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Abstract

We show how to express the representations of single, composite, and

“rotated” rotations in GA terms that allow rotations to be calculated

conveniently via spreadsheets. Worked examples include rotation of a

single vector by a bivector angle; rotation of a vector about an axis;

composite rotation of a vector; rotation of a bivector; and the “rotation of

a rotation”. Spreadsheets for doing the calculations are made available

via live links.

“Rotation of the bivector 8ab by the bivector angle Qθ to give the

new bivector, H. ”

1

https://mx.linkedin.com/in/james-smith-1b195047


Contents

1 Introduction 3

2 Rotation of a Given Vector 4

2.1 Rotation by a Bivector Angle . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Sample Calculations . . . . . . . . . . . . . . . . . . . . . 6

2.2 Rotation about a Given Axis . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Statement and Transformation of the Problem . . . . . . 9

2.2.2 Restatement of the Problem . . . . . . . . . . . . . . . . . 11

2.2.3 A Sample Calculation . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Summary of Rotating a Vector about a Given Axis . . . . 14

3 Composite Rotations of Vectors 14

3.1 Identifying the “Representation” of a Composite Rotation . . . . 16

3.2 Identifying the Bivector Angle Sσ through which the Vector v

Can be Rotated to Produce v′′ in a Single Operation . . . . . . . 18

3.3 A Sample Calculation . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Rotation of a Bivector 21

4.1 Derivation of a Formula for Rotation of a Bivector . . . . . . . . 21

4.2 A Sample Calculation . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Rotation of a Rotation 23

5.1 Formulas for Components of the Representation of a Rotation of

a Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 A Sample Calculation . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Summary 25



1 Introduction

We will see later (Sections 4 and

5 ) that this formula for rotating

a vector extends to the rotation

of bivectors, and to the rotation

of any multivector M.

References [1] (pp. 280-286) and [2] (pp. 89-91) derive and explain the

following formula for finding the new vector, w′, that results from the rotation

of a vector w through the angle θ with respect to a plane that is represented by

the unit bivector Q to which that plane is parallel:

w′ =

[
exp

(
−Qθ

2

)]
[w]

[
exp

(
Q
θ

2

)]
. (1.1)

That formula is convenient and efficient for manipulations of vectors that are

represented abstractly as symbols, but what form does it take in a specific,

concrete situation? For example, how do we use it when a client presents the

vector w in terms of coordinates with respect to that client’s chosen frame of

reference, and wishes to know the coordinates of the vector that results when

w is rotated through the angle θ about a given axis? What will we need to do

to transform that problem into a form suitable for solution via Eq. (1.1), and

what will the calculations “look like” as we work through them?

These are the sorts of questions that we will address in this document.

Because geometric algebra (GA) rotates objects through bivector angles rather

than around axes, Section 2.1 begins by deriving a formula for the rotation

of a given vector through a given bivector angle. After introducing, briefly,

the important subject of how GA “represents” rotations symbolically, we’ll

implement our formula in an Excel spreadsheet, which we’ll then use to solve

two example problems.

Having worked those examples, we’ll show how we may derive a similar

formula for rotating a vector about an axis, by transforming that rotation into

one through a bivector angle. Again, a sample problem will be solved via a

spreadsheet.

We’ll then treat one of GA’s strengths: its ability to formulate and calculate

the result of sequence of rotations conveniently, using those rotations’ represen-

tations. We’ll derive formulas that will allow us to find, as an example problem,

the single rotation that would have produced the same result as the combination

of the rotations that were given in the two sample problems in Section 2.1.1 .

Vectors are not the only objects that we will want to rotate in GA; the

rotation of bivectors is particularly useful. We’ll take up that subject in a section

that derives formulas that can be implemented in a spreadsheet to solve our

sample problem.

Finally, we’ll treat an interesting problem from Ref. [2]: the “rotation of a

rotation”. The derivation of a formula for that purpose makes use of our result

for rotating a bivector. As in previous sections, we’ll finish by solving a sample

problem via a spreadsheet.
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Figure 1: Rotation of the vector w through the bivector angle Qθ, to produce

the vector w′.

2 Rotation of a Given Vector

2.1 Rotation by a Bivector Angle

When describing an angle of rotation in GA, we are often well advised—for sake

of clarity—to write it as the product of the angle’s scalar measure (in radians)

and the bivector of the plane of rotation. Following that practice, we would say

that the rotation of a vector w through the angle θ (measured in radians) with

respect to a plane that is parallel to the unit bivector Q, is the rotation of v

through the bivector angle Qθ. (For example, see Fig. 1.) References [1] (pp.

280-286) and [2] (pp. 89-91) derive and explain the following formula for finding

the new vector, w′, that results from that rotation :

w′ =
[
e−Qθ/2

]
[w]
[
eQθ/2

]
︸ ︷︷ ︸

Notation: RQθ(w)

. (2.1)Notation: RQθ(w) is the

rotation of the vector w by the

bivector angle Qθ.

For our convenience later in this document, we will follow Reference [2] (p.

89) in saying that the factor e−Qθ/2 represents the rotation RQθ. That factor

is a quaternion, but in GA terms it is a multivector. We can see that it is a

multivector from the following identity, which holds for any unit bivector B and

any angle φ (measured in radians):

exp (Bφ) ≡ cosφ+ B sinφ.

The representation of a rotation.

