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On multi-criteria Pythagorean fuzzy
decision-making

Liguo Fei and Yong Deng

Abstract—Pythagorean fuzzy set (PFS) initially extended
by Yager from intuitionistic fuzzy set (IFS), which can model
uncertain information with more general conditions in the
process of multi-criteria decision making (MCDM). The
fuzzy decision analysis of this paper is mainly based on
two expressions in Pythagorean fuzzy environment, name-
ly, Pythagorean fuzzy number (PFN) and interval-valued
Pythagorean fuzzy number (IVPFN). We initiate a novel
axiomatic definition of Pythagorean fuzzy distance measure,
including PFNs and IVPFNs, and put forward the corre-
sponding theorems and prove them. Based on the defined
distance measures, the closeness indexes are developed for
PFNs and IVPFNs inspired by the idea of technique for order
preference by similarity to ideal solution (TOPSIS) approach.
After these basic definitions have been established, the
hierarchical decision approach is presented to handle MCDM
problems under Pythagorean fuzzy environment. To address
hierarchical decision issues, the closeness index-based score
function is defined to calculate the score of each permutation
for the optimal alternative. To determine criterion weights,
a new method based on the proposed similarity measure
and aggregation operator of PFNs and IVPFNs is presented
according to Pythagorean fuzzy information from decision
matrix, rather than being provided in advance by decision
makers, which can effectively reduce human subjectivity. An
experimental case is conducted to demonstrate the applicabil-
ity and flexibility of the proposed decision approach. Finally,
the extension forms of Pythagorean fuzzy decision approach
for heterogeneous information are briefly introduced as the
further application in other uncertain information processing
fields.

Index Terms—Multi-criteria decision making (MCDM),
Pythagorean fuzzy number, Interval-valued Pythagorean
fuzzy number, Distance measure, Closeness index, Aggre-
gation.

I. INTRODUCTION

A. Pythagorean Membership Grades in Decision Making

As a generalization of fuzzy sets (FSs) [1], the in-
tuitionistic fuzzy sets (IFSs) defined by Atanassov [2]
fully describe the objective world from three aspects of
support, opposition and neutrality, respectively, and thus
have been widely studied and applied by researchers [3],
[4]. Although IFSs can express human’s subjective opin-
ions from a certain perspective, as Yager puts forward,
in the real decision-making process, there may be cases
where the sum of the supporters and the opponents of
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a decision-maker is greater than one. For example, to
assess whether an employee is qualified for a job, the
bosses indicate that their support for membership of ’Yes’
is 0.8 and the support against membership is 0.5. Obvi-
ous, these two values have a sum greater than one, they
are not allowable for intuitionistic membership grades.
To address this issue, Yager et al. [5], [6] studied the
complement operations of FSs, interval-valued fuzzy sets
(IVFSs) and IFSs, and then Pythagorean fuzzy sets (PFSs)
were proposed that allow the sum of membership and
non-membership to exceed one and the sum of squares
to not exceed one based on Pythagorean complement.
So, the two membership values in the above example
are allowable as Pythagorean membership grades since
0.82 + 0.52 ≤ 1. As an extension of IFSs, it enables
decision-makers to make decisions without modifying
the provided information to meet the constraints of IFSs
in such situations. It can be seen from this case that
PFSs can express more uncertain information than IFSs,
which imply that PFSs are more advantageous than IFSs
in fuzzy and imprecise modeling. With regard to any PFS
in element x, it can be denoted as a Pythagorean fuzzy
number (PFN) for simplicity [7]. In addition, Yager [6]
introduced a variety of aggregation operations for PFNs,
which also promoted the development of PFNs in MCD-
M field. The applications of Pythagorean membership
grades in MCDM will be introduced from the following
aspects.

