C, we can define the cost function
C : C → R as:

C(s) = β ln

(∫
τ∈S(X)

e
s(τ)
β dτ

)
(22)

Furthermore, we can extend this definition for any f ∈ C. Here, we can again define the sensitivity β which is a
parameter which scales the change of rate of C(f) with respect to each f(x).
Additionally, we can also calculate the price of buying or selling an infinitesimal amount of contracts of type
τ ∈ S(X) using the chain rule (we abuse notation here for the sake of readibility):

pτ (s) =
dC(s)

ds(τ)
(23)

=
dC(s)

dτ
· dτ
ds

(24)

=
h′(s−1(τ))s′(τ) · e

s(τ)
β∫

x′∈S(X) e
s(x′)
β dx′

(25)

=
e
s(τ)
β∫

x′∈S(X) e
s(x′)
β dx′

(26)

where we have h(τ) = s−1(τ) is the inverse function of our state function. Note that this is what allows us to
simplify in the last line. The simplifcation is:

h′(s−1(τ)) · s′(τ) =
1

s′(s−1(s−1(τ)))
· s′(τ) (27)

=
1

s′(τ)
· s′(τ) = 1 (28)

The above then generates a function for the price of each of our contracts τ ∈ S(X) which is defined as the
derivative of our cost function with respect to our state function evaluated at a point τ . The result is similar to
that found in Equation 8.
Similarly, suppose that an agent buys contracts such that the state function is changed from s to s′. Then we
charge the agent a price equivalent to:

C(s′)− C(s) = β ln

∫τ∈S(X) e
s′(τ)
β dτ∫

τ∈S(X) e
s(τ)
β dτ

 (29)

Using the proof presented in Parkes [5] for the equivalence between the market maker presented in Section 2.2.2
and the logarithmic scoring rule, we now proof equivalence of our newly proposed market maker. We assume that
β = 1 for simplicity.
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Proof. Consider agent i ∈ N and the belief of event r̂ for our continuous random variable X. Suppose i has belief
report bi : S(X) → [0,∞) and agent i + 1 has belief report bi−1 : S(X) → [0,∞) (both of these are probability
density functions) where we know that bi+1(r̂) > bi(r̂) and the outcome corresponding to event r̂ has occurred.
Then let us define the markets initial state s : S(X)→ R+ such that the following holds true:

bi(r̂) = pr̂(s) =
es(r̂)∫

τ∈S(X) e
s(τ)dτ

(30)

That is, we must find a state s : S(X)→ R+ where the above holds. We can begin with an initial agent who has
uniform belief distribution. For this agent, the state would simply be given by something of the form s(τ) = c for
some c ∈ R. In that scenario, the instantaneous price of all the contracts is equivalent and therefore Equation 30
holds.
Now we let Q denote some (possibly fractional) number of contracts of type r̂ purchased by agent i+ 1 with belief
distribution bi+1. Note that we have:

bi+1(r̂) = pr̂(s
′) =

es
′(r̂)∫

τ∈S(X) e
s′(τ)dτ

(31)

Here, we’re trying to solve for Q (the number of contracts agent i+ 1 should purchase to have the market match
his belief). However, Q has disappeared from our equation? This is not necessarily the case. Note that we simply
have Q hidden inside of s′ : S(X)→ R+:

s′(τ) =

{
s(τ) +Q τ = r̂

s(τ) otherwise
(32)

With this in mind, we can continue the proof. The claim is that the payment received by agent i + 1 with belief
report bi+1 and previous agent i with belief report bi in the market scoring rule from Section 2.5.2 is equivalent
to the profit the trader makes with that cost-based automatic market maker once the event corresponding to r̂ is
realized. To see this, recall that the amount received int he market scoring rule when the event corresponding to
r̂ is realized is given by:

payment in market rule = ln bi+1(r̂)− ln bi(r̂) (33)
= ln pτ (s′)− ln pτ (s) (34)