Thus,

e−Qθ/2 = cos
θ

2
−Q sin

θ

2
. (2.2)

In this document, we’ll restrict our treatment of rotations to three-dimensional

Geometric Algebra (G3). In that algebra, and using a right-handed reference

system with orthonormal basis vectors â, b̂, and ĉ, we may express the unit
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bivector Q as a linear combination of the basis bivectors âb̂, b̂ĉ, and âĉ :

Q = âb̂qab + b̂ĉqbc + âĉqac,

in which qab, qbc, and qac are scalars, and q2ab + q2bc + q2ac = 1.

If we now write w as w = âwa + b̂wb + ĉwc, Eq. (1.1) becomes

w′ =

[
cos

θ

2
−Q sin

θ

2

]
[w]

[
cos

θ

2
+ Q sin

θ

2

]
=
[
cos

θ

2
−
(
âb̂qc + b̂ĉqa − âĉqb

)
sin

θ

2

] [
âwa + b̂wb + ĉwc

] [
cos

θ

2
+
(
âb̂qc + b̂ĉqa − âĉqb

)
sin

θ

2

]
. (2.3)

Expanding the right-hand side of that result, we’d obtain 48 (!) terms, some of

which would simplify to scalar multiples of â, b̂, and ĉ, and others of which will

simplify to scalar multiples of the trivector âb̂ĉ. The latter terms would cancel,

leaving an expression for w′ in terms of â, b̂, and ĉ .

The prospect of carrying out that expansion and simplification is fairly

terrifying, so before we dive into that task, we might want to think a bit about

which tools we’d use to carry out the calculation in practice. In the absence of

specialized GA software, we might use Excel to calculate the coordinates of w′

in terms of â, b̂, and ĉ. With that end in mind, a reasonable step to take before

expanding and simplifying the right-hand side of Eq. (2.3) is to define four

scalar variables, which we’d use later in an Excel spreadsheet (Section 2.1.1):

• fo = cos
θ

2
;

• fab = qab sin
θ

2
;

• fbc = qbc sin
θ

2
; and

• fac = qac sin
θ

2
.

Using these variables, Eq. (2.3) becomes

w′ =
[
fo −

(
âb̂fab + b̂ĉfbc + âĉfac

)] [
âwa + b̂wb + ĉwc

] [
fo +

(
âb̂fab + b̂ĉfbc + âĉfac

)]
.

After expanding and simplifying the right-hand side, we obtain

w′ = â
[
wa
(
f2o − f2ab + f2bc − f2ac

)
+ wb (-2fofab − 2fbcfac) + wc (-2fofac + 2fabfbc)

]
+ b̂

[
wa (2fofab − 2fbcfac) + wb

(
f2o − f2ab − f2bc + f2ac

)
+ wc (-2fofbc − 2fabfac)

]
+ ĉ

[
wa (2fofac + 2fabfbc) + wb (2fofbc − 2fabfac) + wc

(
f2o + f2ab − f2bc − f2ac

)]
.

(2.4)

Note that in terms of our four scalar variables fo, fab, fbc, and fac, the

representation
(
e−Qθ/2

)
of the rotation is

e−Qθ/2 = fo −
(
âb̂fab + b̂ĉfbc + âĉfac

)
. (2.5)
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Figure 2: Rotation of the vector v through the bivector angle âb̂π/2, to produce

the vector v′.

Because of the convenience with which Eq. (2.4) can be implemented in a

spreadsheet, the remainder of this document will express the representations of

various rotations of interest in the form of Eq. (2.5).

2.1.1 Sample Calculations

Example 1 The vector v =
4

3
â − 4

3
b̂ +

16

3
ĉ is rotated through the bivector

angle âb̂π/2 radians to produce a new vector, v′. Calculate v′.

The rotation is diagrammed in Fig. 2.

As shown in Fig. 3, v′ =
4

3
â +

4

3
b̂ +

16

3
ĉ.

Example 2 The vector v′ from Example 1 is now rotated through the

bivector angle

(
âb̂√

3
+

b̂ĉ√
3
− âĉ√

3

)(
−2π

3

)
to produce vector v′′. Calculate v′′ .

The rotation of v′ by

(
âb̂√

3
+

b̂ĉ√
3
− âĉ√

3

)(
−2π

3

)
is diagrammed in Fig. 4.

Fig. 5 shows that v′′ =
4

3
â +

16

3
b̂ +

4

3
ĉ.
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Figure 3: Screen shot of the Excel spreadsheet (Reference [3]) that uses Eq.

(2.4) to calculate v′ as the rotation of v through the bivector angle âb̂π/2.

Figure 4: Rotation of v′ to form v′′. Note the significance of the negative sign

of the scalar angle: the direction in which v′ is to be rotated is contrary to the

rotation of the bivector.
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Figure 5: Screen shot of the Excel spreadsheet (Reference [3]) that uses Eq.

(2.4) to calculate v′′ as the rotation of v′. Compare the result to that shown in

Fig. 14.
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Figure 6: The new vector w′ produced by the rotation of vector w through the

angle θ, around an axis given by the vector ê. The reference frame formed by

vectors â, b̂, and ĉ (taken in that order) is orthonormal and right-handed.

2.2 Rotation about a Given Axis

2.2.1 Statement and Transformation of the Problem

Statement of the Problem We state the problem as follows, with reference

to Fig. 6:

The vector w
(

= âwa + b̂wb + ĉwc

)
is rotated through the angle θ,

in the direction as indicated, about the unit vector ê
(

= âea + b̂eb + ĉec

)
.

Write the resulting vector w′ in terms of the same basis vectors â, b̂, ĉ.