(1) Decision making based on PFNs. A consider-
able number of studies have reported decision-making
models and methods within the PFSs environment, of
which the most commonly employed is the aggrega-
tion operator, such as confidence Pythagorean fuzzy
weighted and ordered weighted operator [8], Pythagore-
an fuzzy induced generalized ordered weighted aver-
aging operator [9], [10], Pythagorean fuzzy interaction
aggregation operator [11], Pythagorean fuzzy aggrega-
tion operator [12], Pythagorean fuzzy Einstein weighted
geometric operator [13], symmetric Pythagorean fuzzy
weighted geometric/averaging operators [14], [15], Cho-
quet integral operator [16], Pythagorean fuzzy ordered
weighted averaging weighted average distance operator
[17], and Pythagorean fuzzy uncertain linguistic pri-
oritized weighted averaging aggregation operator [18].
Moveover, many other corresponding studies [19], [20],
[21], [22], [23] have been conducted on decision mak-
ing process, for example, Pythagorean fuzzy multi-
granulation rough set is developed in [24] and a gen-
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eral algorithm is given for decision making problems.
Inspired by the extension from IFSs to IVIFSs, Zhang
[25] extended PFSs to interval-valued Pythagorean fuzzy
numbers (IVPFNs) for further dealing with MCDM prob-
lems under Pythagorean fuzzy environment, and the
specific applications are introduced as follows.

(2) Decision making based on IVPFNs. As a general-
ization of PFNs, IVPFNs is an effective tool to model
the uncertain and imprecise information in the real-life
decision evaluation process, which can be considered
when decision makers fail to employ crisp values but use
interval values to express their evaluation information.
To deal with MCDM problems, there are two main
methods proposed by scholars, one is based on the
score function and the other is based on the aggregation
operator. For the former, Garg proposed an improved
score function for the ranking order of IVPFSs in [26],
[27] and [28], and Du et al. [29] developed the score func-
tion based on the defined interval-valued Pythagorean
fuzzy linguistic variable set ; for the latter, the interval-
valued Pythagorean fuzzy (IVPF) weighted arithmetic
averaging operator is introduced by Liang et al. in [30]
and Rahman et al. defined the IVPF weighted geometric
operator, the IVPF ordered weighted geometric operator,
and the IVPF hybrid geometric operator, respectively in
[31]. To ensure PFSs can make decision effectively in
hesitant fuzzy environment, Liang et al. [32] extended it
to hesitant Pythagorean fuzzy sets (HPFSs) for decision-
making based on TOPSIS method. The following de-
scribes the applications of HPFSs.

(3) Decision making based on HPFSs. As another
extension of PFSs, HPFSs are also an effective modeling
tool to express Pythagorean fuzzy information in hesi-
tant situation. To address MCDM problems, Hamacher
operations are used by Lu [33] to develop some hesi-
tant Pythagorean fuzzy hamacher (HPFH) aggregation
operators, including HPFH weighted average opera-
tor, HPFH weighted geometric operator, HPFH ordered
weighted average operator, HPFH ordered weighted
geometric operator, HPFH hybrid average operator
and HPFH hybrid geometric operator. Additionally, the
Hamacher aggregation operators with dual Pythagorean
hesitant fuzzy information were presented in [34]. On
this basis, the generalized Pythagorean fuzzy informa-
tion aggregation operators [35], [36], [37] were developed
in order to further explore the decision-making process.

Due to the increasing maturity of PFS, it has been
extended to various forms, such as IVPFSs and HPFSs,
which have made outstanding contributions to solve
MCDM problems. In order to further improve the theory
and explore more applications, scholars conducted a
more in-depth study on their information measures and
properties.

B. Pythagorean Fuzzy Information Measures and Properties

Because of the advantages in expressing and dealing
with uncertain information, Pythagorean membership

grades have been widely employed and studied, so
its information measures and properties have received
widespread attention. The basic Pythagorean fuzzy in-
formation measures are introduced by Peng et al. [38]
and the relationship between the distance measure, the
similarity measure, the entropy, and the inclusion mea-
sure for PFSs is investigated in order to achieve the
systematic transformation of them. The distance mea-
sures of PFSs were defined in [7], [39], and [40], and
based on which the corresponding decision methods
were put forward to solve MCDM problems. In [41],
the novel correlation coefficient formulation was pro-
posed to measure the relationship between two PFSs for
decision-making process, and the decision approach was
also presented based on similarity measure in [42] to
address multiple criteria group decision-making prob-
lems. In addition, property analysis has been studied in
Pythagorean fuzzy environment, such as the properties
of continuous Pythagorean fuzzy information [43], the
properties of some operations [44]. And Peng et al.
introduced the properties of aggregation operators for
PFNs and IVPFNs, respectively, in [45] and [46]. In
summary, the purpose of developing the information
measures and exploring the properties of Pythagorean
fuzzy information are to improve its performance in real
MCDM problems.