= ln

(
es

′(r̂)∫
τ∈S(X) e

s′(τ)dτ

)
− ln

(
es(r̂)∫

τ∈S(X) e
s′(τ)dτ

)
(35)

= s′(r̂)− ln

(∫
τ∈S(X)

es
′(τ)dτ

)
− s(r̂) + ln

(∫
τ∈S(X)

es(τ)dτ

)
(36)

= Q−

[
ln

(∫
τ∈S(X)

es
′(τ)dτ

)
− ln

(∫
τ∈S(X)

es(τ)dτ

)]
(37)

= Q− [C(s′)− C(s)] = profit by trader in market (38)

By the above formulation, we now have an equivalence between the proposed market rule and the defined automatic
market maker. All discussion in Section 2.5.1 then also applies for our prediction market on continuous variables.
However, the market maker loses an important property now that we have a continuous space X over which our
contracts range – the market maker no longer has bounded loss. This is to be expected, however, following the
impossibility results of Gao and Chen [8]. Therefore, the above market maker would be useful only in the event
where the space becomes discreet. As a simple fix, and arbitrary threshold can be introduced at which point the
market enters a state of “panic” and refuses to do trades. A better fix would be to have a market which plays with
virtual currency, as is suggested in Section 3. With such a market, the implications of unbounded loss becomes
more manageable, in a practical sense.
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Figure 5: Sample input mechanism

3 Proposed Implementation

In this section, we quickly present some ideas for implementation.

3.1 User Input

While the theory discussed in Section 2.5.3 introduces an interesting example, it’s difficult to image how users would
input their change in state f . Essentially, the users will have to provide a function u : S(X)→ R+ specifying that
they wish to buy u(τ) contracts of type τ . The new state s′ would simply become:

s′(τ) = u(τ) + s(τ)

However, reporting a function appears rather non-trivial. This problem can be resolved by creating an excellent
input mechanism. For example, as opposed to asking individuals for values, it might be of interest to see how well
individuals respond to a visual input mechanism. The users could be asked to draw a graph of their probability
distribution on a screen. Even more intuitively, the users could be presented with a typically graph, and then asked
to move it to most closely match their belief. In our one system, it would be this distribution that is reported and
taken into account when calculating the outcome payments. A sample input system is seen in Figure 5. The idea
would be to have the user be able to drag the graph to their desired state.

3.2 Point Mechanism

Rewards for the prediction market would also have to be thought out. Given that we cannot utilize actual money,
we propose a point mechanism where individuals would gain 500 points at the beginning of each semester. They
would accumulate points during their Harvard career either by remaining students (maximum of 4000), or by
buying contracts and winning in different markets. In order to encourage competition, the user of the market
would be ranked in a publicly accessible leader-board view-able to others, and would receive badges at different
miles-stones. There would exist both a long-term leader-board, and a “recent” leader-board with history over only
the past four years. The idea would be to have it improve competition.

4 Conclusion

In this paper, we focused on presenting a possible implementation of a Harvard Prediction Market. We have
outlined multiple approaches to encourage truthful information collection, as well as multiple ways of avoiding
potential drawbacks such as low-liquidity. Each approach balances between the effort on the part of the user and
the effort on the part of the designer, as well as the trade-off between the complexity of the information gathering
process and the value of the information gathered.
The above is but a preliminary proposal on a possible implementation of the Harvard Predictions Market. More
research remains to be conducted on the strategies that agents will develop as the market matures. In the immediate
future, implementing the toy example discussed in Section 3 and collecting useful data would be a beneficial first
step.
On the theoretical aspect, for more information on automatic market makers for continuous random variables, we
recommend the. By relaxing the restriction that each belief must be a probability density function, Chen et al. [9]
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are able to develop a general framework for bounded-loss market makers on any measurable space. The framework
is likely too general for our purposes, but is nonetheless an interesting development in the field of automatic market
makers.
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