Note that the reference system is a right-handed orthonormal one (Reference [1],

p. 53), and that the given rotation is a right-handed one about the unit vector

ê.

Transformation of the Problem

Why is a transformation necessary? As explained in Section 2.1,

rotations in three-dimensional Geometric Algebra (G3) are effected with respect

to planes, rather than axes. Or to put it more correctly, with respect to bivectors

rather than vectors. We’d like to use Eq. (1.1) to solve our present problem,

so we must first identify the unit bivector that corresponds to the given axis of

rotation, ê. What do we mean by “corresponds to”? We’ll answer that question

in the next section.
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Identifying the unit bivector that “corresponds to” the given axis

of rotation The rotation that we are asked to make is a right-handed one.

Therefore —as may be inferred from a study of references [1] (p. (56, 63) and

[2] (pp. 106-108) —the unit bivector Q that we seek is the one whose dual is ê.

That is, Q must satisfy the condition

ê = QI−13 ;

∴ Q = êI3. (2.6)

Although we won’t use that fact

here, I−1
3 is I3’s negative:

I−1
3 = −âb̂ĉ.

where I3 is the right-handed pseudoscalar for G3. That pseudoscalar is the

product, written in right-handed order, of our orthonormal reference frame’s

basis vectors: I3 = âb̂ĉ (and is also b̂ĉâ and ĉâb̂). Therefore, proceeding from

Eq. (2.6),

Q = êI3

=
(
âea + b̂eb + ĉec

)
âb̂ĉ

= ââb̂ĉea + b̂âb̂ĉeb + ĉâb̂ĉec

= âb̂ec + b̂ĉea − âĉeb. (2.7)

To make this simplification, we

use the following facts:

• The product of two

perpendicular vectors

(such as â and b̂) is a

bivector;

• Therefore, for any two

perpendicular vectors p

and q, qp = −qp; and

• (Of course) for any unit

vector p̂, p̂p̂ = 1.

In writing that last result, we’ve followed [2]’s convention (p. 82) of using

âb̂, b̂ĉ, and âĉ as our bivector basis. Examining Eq. (2.7) we can see that if we

write Q in the form Q = âb̂qab + b̂ĉqbc + âĉqac , then

qab = ec, qbc = ea, qac = −ec. (2.8)

Two questions.

First, is Q a unit bivector, as Eq. (1.1) requires? Yes: for any bivector B,

‖B‖ =
√

B (-B).

If we calculate ‖Q‖ according to that formula, using the expression in Eq. (2.7),

we find (after expansion and simplification) that

‖Q‖ =
√
e2a + e2b + e2c ,

which is equal to 1, because ê is a unit vector.

The second question is, “What would we have done if the required rotation

had been a left-handed one around ê, rather than a right-handed one?” There are

two reasonable ways to handle such a case. We could either (1) make the rotation

a right-handed one around the vector -ê; or (2) recognize that a left-handed

rotation through an angle ψ is a right-handed rotation through the angle -ψ.

Therefore, using the latter idea, we’d use the given vector ê, but use -ψ as our

angle instead of ψ itself.

Now that we’ve identified the unit bivector Q for our problem, we can

re-state our problem in terms that will enable us to use Eq. (1.1).
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Figure 7: The same situation as in Fig. 6, translated into GA terms. The unit

bivector Q (= êI3 ) is perpendicular to ê. In GA, the angle of rotation would

be the bivector Qθ rather than the scalar θ.

2.2.2 Restatement of the Problem

Recall that bivectors are

“oriented areas”: they do not

possess the attribute “shape”.

Therefore, Q in Fig. 7 could

have been drawn as any plane

figure of unit area, and with the

same orientation as shown.

We’ll follow the practice of writing an angle of rotation as the product of

the angle’s scalar measure (in radians) and the bivector of the plane of rotation.

In our present case, we would write that angle as Qθ. Therefore, using our

expression for Q from Eq. (2.7), we restate our problem, with reference to Fig.

7, as

The vector w
(

= âwa + b̂wb + ĉwc

)
is rotated through the bivector

angle(
âb̂ec + b̂ĉea − âĉeb

)
θ. Write the resulting vector w′ in terms of

the same basis vectors â, b̂, ĉ.

We’re ready, now, to employ Eq. (2.4) . All we need to do is make the

appropriate substitutions in the list of f ’s that we developed in Section 2.1:

• fo = cos
θ

2
;

• fab = qab sin
θ

2
= ec sin

θ

2
;

• fbc = qbc sin
θ

2
= ea sin

θ

2
; and

• fac = qac sin
θ

2
= −eb sin

θ

2
.

Having made those substitutions, we simply use Eq. (2.4):
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Figure 8: Vector w =
4

3
â +

4

3
b̂ +

16

3
ĉ is rotated through 2π/3 radians, in the

direction shown, about an axis whose direction is given by the vector ê = â+b̂+ĉ.

What is the new vector, w′, that results? Note that the axes a, b, and c are

mutually perpendicular.

w′ = â
[
wa
(
f2o − f2ab + f2bc − f2ac

)
+ wb (-2fofab − 2fbcfac) + wc (-2fofac + 2fabfbc)

]
+ b̂

[
wa (2fofab − 2fbcfac) + wb

(
f2o − f2ab − f2bc + f2ac

)
+ wc (-2fofbc − 2fabfac)

]
+ ĉ

[
wa (2fofac + 2fabfbc) + wb (2fofbc − 2fabfac) + wc

(
f2o + f2ab − f2bc − f2ac

)]
.