C. Problem Statement and Contribution

In the two subsections above, we have covered the
beginning of Pythagorean membership grades, its ad-
vantages in representing and processing uncertain in-
formation, and its wide variety of extended forms that
are applied widespreadly in MCDM field. In what fol-
lows, the Pythagorean fuzzy information measures and
properties analysis are illustrated in great detail. In
view of the practicality and effectiveness of Pythagorean
membership grades in the field of MCDM and in or-
der to solve the limitations and shortcomings in pre-
vious studies, in this paper, we attempt to construct
a hierarchical MCDM framework and develop novel
decision approach to solve it in the Pythagorean fuzzy
environment. Firstly, aiming at the irrationality in the
existing distance measures, such as [7], [47] and [48],
we proposed a novel distance measure for PFNs and
IVPFNs, whose reasonableness and superiority can be
seen from the comparative analysis in Section II. Based
on this distance measure, we define a new closeness
index for PFNs and IVPFNs and compare it with the
one in [25]. The advantages of the proposed closeness
index can be demonstrated by the experimental results.
A crucial issue in dealing with MCDM problems is how
to determine the criterion weight. In the current work,
weight is mostly given by experts in advance, such as
[19], [29] and [42]. This way will undoubtedly lead to
more subjectivity, which would reduce the credibility
and convincingness of the decision results. To eliminate
this effect, we propose a new similarity measure-based
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method to determine the criterion weight in this paper,
which can effectively reduce human’s subjective factors
and improve the accuracy of the decision results. An-
other key issue is how to aggregate the Pythagorean
fuzzy values between different criteria. In response to
this problem, a new aggregation operator is present-
ed in this paper to fuse the corresponding evaluation
information of different criteria. Based on the above
preparation, a score function is defined to determine
the optimal selection. To illustrate the superiority of
the proposed decision method, we apply it in a risk
assessment example and conduct an in-depth analysis
of the decision results. Finally, we extend the proposed
decision approach to other areas of uncertain informa-
tion modeling. To sum up, this article has the following
contributions: (1) A novel distance measure is introduced
for PFNs and IVPFNs; (2) An improved closeness index
is developed for PFNs and IVPFNs; (3) An aggregation
operator is proposed for PFNs and IVPFNs; (4) A new
method of weight generation is presented; (5) A novel
score function is defined for hierarchical MCDM process;
(6) The proposed decision approach is extended for
heterogeneous information.

The rest of this paper is organized as follows. The
related work of PFNs and IVPFNs is completed in
Section II and III, respectively. First, the basic concepts
of them are reviewed briefly. Second, distance measures
of them are defined. Then, the closeness indexes of them
are developed based on the defined distance measures.
Last, aggregation operators for PFNs and IVPFNs are
presented. The decision approach for MCDM problem
under Pythagorean fuzzy environment is proposed in
Section IV. In Section V, an application is conducted
using the proposed decision approach in risk assessment.
Section VI extends the proposed decision approach to
other fields for heterogeneous information. The conclu-
sion and future study of this article are given in Section
VII.

II. PYTHAGOREAN FUZZY NUMBER

In this section, the general definition of PFNs and
some basic operations on them are introduced firstly,
then, the distance between two PFNs is defined and
proved to satisfy all the axioms for distance. Drawing
on the ideas of TOPSIS, a closeness index is developed
as a measure of PFN’s magnitude based on the defined
distance. Next, a novel Pythagorean fuzzy weighted
averaging aggregation operator is proposed for PFNs.