(2.9)

2.2.3 A Sample Calculation

We’ll solve the following problem, with reference to Figs. 7 and 8, keeping our

eyes open for data that will need to be transformed so that we may use Eq. (2.4)

.

The vector w is given by w =
4

3
â +

4

3
b̂ +

16

3
ĉ. It is rotated through

2π/3 radians, in the direction shown, about an axis whose direction

is given by the vector ê = â + b̂ + ĉ. What is the new vector, w′,

that results?

Examining Figs. 8 and 9, we see that the vectors â, b̂, and ĉ (taken in

that order) form an orthonormal reference frame, as required. However, the

vector e is not a unit vector (its magnitude is
√

3), and the angle of rotation is

in the direction defined as negative. Therefore, in our calculations we will use

ê
(

=
1√
3
â +

1√
3
b̂ +

1√
3
ĉ
)

as our “axis” vector, and −2π/3 as θ. A screen shot

of the Excel spreadsheet used for the calculation is shown in Fig. 9. From the

perspective (Fig. 10) of someone who is looking at the origin along the direction

12



Figure 9: Screen shot of the Excel spreadsheet (Reference [4]) used to calculate

the coordinates for the vector w′ that result form rotating w about the axis

ê = â + b̂ + ĉ. Quantities shown in the spreadsheet are defined in the text.
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Figure 10: The same situation as in Fig. 8, but looking toward the origin along

the direction −
(
â + b̂ + ĉ

)
.

−
(
â + b̂ + ĉ

)
, the rotation by −2π/3 brings w into alignment with the b axis.

In the spreadsheet, that result is indicated by the fact that w′’s b̂ coordinate is

w’s ĉ coordinate, and w′’s â coordinate is w’s ĉ coordinate.

2.2.4 Summary of Rotating a Vector about a Given Axis

We have seen how to transform a “rotate a vector around a given axis” problem

into one that may be solved via GA, which rotates objects with respect to

bivectors. We have also seen how to calculate the result conveniently via an

Excel spreadsheet. Two important cautions are (1) the axis must be expressed

as a unit vector; and (2) the sign of the angle of rotation must be determined

correctly.

3 Composite Rotations of Vectors

Suppose that we rotate some vector v through the bivector angle M1µ1 to

produce the vector that we shall call v′ (Fig. 11), and that we then rotate

v′ through the bivector angle M2µ2 to produce the vector that we shall call

v′′ (Fig. 12). That sequence of rotations is called the composition of the two

rotations.

In this section, we will derive an expression for the representation of a

composition of two rotations. We’ll write that representation in the form of

Eq. (2.5), so that we may then use Eq. (2.4) to calculate the resulting vector,

v′′. We’ll also calculate the bivector angle that produces the same rotation in

14



Figure 11: Rotation of the vector v through the bivector angle M1µ1, to produce

the vector v′.

Figure 12: Rotation of the vector v′ through the bivector angle M2µ2, to produce

the vector v′′.
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Figure 13: Rotation of v through the bivector angle Sσ, to produce the vector

v′′ in a single operation.

a single operation. (The existence of that bivector angle is proved in [2], pp.

89-91. ) We’ll then work a sample problem in which we’ll calculate the results

of successive rotations of a vector.

3.1 Identifying the “Representation” of a Composite Ro-

tation

Let’s begin by defining two unit bivectors, M1 and M2:

M1 = âb̂m1ab + b̂ĉm1bc + âĉm1ac;

M2 = âb̂m2ab + b̂ĉm2bc + âĉm2ac.

Now, write the rotation of a vector v by the bivector angle M1µ1 to produce

the vector v′:

v′ =
[
e−M1µ1/2

]
[v]
[
eM1µ1/2

]
.

Next, we will rotate v′ by the bivector angle M2µ2 to produce the vector v′′:

v′′ =
[
e−M2µ2/2

]
[v′]

[
eM2µ2/2

]
.

Combining those two equations,

v′′ =
[
e−M2µ2/2

]{[
e−M1µ1/2

]
[v]
[
eM1µ1/2

]} [
eM2µ2/2

]
.

The vector v′′ was produced from v via the composition of the rotations

through the bivector angles M1µ1 and M2µ1. The representation of that

16



composition is the product
[
e−M2µ1/2

] [
e−M1µ1/2

]
. We’ll rewrite the previous

equation to make that idea clearer:

v′′ =
{[
e−M2µ2/2

] [
e−M1µ1/2

]}
︸ ︷︷ ︸

Representation
of the composition

[v]
{[
eM1µ1/2

] [
eM2µ2/2

]}
.

There exists an identifiable bivector angle —we’ll call it Sσ—through which v

could have been rotated to produce v′′ in a single operation rather than through

the composition of rotations through M1µ1 and M2µ2. (See Section 3.2.) But

instead of going that route, we’ll write e−M1µ1/2 and e−M2µ2/2 in a way that

will enable us to use Eq. (2.5):

e−M1µ1/2 = go −
(
âb̂gab + b̂ĉgbc + âĉgac

)
, and

e−M2µ2/2 = ho −
(
âb̂hab + b̂ĉhbc + âĉhac

)
,

where go = cos
µ1

2
; gab = m1ab sin

µ1

2
; gbc = m1bc sin

µ1

2
; and gac = m1ac sin

µ1

2
,

and ho = cos
µ2

2
; hab = m2ab sin

µ2

2
; hbc = m2bc sin

µ2

2
; and hac = m2ac sin

µ2

2
.

Now, we write the representation of the the composition as[
ho −

(
âb̂hab + b̂ĉhbc + âĉhac

)]
︸ ︷︷ ︸

e−M2µ2/2

[
go −

(
âb̂gab + b̂ĉgbc + âĉgac

)]
︸ ︷︷ ︸

e−M1µ1/2

.

After expanding that product and grouping like terms, the representation of the

composite rotation can be written in a form identical to Eq. (2.5):

Fo −
(
âb̂Fab + b̂ĉFbc + âĉFac

)
, (3.1)

with

Fo = 〈e−M2µ2/2e−M1µ1/2〉0
= hogo − habgab − hbcgbc − hacgac ,

Fab = hogab + habgo − hbcgac + hacgbc ,

Fbc = hogbc + habgac + hbcgo − hacgab , and

Fac = hogac − habgbc + hbcgab + hacgo .

(3.2)

Therefore, with these definitions of Fo, Fab, Fbc, and Fac, v′′ can be

calculated from v (written as âva + b̂vb + ĉvc) via an equation that is analogous,

term for term, with Eq. (2.4):

v′′ = â
[
va
(
F2
o −F2

ab + F2
bc −F2

ac

)
+ vb (-2FoFab − 2FbcFac) + vc (-2FoFac + 2FabFbc)

]
+ b̂

[
va (2FoFab − 2FbcFac) + vb

(
F2
o −F2

ab −F2
bc + F2

ac

)
+ vc (-2FoFbc − 2FabFac)

]
+ ĉ

[
va (2FoFac + 2FabFbc) + vb (2FoFbc − 2FabFac) + vc

(
F2
o + F2

ab −F2
bc −F2

ac

)]
.

(3.3)

At this point, you may (and should) be objecting that I’ve gotten ahead

of myself. Please recall that Eq. (2.4) was derived starting from the “rotation”

equation (Eq. (1.1))

w′ =
[
e−Qθ/2

]
[w]
[
eQθ/2

]
.
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The quantities fo, fo, fab, fbc, and fac in Eq. (2.4), for which

e−Qθ/2 = fo −
(
âb̂fab + b̂ĉfbc + âĉfac

)
, (3.4)

also meet the condition that

eQθ/2 = fo +
(
âb̂fab + b̂ĉfbc + âĉfac

)
. (3.5)

We are not justified in using Fo, Fab, Fbc, and Fac in Eq. (2.4) unless we first

prove that these composite-rotation “F ’s”, for which

Fo −
(
âb̂Fab + b̂ĉFbc + âĉFac

)
= e−M2µ2/2e−M1µ1/2 , (3.6)

also meet the condition that

Fo +
(
âb̂Fab + b̂ĉFbc + âĉFac

)
= eM1µ1/2eM2µ2/2 . (3.7)

Although more-elegant proofs may well exist, “brute force and ignorance” gets

the job done. We begin by writing eM1µ1/2eM2µ2/2 in a way that is analogous

to that which was presented in the text that preceded Eq. (3.1):[
go +

(
âb̂gab + b̂ĉgbc + âĉgac

)]
︸ ︷︷ ︸

eM1µ1/2

[
ho +

(
âb̂hab + b̂ĉhbc + âĉhac

)]
︸ ︷︷ ︸

eM2µ2/2

.

Expanding, simplifying, and regrouping, we fine that eM1µ1/2eM2µ2/2 is indeed

equal to Fo +
(
âb̂Fab + b̂ĉFbc + âĉFac

)
, as required.

3.2 Identifying the Bivector Angle Sσ through which the

Vector v Can be Rotated to Produce v′′ in a Single

Operation

Let v be an arbitrary vector. We want to identify the bivector angle Sσ through

which the initial vector, v, can be rotated to produce the same vector v′′ that

results from the rotation of v through the composite rotation by M1µ1, then by

M2µ2:[
e−M2µ2/2

] [
e−M1µ1/2

]
[v]
[
eM1µ1/2

] [
eM2µ2/2

]
= v′′ =

[
e−Sσ/2

]
[v]
[
eSσ/2

]
. (3.8)

We want Eq. (3.8) to be true for all vectors v. Therefore, eSσ/2 must be equal

to
[
eM1µ1/2

] [
eM2µ2/2

]
, and e−Sσ/2 must be equal to

[
e−M2µ2/2

] [
e−M1µ1/2

]
.

The second of those conditions is the same as saying that the representations

of the Sσ rotation and the composite rotation must be equal. We’ll write that

condition using the Fo’s defined in Eq. (3.2), with S expressed in terms of the

unit bivectors âb̂, b̂ĉ, and âĉ:

cos
σ

2
−
(
âb̂Sab + b̂ĉSbc + âĉSac

)
︸ ︷︷ ︸

S

sin
σ

2
= Fo −

(
âb̂Fab + b̂ĉFbc + âĉFac

)
.
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Now, we want to identify σ and the coefficients of âb̂, b̂ĉ, and âĉ. First, we

note that both sides of the previous equation are multivectors. According to the

postulates of GA, two multivectors A1 and A2 are equal if and only if for every

grade k, 〈A1〉k = 〈A2〉k. Equating the scalar parts, we see that cos
σ

2
= Fo.

Equating the bivector parts gives
(
âb̂Sab + b̂ĉSbc + âĉSac

)
sin

σ

2
= âb̂Fab +

b̂ĉFbc + âĉFac. Comparing like terms, Sab = Fab/ sin
σ

2
, Sbc = Fbc/ sin

σ

2
, and

Sac = Fac/ sin
σ

2
.