Definition II.1. Let X be a fixed set, then a PFS in X is
defined as

P = {< x, P(µP(x), νP(x)) > |x ∈ X} (1)

where µP : X → [0, 1] represents the membership degree and
νP : X → [0, 1] is the non-membership degree of the element
x ∈ X to P, and it holds that 0 ≤ (µP(x))2 + (νP(x))2 ≤
1, in addition, πP(x) =

√
1 − µ2

P(x)− ν2
P(x) is named the

1

1

0

Fig. 1. Comparison of spaces
between IFN and PFN [6], [7]

1

1

0

Fig. 2. Comparison of spaces be-
tween IVIFN and IVPFN

degree of indeterminacy, and a PFN is defined by Zhang and
Xu [7] as P(µP(x), νP(x)) denoted by β = P(µβ, νβ) for
convenience.

The difference and relationship between IFSs and PFSs
are shown in the Fig. 1, it is obvious that a PFS can
express more fuzzy information than an IFS because it
has more space than IFS. It is note that an IFN must be
a PFN, but a PFN will degenerate into an IFN only if
µβ + νβ ≤ 1. The distance measure between two PFNs is
given as following definition.

Definition II.2. Let βi = P(µβi , νβi )(i = 1, 2) be two PFNs,
the distance between β1 and β2 is defined as:

d(β1, β2) =
1√
2

√
(µβ1 − µβ2)

2 + (νβ1 − νβ2)
2 (2)

Theorem II.1. Let βi = P(µβi , νβi )(i = 1, 2) be two PFNs,
then 0 ≤ d(β1, β2) ≤ 1.

Proof. Let

dTemp(β1, β2) =
√
(µβ1 − µβ2)

2 + (νβ1 − νβ2)
2 (3)

s.t.


0 ≤ (µβ1)

2 + (νβ1)
2 ≤ 1

0 ≤ (µβ2)
2 + (νβ2)

2 ≤ 1
0 ≤ µβ1 , νβ1 , µβ2 , νβ2 ≤ 1

β1 

β2 

β3 

μ 

ν 

1

1

0

Fig. 3. The coordinate system for µ and ν
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A coordinate system is established and shown in Fig.
3, which takes µ as the vertical axis with ν as the
horizontal axis. According to the constraints, we know
that P(µβ1 , νβ1) and P(µβ2 , νβ2) are the two points of the
shaded part in the coordinate system. Based on Eq. (17),
dTemp(β1, β2) is the distance between point β1 and β2.
The maximum and minimum values between them are
0 and

√
2, respectively That is, dTemp(A, B) ∈ [0,

√
2].

Based on Eq. (2), we have 0 ≤ d(β1, β2) ≤ 1.

Theorem II.2. Let βi = P(µβi , νβi )(i = 1, 2) be two PFNs,
then d(β1, β2) = 0 if and only if β1 = β2.

Theorem II.3. Let βi = P(µβi , νβi )(i = 1, 2) be two PFNs,
then d(β1, β2) = d(β2, β1).

Theorem II.4. Let βi = P(µβi , νβi )(i = 1, 2, 3) be three
PFNs. If β1 ≤ β2 ≤ β3, then d(β1, β2) ≤ d(β1, β3) and
d(β2, β3) ≤ d(β1, β3).

Proof. As β1 ≤ β2 ≤ β3, we have µβ1 ≤ µβ2 ≤ µβ3
and νβ1 ≥ νβ2 ≥ νβ3 based on the Definition in [6].
As shown in Fig. 3, we take arbitrary values µβ1 , µβ2 ,
µβ3 and νβ1 , νβ2 , νβ3 on the coordinate axis. Their inter-
section points β1, β2 and β3 form a triangle. Obviously,
∠β1β2β3 is always an obtuse angle, so β1β2 < β1β3 and
β2β3 < β1β3. That is, dTemp(β1, β2) ≤ dTemp(β1, β3) and
dTemp(β2, β3) ≤ dTemp(β1, β3). So d(β1, β2) ≤ d(β1, β3)
and d(β2, β3) ≤ d(β1, β3).

Remark II.1. In this part, the new proposed distance measure
between PFNs will be compared with some existing classical
methods, the process will be conducted by some examples
which are constructed to illustrate the advantages of the
presented measure.