Why is it correct to identify the

S’s by comparing like terms? In

simple terms, because the unit

bivectors âb̂, b̂ĉ âb̂ are

orthogonal. Two linear

combinations of those bivectors

are equal if and only if the

coefficients match, term for

term.

Next, we need to find sin
σ

2
. Although we could do so via sin

σ

2
=
√

1− cos2
σ

2
,

for the purposes of this discussion we will use the fact that S is, by definition, a

unit bivector. Therefore, ||S|| = 1, leading to

‖ sin
σ

2
‖ = ‖âb̂Fab + b̂ĉFbc + âĉFac‖

=
√
F2
ab + F2

bc + F2
ac .

Now, the question is whether we want to use sin
σ

2
= +

√
F2
ab + F2

bc + F2
ac, or

sin
σ

2
= −

√
F2
ab + F2

bc + F2
ac. The truth is that we can use either: if we use

−
√
F2
ab + F2

bc + F2
ac instead of +

√
F2
ab + F2

bc + F2
ac, then the sign of S changes

as well, leaving the product S sin
σ

2
unaltered.

The choice having been made, we can find the scalar angle σ from the values

of sin
σ

2
and cos

σ

2
, thereby determining the bivector angle Sσ.

3.3 A Sample Calculation

In Section 2.1.1, we solved a problem in which the vector v =
4

3
â− 4

3
b̂ +

16

3
ĉ

was rotated through the bivector angle âb̂π/2 radians to produce a new vector,

v′, which was then rotated through the bivector angle

(
âb̂√

3
+

b̂ĉ√
3
− âĉ√

3

)(
−2π

3

)
to produce vector v′′. Here, we’ll calculate v′′ directly from v using Eqs. (3.1),

(3.2) and 3.3, We’ll also calculate the bivector angle Sσ through which v could

have been rotated to produce v′′ in a single operation.

As we can see by comparing from Figs. 14 and 5, the result
(
v′′ =

4

3
â +

16

3
b̂ +

4

3
ĉ
)

obtained via the composite-rotation formula agrees with that which was obtained

by calculating v′′ in two steps. Fig. 14 also shows that the bivector angle Sσ is

b̂ĉ (−π/2), which we can also write as ĉb̂ (π/2). That rotation is diagrammed

in Fig. 15.
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Figure 14: Screen shot of the Excel spreadsheet (Reference [5]) that uses Eq.

3.3 to calculate v′′ via the composite rotation of v.
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Figure 15: Rotation of v by Sσ to produce v′′ in a single operation. Note the

significance of the negative sign of the scalar angle: the direction in which v′

rotated is contrary to the orientation of the bivector b̂ĉ, and contrary also to

the direction of the rotation from b̂ to ĉ.

4 Rotation of a Bivector

4.1 Derivation of a Formula for Rotation of a Bivector

In his Theorem 7.5, Macdonald ([2], p. 125) states that if a blade M is rotated

by the bivector angle Qθ, the result will be the blade

RQθ (M) =
[
e−Qθ/2

]
[M]

[
eQθ/2

]
. (4.1)

To express the result as a linear combination of the unit bivectors âb̂, b̂ĉ,

and âĉ, we begin by writing the unit bivector Q as Q = âb̂qab + b̂ĉqbc + âĉqac,

so that we may write the representation of the rotation in exactly the same way

as we did for the rotation of a vector:

e−Qθ/2 = fo −
(
âb̂fab + b̂ĉfbc + âĉfac

)
,

with fo = cos
θ

2
; fab = qab sin

θ

2
; fbc = qbc sin

θ

2
; fac = qac sin

θ

2
.

Next, we write M as M = âb̂mab + b̂ĉmbc + âĉmac. Making these substi-

tutions in Eq. (4.1), then expanding and simplifying, we obtain
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Figure 16: Rotation of the bivector 8ab by the bivector angle Qθ to give the

new bivector, H.

RQθ (M) = âb̂
{
mab

(
1− 2f2bc − 2f2ac

)
+2 [fab (fbcmbc + facmac) + fo (facmbc − fbcmac)]}

+ b̂ĉ
{
mbc

(
1− 2f2ab − 2f2ac

)
+2 [fbc (fabmab + facmac) + fo (fabmac − facmab)]}

+ âĉ
{
mac

(
1− 2f2ab − 2f2bc

)
+2 [fac (fabmab + fbcmbc) + fo (fbcmab − fabmbc)]} .

(4.2)

4.2 A Sample Calculation

In Fig. 16, sin θ =
√

2

3
and cos θ =

√
1

3
. The bivector M = 8âb̂ is

rotated by the bivector angle Qθ, with Q = − b̂ĉ√
2
− âĉ√

2
, to give the

new bivector, H . Calculate H .

As shown in Fig. 17, H =
8√
3
âb̂ +

8√
3
b̂ĉ− 8√

3
âĉ.
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Figure 17: Screen shot of the Excel spreadsheet (Reference [6]) used to calculate

the rotation of the bivector 8âb̂. (See text.)

5 Rotation of a Rotation

References [1] and [2] discuss, in detail, how to rotate vectors and planes via

Geometric Algebra (GA). Here, we solve a problem from Ref. [2] , p. 127, which

reads (paraphrasing),

(Rotating rotations). Let M1 and M2 be unit bivectors. Consider

a rotation by the bivector angle M1µ1. Now, “rotate the rotation”:

that is, rotate M1µ1 by the bivector angle M2µ2 to obtain the

new bivector rotation angle e−M2µ2/2 [M1µ1] eM2µ2/2. Show that

this rotated rotation is represented by Z ′′ = Z ′ZZ ′−1, where Z =

e−M1µ1/2 represents the original rotation, Z ′ = e−M2µ2/2 represents

its rotation, and Z ′−1 = eM2µ2/2.