Currently, the more commonly employed distance
measure in the field of PFNs is developed by Zhang and
Xu in [7], which is defined as:

dZ&X(β1, β2) =
1
2
(|(µβ1)

2 − (µβ2)
2|+ |(νβ1)

2 − (νβ2)
2|

+ |(πβ1)
2 − (πβ2)

2|)
(4)

of which related parameters are the same as Definition
II.2.

Below a special example will be given to show that
in some cases Zhang and Xu’s method fails to measure
PFSs’ distance, but the new proposed measure can obtain
the reasonable results.

Example II.1. Let’s assume two PFNs: β1 = ξ+ = P(1, 0)
(defined in Remark II.2), β2 = P(µ, ν). The distance measure
can be calculated as d(β1, β2) = 1√

2

√
(1 − µ)2 + ν2 and

dZ&X(β1, β2) = 1 − µ2 using our proposed method and
Zhang and Xu’s method, respectively, based on Definition
II.2 and Eq. (4). The trend of the two distance measure with
the changes of µ and ν is shown in Fig. 4. What has been
defined as the fact that β1 = ξ+ is the biggest PFN based on
Definition II.2, therefore, when µ takes a constant, the distance
between β1 and β2 should change in the same direction as µ,
and so does ν. The results obtained by the proposed distance
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(a) The distance measure between β1 and β2 based on Zhang and
Xu’s method
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(b) The distance measure between β1 and β2 based on the proposed
method

Fig. 4. The comparison between the proposed distance measure and
Zhang and Xu’s method

measure follow this rule as shown in Fig. 4(b), but Zhang and
Xu’s method do not. It can be seen from Fig. 4(a) that when
µ takes a fixed value, the distance does not change with the
change of ν, but a fixed value. A special case is given that when
µ = 0, the distance between β1 and β2 is always 1, and such
a result is obviously a violation of the facts. Therefore, such a
conclusion can be drawn from this example that Zhang and
Xu’s method fails to measure the distance of PFNs accurately
in some specific cases, but the proposed measure works.

Also prominent studies in the distance measure of
PFNs are done by Peng et al., who defined multiple
distance measures for PFNs in [48]. In this example,
these distance measures will be compared with the
proposed method with some special cases to highlight
the advantages of our approach.

Example II.2. Let’s assume two PFNs: β1 = ξ+ = P(1, 0),
β2 = P(0, ν). Authors proposed 12 methods to measure the
distance between PFNs in [48], the specific definitions are
omitted here. The distance between β1 and β2 is calculated
using method D2, D3, D4, D5, D7, D9, D11 defined by Peng
et al. and our method and the results are shown in Fig. 5.
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Fig. 5. Comparison between the proposed distance measure and the
methods of Peng et al.

(D1 is the same as Zhang and Xu’s method, D5 and D6, D7
and D8, D9 and D10 are the same for single element in PFNs,
respectively.) What is the fact the distance between β1 and β2
should increase gradually as the value of ν varies from 0 to
1. It can be found from Fig. 5 D4, D5, D7 and D9 fail to
measure the distance between β1 and β2, but D2, D3, D11
and our method work.

The distance measure D2, D3, D11 are effective in
Example II.2, the next example is designed to illustrate
D2 will fail to measure the distance accurately in some
cases.

Example II.3. Let’s assume two PFNs: β1 = P(0, 0), β2 =
P(x, x). We have D2(β1, β2) = 0 based on the definition of
D2 in [48]. Apparently this result does not reflect the distance
between β1 and β2 correctly, the reasonable distance can be
obtained based on the proposed method as d(β1, β2) = x,
which can reveal the fact that the distance increases with
increasing x value.

The following counterexample is constructed to nega-
tive the generality of method D11.

Example II.4. Let’s assume two PFNs: β1 = P(0, 1),
β2 = P(0, ν). It is easy to get D11(β1, β2) = 1, which is
counterintuitive obviously. The reasonable result can be mea-
sured using the proposed method as d(β1, β2) =

1√
2
(1 − ν).

Some analyses of the above examples reveal that the
existing distance measures of PFNs would fail under
certain conditions and the proposed method yields rea-
sonable results. Note that D3 is a combination of D1 and
D2, but D1 and D2 do not hold in some cases, so we
consider D3 is not reliable either.

Remark II.2. According to [6], the order relationship between
two PFNs β1 and β2 satisfies β1 ≥ β2 if and only if µβ1 ≥
µβ2 and νβ1 ≤ νβ2 . So it is natural to obtain the biggest PFN
ξ+ = P(1, 0) and the smallest PFN ξ− = P(0, 1).

Motivated by the idea of TOPSIS [49], Zhang [25], [7]
considered ξ+ = P(1, 0) and ξ− = P(0, 1) as the positive
ideal PFN and the negative ideal PFN respectively and

defined the closeness index of PFN as:

ð(β) =
dZ&X(β, ξ−)

dZ&X(β, ξ−) + dZ&X(β, ξ+)
=

1 − (νβ)
2

2 − (µβ)2 − (νβ)2

(5)
Then a new ranking method for PFNs is proposed based
on the closeness index ð(β) as:

Definition II.3. Let βi = P(µβi , νβi )(i = 1, 2) be two PFNs,
ð(β1) and ð(β2) are the closeness indexes of β1 and β2, then

(1) If ð(β1) < ð(β2), then β1 ≺ð β2;

(2) If ð(β1) > ð(β2), then β1 ≻ð β2;

(3) If ð(β1) = ð(β2), then β1 ∼ð β2.

Example II.5. Let β1 = P(
√

5/3, 2/3) and β2 =
P(2/3,

√
11/6) are two PFNs, according to Eq. (5), we have

ð(β1) = 1−(2/3)2

2−(
√

5/3)2−(2/3)2 = 5/9, ð(β2) =

1−(
√

11/6)2

2−(2/3)2−(
√

11/6)2 = 5/9.

Obviously, ð(β1) = ð(β2), that is, β1 ∼ð β2 based on
Definition II.3, so this is an ambiguous ranking result
with the fact that β1 and β2 are two different PFNs. That
is to say the closeness index proposed by Zhang fails to
rank the order of PFNs in some cases. A novel concept of
closeness index for PFNs is presented in this paper based
on the new proposed distance measure for solving the
above shortcomings.

Definition II.4. Let β = P(µβ, νβ) be a PFN, ξ+ = P(1, 0)
be the positive ideal PFN and ξ− = P(0, 1) be the negative
ideal PFN, then the closeness index of β is defined as follows:

ℜ(β) =
d(β, ξ−)

d(β, ξ−) + d(β, ξ+)

=

1√
2

√
[µ2

β + (νβ − 1)2]

1√
2

√
[µ2

β + (νβ − 1)2] + 1√
2

√
[(µβ − 1)2 + ν2

β]

=

√
µ2

β + (νβ − 1)2√
µ2

β + (νβ − 1)2 +
√
(µβ − 1)2 + ν2

β

(6)
It is obvious if β = ξ−, then ℜ(β) = 0; if β = ξ+, then
ℜ(β) = 1. And the following theorems can be obtained.

Theorem II.5. For any PFN β = P(µβ, νβ), the closeness
ℜ(β) ∈ [0, 1].

Theorem II.6. For two PFNs βi = P(µβi , νβi )(i = 1, 2), if
β1 ≤ β2, then ℜ(β1) ≤ ℜ(β2).
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Proof. According to Definition II.4, we have

ℜ(β1)−ℜ(β2)

=

√
µ2

β1
+ (νβ1 − 1)2√

µ2
β1

+ (νβ1 − 1)2 +
√
(µβ1 − 1)2 + ν2

β1

−

√
µ2

β2
+ (νβ2 − 1)2√

µ2
β2

+ (νβ2 − 1)2 +
√
(µβ2 − 1)2 + ν2

β2

=

(
(
√

µ2
β1

+ (νβ1 − 1)2)(
√

µ2
β2

+ (νβ2 − 1)2 +
√
(µβ2 − 1)2 + ν2

β2
)

−(
√

µ2
β2

+ (νβ2 − 1)2)(
√

µ2
β1

+ (νβ1 − 1)2 +
√
(µβ1 − 1)2 + ν2

β1
)
)