Hint: The unit bivector M1 is the product ef of orthonormal vectors.

Thus

e−M2µ2/2 [M1] eM2µ2/2 =
[
e−M2µ2/2 (e) eM2µ2/2

] [
e−M2µ2/2 (f) eM2µ2/2

]
is also a unit bivector.

Proof

Let’s use the symbol M3 to represent the rotated bivector e−M2µ2/2 [M1] eM2µ2/2.

Then, the new bivector rotation angle e−M2µ2/2 [M1µ1] eM2µ2/2 is M3µ1. Be-
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cause M3 is a unit bivector (per the “hint”), the representation of the rotated

rotation is

Z ′′ = e−M3µ1/2

= cos
µ1

2
−M3 sin

µ1

2
.

Now, we’ll note that cos
µ1

2
=
[
e−M2µ2/2

] [
cos

µ1

2

] [
eM2µ2/2

]
. Therefore,

Z ′′ =
[
e−M2µ2/2

] [
cos

µ1

2

] [
eM2µ2/2

]
−
{
e−M2µ2/2 [M1] eM2µ2/2

}
︸ ︷︷ ︸

M3

sin
µ1

2

=
[
e−M2µ2/2

] [
cos

µ1

2
−M1 sin

µ1

2

]
︸ ︷︷ ︸

=e−M1µ1/2

[
eM2µ2/2

]
= Z ′ZZ ′−1. �

(5.1)

5.1 Formulas for Components of the Representation of a

Rotation of a Rotation

In this section, the variables M1, µ1, M2, and µ2 have the same significance

as in the previous. Macdonald’s Theorem 7.6 ([2], p. 126) states that for any

multivectors N and P,

Riθ (N + P) = Riθ (N ) + Riθ (P) .

The representation of the rotation by M1µ1 is the bivector cos
µ1

2
−M1 sin

µ1

2
.

Therefore, Eq. (5.1) becomes

Z ′′ =
[
e−M2µ2/2

] [
cos

µ1

2

] [
eM2µ2/2

]
−
[
e−M2µ2/2

] [
M1 sin

µ1

2

] [
eM2µ2/2

]
= cos

µ1

2
−
{[
e−M2µ2/2

]
[M1]

[
eM2µ2/2

]}
sin

µ1

2
.

(5.2)

From Section 4, we recognize the second term on the last line of that result as

the product of sin
µ1

2
and the rotation of M1 by the bivector angle M2µ2. Thus,

so that we we may use (4.2), we write M2 as M2 = âb̂m2ab + b̂ĉm2bc + âĉm2ac.

Having done so, we may write e−M2µ2/2 as

e−M2µ2/2 = fo −
(
âb̂fab + b̂ĉfbc + âĉfac

)
,

with fo = cos
µ2

2
; fab = m2ab sin

µ2

2
; fbc = m2bc sin

µ2

2
; fac = m2ac sin

µ2

2
.

Next, we write M1 as M1 = âb̂m1ab + b̂ĉm11bc + âĉm1ac. Making these

substitutions in Eq. (5.2), then expanding and simplifying, we obtain
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Z ′′ = cos
µ1

2

+ âb̂
{
mab

(
1− 2f2bc − 2f2ac

)
+2 [fab (fbcmbc + facmac) + fo (facmbc − fbcmac)]} sin

µ1

2

+ b̂ĉ
{
mbc

(
1− 2f2ab − 2f2ac

)
+2 [fbc (fabmab + facmac) + fo (fabmac − facmab)]} sin

µ1

2

+ âĉ
{
mac

(
1− 2f2ab − 2f2bc

)
+2 [fac (fabmab + fbcmbc) + fo (fbcmab − fabmbc)]} sin

µ1

2
.

(5.3)

5.2 A Sample Calculation

From the result of the sample problem in Section 4.2, we can deduce that the

rotation of âb̂ through the bivector angle M2µ2, with µ2 = arcsin
(√

2

3

)
=

0.95532 radians and M2 = − b̂ĉ√
2
− âĉ√

2
, will yield the bivector

âb̂√
3

+
b̂ĉ√

3
− âĉ√

3
.

In addition, we know from Example 2 in Section 2.1.1 that rotating the vector

v =
4

3
â +

4

3
b̂ +

16

3
ĉ by the bivector angle

(
âb̂√

3
+

b̂ĉ√
3
− âĉ√

3

)(
−2π

3

)

produces the vector
4

3
â +

16

3
b̂ +

4

3
ĉ. Therefore, if we rotate v by the bivector

angle âb̂
(
−2π

3

)
, then “rotate that rotation” by the M2µ2 described at the

beginning of this paragraph, the result should be
4

3
â +

16

3
b̂ +

4

3
ĉ . Fig. 18

confirms that result.

6 Summary

This document has shown (1) how to effect simple rotations of vectors and

bivectors via GA, and (2) how to calculate the results of composite and “rotated”

rotations expeditiously by using the concept of a rotation’s ‘representation”.