(
(
√

µ2
β1

+ (νβ1 − 1)2 +
√
(µβ1 − 1)2 + ν2

β1
)

(
√

µ2
β2

+ (νβ2 − 1)2 +
√
(µβ2 − 1)2 + ν2

β2
)
)

=

(
(
√

µ2
β1

+ (νβ1 − 1)2)(
√
(µβ2 − 1)2 + ν2

β2
)

−(
√

µ2
β2

+ (νβ2 − 1)2)(
√
(µβ1 − 1)2 + ν2

β1
)
)

(
(
√

µ2
β1

+ (νβ1 − 1)2 +
√
(µβ1 − 1)2 + ν2

β1
)

(
√

µ2
β2

+ (νβ2 − 1)2 +
√
(µβ2 − 1)2 + ν2

β2
)
)

(7)
Since

(µ2
β1

+ (νβ1 − 1)2)− (µ2
β2

+ (νβ2 − 1)2)

= µ2
β1

− µ2
β2

+ ((νβ1 − 1)2)− (νβ2 − 1)2))

= (µβ1 + µβ2 )(µβ1 − µβ2 ) + (νβ1 + νβ2 − 2)(νβ1 − νβ2 )

(8)

Since β1 ≤ β2, we have 0 ≤ µβ1 ≤ µβ2 ≤ 1 and 1 ≥
νβ1 ≥ νβ2 ≥ 0 according to Definition in [6]. So, µβ1 +
µβ2 ≥ 0, µβ1 − µβ2 ≤ 0, νβ1 + νβ2 − 2 ≤ 0, νβ1 − νβ2 ≥
0; that is, (µβ1 + µβ2)(µβ1 − µβ2) ≤ 0 and (νβ1 + νβ2 −
2)(νβ1 − νβ2) ≤ 0, so (µ2

β1
+ (νβ1 − 1)2) − (µ2

β2
+ (νβ2 −

1)2) ≤ 0, then (µ2
β1

+ (νβ1 − 1)2) ≤ (µ2
β2

+ (νβ2 − 1)2),

then
√

µ2
β1

+ (νβ1 − 1)2 ≤
√

µ2
β2

+ (νβ2 − 1)2. Similarly,

we have
√
(µβ2 − 1)2 + ν2

β2
≤
√
(µβ1 − 1)2 + ν2

β1
. So, in

Eq. (7), we have

(
√

µ2
β1

+ (νβ1 − 1)2)(
√
(µβ2 − 1)2 + ν2

β2
)

− (
√

µ2
β2

+ (νβ2 − 1)2)(
√
(µβ1 − 1)2 + ν2

β1
) ≤ 0

(9)

and
(
√

µ2
β1

+ (νβ1 − 1)2 +
√
(µβ1 − 1)2 + ν2

β1
)

(
√

µ2
β2

+ (νβ2 − 1)2 +
√
(µβ2 − 1)2 + ν2

β2
) ≥ 0

(10)

So, ℜ(β1)−ℜ(β2) ≤ 0, that is, ℜ(β1) ≤ ℜ(β2)

A novel ranking method for PFSs can be developed
based on the new definition of closeness index ℜ(β).

Definition II.5. Let βi = P(µβi , νβi )(i = 1, 2) be two PFNs,
ℜ(β1) and ℜ(β2) are the closeness indexes of β1 and β2, then

(1) If ℜ(β1) < ℜ(β2), then β1 ≺ℜ β2;
(2) If ℜ(β1) > ℜ(β2), then β1 ≻ℜ β2;
(3) If ℜ(β1) = ℜ(β2), then β1 ∼ℜ β2.

Example II.6. Let PFN β = P(µ, ν), µ ∈ [1, 0] and
ν ∈ [0, 1]. When β changes from ξ+ to ξ−, the trend of
the closeness index is shown in Fig. 6. It is obvious that
the closeness index will get the maximum value 1 when
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Closeness index under

Fig. 6. The trend of closeness index when β from ξ+ to ξ−

β = ξ+, and the minimum value 0 will be obtained when
β = ξ−. Therefore, the overall trend in Fig. 6 is consistent
with this fact. In particular, the closeness index is given when
µ2 + ν2 = 1 which denoted by the curly braces. This example
can partly illustrate the rationality of the proposed closeness
index.