The formulas that we derived for those rotations are presented in the Appendix.
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Figure 18: Screen shot of the Excel spreadsheet (Reference [7]) used to calculate

the result of the “rotation of a rotation” of a vector. Please see text for

explanation.
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Appendix: List of the Formulas Derived in this

Document, and the Spreadsheets that Implement

Them

All formulas presented in this Appendix are for three-dimensional Geometric

Algebra (G3), using a right-handed reference system with orthonormal basis

vectors â, b̂, and ĉ, with unit bivectors âb̂, b̂ĉ, and âĉ.

Rotation of a given vector w by the bivector angle Qθ

See Section 2.1. Write the vector w as

w = âwa + b̂wb + ĉwc,

and the unit bivector Q as

Q = âb̂qab + b̂ĉqbc + âĉqac.

Now, define

• fo = cos
θ

2
;

• fab = qab sin
θ

2
;
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• fbc = qbc sin
θ

2
; and

• fac = qac sin
θ

2
.

Then, the result w′ of the rotation of w is

w′ =
[
e−Qθ/2

]
[w]
[
eQθ/2

]
= â

[
wa
(
f2o − f2ab + f2bc − f2ac

)
+ wb (-2fofab − 2fbcfac) + wc (-2fofac + 2fabfbc)

]
+ b̂

[
wa (2fofab − 2fbcfac) + wb

(
f2o − f2ab − f2bc + f2ac

)
+ wc (-2fofbc − 2fabfac)

]
+ ĉ

[
wa (2fofac + 2fabfbc) + wb (2fofbc − 2fabfac) + wc

(
f2o + f2ab − f2bc − f2ac

)]
.

The spreadsheet that implements this formula is Reference [3].

Rotation of a given vector w by θ radians about the axis given by the

unit vector ê

See Section 2.2. Write the vector w as w = âwa + b̂wb + ĉwc , and the unit

vector ê as = âea + b̂eb + ĉec. Define

• fo = cos
θ

2
;

• fab = ec sin
θ

2
;

• fbc = ea sin
θ

2
; and

• fac = −eb sin
θ

2
.

Then, the vector w′ that results from the rotation is

w′ = â
[
wa
(
f2o − f2ab + f2bc − f2ac

)
+ wb (-2fofab − 2fbcfac) + wc (-2fofac + 2fabfbc)

]
+ b̂

[
wa (2fofab − 2fbcfac) + wb

(
f2o − f2ab − f2bc + f2ac

)
+ wc (-2fofbc − 2fabfac)

]
+ ĉ

[
wa (2fofac + 2fabfbc) + wb (2fofbc − 2fabfac) + wc

(
f2o + f2ab − f2bc − f2ac

)]
.

The spreadsheet that implements this formula is Reference [4].

Composition of two rotations of a vector or bivector

See Section 3. Write the vector v as âva + b̂vb + ĉvc. Let the bivector angle

of the first rotation be M1µ1, and the bivector angle of the second be M2µ2.

Write the two bivectors as

M1 = âb̂m1ab + b̂ĉm1bc + âĉm1ac;

M2 = âb̂m2ab + b̂ĉm2bc + âĉm2ac.
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The representation of the composite rotation can be written as

Fo −
(
âb̂Fab + b̂ĉFbc + âĉFac

)
, (6.1)

with

Fo = 〈e−M2µ2/2e−M1µ1/2〉0
= hogo − habgab − hbcgbc − hacgac ,

Fab = hogab + habgo − hbcgac + hacgbc ,

Fbc = hogbc + habgac + hbcgo − hacgab , and

Fac = hogac − habgbc + hbcgab + hacgo .

The vector v′′ that results from the composite rotation is

v′′ = â
[
va
(
F2
o −F2

ab + F2
bc −F2

ac

)
+ vb (-2FoFab − 2FbcFac) + vc (-2FoFac + 2FabFbc)

]
+ b̂

[
va (2FoFab − 2FbcFac) + vb

(
F2
o −F2

ab −F2
bc + F2

ac

)
+ vc (-2FoFbc − 2FabFac)

]
+ ĉ

[
va (2FoFac + 2FabFbc) + vb (2FoFbc − 2FabFac) + vc

(
F2
o + F2

ab −F2
bc −F2

ac

)]
.

,

See Section 3.2 regarding calculation of the bivector angle Sσ that would

give the same rotation in a single operation.

The spreadsheet that implements this formula is Reference [5].

Note that that same F ’s can be used in place of their respective f ’s to effect

a composite rotation of a bivector, via the formula that is given next.

Rotation of a bivector M by the bivector angle Qθ

See Section 4. Write M as M = âb̂mab + b̂ĉmbc + âĉmac, and Q as Q =

âb̂qab + b̂ĉqbc + âĉqac. Then the bivector that results from the rotation

RQθ (M) = âb̂
{
mab

(
1− 2f2bc − 2f2ac

)
+2 [fab (fbcmbc + facmac) + fo (facmbc − fbcmac)]}

+ b̂ĉ
{
mbc

(
1− 2f2ab − 2f2ac

)
+2 [fbc (fabmab + facmac) + fo (fabmac − facmab)]}

+ âĉ
{
mac

(
1− 2f2ab − 2f2bc

)
+2 [fac (fabmab + fbcmbc) + fo (fbcmab − fabmbc)]} ,

with fo = cos
θ

2
; fab = qab sin

θ

2
; fbc = qbc sin

θ

2
; fac = qac sin

θ

2
.

The spreadsheet that implements this formula is Reference [6].

Rotation of a Rotation

Because the details of this operation are complex, the reader is referred to

Section 5. The spreadsheet that implements the result is Reference [7].
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