Example II.7. (Continued Example II.5) Let β1 =
P(

√
5/3, 2/3) and β2 = P(2/3,

√
11/6), according to

Definition II.4, we have

ℜ(β1) =

√
(
√

5/3)2+(2/3−1)2√
(
√

5/3)2+(2/3−1)2+
√

(
√

5/3−1)2+(2/3)2
= 0.5336,

ℜ(β2) =

√
(2/3)2+(

√
11/6−1)2√

(2/3)2+(
√

11/6−1)2+
√

(2/3−1)2+(
√

11/6)2
= 0.5543.

So, we have ℜ(β1) ≤ ℜ(β2), that is, β1 ≺ℜ β2 based
on Definition II.5. The conclusion can be drawn from
the comparison results of Example II.5 and Example II.7
that the novel proposed closeness index ℜ(β) is more
reasonable than Zhang’s method.

The general approach in dealing with multi-criterion
decision-making problems is to aggregate the decision
values under different criteria, and it is also the same
in Pythagorean fuzzy environment. To solve MCDM
problems more effectively in Pythagorean fuzzy envi-
ronment, the Pythagorean fuzzy weighted averaging
aggregation operator (Yager’s operator) is developed by
Yager [6] to aggregate multiple PFNs as follows:

Definition II.6. Let β j = P(µβ j , νβ j)(j = 1, 2, . . . , n) be a
group of PFSs, Yager’s operator is defined as:

PFWAYager(β1, β2, . . . , βn) = w1β1 ⊕ w2β2 ⊕ · · · ⊕ wnβn

= P(
n

∑
i=1

wiµβi ,
n

∑
i=1

wiνβi )

(11)
where wi is the weight of βi, and it holds that wi ≥ 0(i =
1, 2, . . . , n) and ∑n

i=1 wi = 1.

Example II.8. Let β1 = P(0.9, 0.3), β2 = P(0.5, 0.6), and
β3 = P(0.7, 0.4) be three PFNs, and the weight vector is
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w = (0.3, 0.2, 0.5)T , the aggregated result can be calculated
based on Definition II.6 as:

PFWAYager(β1, β2, β3) = P(∑3
i=1 wiµβi , ∑3

i=1 wiνβi ) =
P(0.72, 0.41).

In order to aggregate PFNs more effective for deal-
ing with MCDM problems, a new Pythagorean fuzzy
weighted aggregation (PFWA) operator are proposed as
follows:

Definition II.7. Let βi = P(µβi , νβi )(i = 1, 2, . . . , n) be a
group of PFNs, according to the definition of PFNs, we have
µ2

βi
+ ν2

βi
+ π2

βi
= 1, so naturally, β̇i = I(µ2

βi
, ν2

βi
, π2

βi
) is an

IFS, which will be weighted by w as β̇w = I(µβ̇, νβ̇, πβ̇) that
is still an IFS, where µβ̇ = ∑n

i=1 wiµ
2
βi

, νβ̇ = ∑n
i=1 wiν

2
βi

, and
πβ̇ = 1 − ∑n

i=1 wi(µ
2
βi
+ ν2

βi
). Then the aggregation operator

of β̇ can be defined as:

w1 β̇1 ⊕ w2 β̇2 ⊕ · · · ⊕ wn β̇n =

I(
µ2

β̇
+ 2µβ̇πβ̇

1 − 2µβ̇νβ̇

,
ν2

β̇
+ 2νβ̇πβ̇

1 − 2µβ̇νβ̇

,
2π2

β̇
− πβ̇ − 2µβ̇νβ̇

1 − 2µβ̇νβ̇

)
(12)

So the new PFWA operator for PFNs is defined as follows:

β̂ = PFWA(β1, β2, . . . , βn) = w1β1 ⊕ w2β2 ⊕ · · · ⊕ wnβn

= P(µ̂, ν̂) = P(

√√√√µ2
β̇
+ 2µβ̇πβ̇

1 − (µβ̇νβ̇)
2 ,

√√√√ ν2
β̇
+ 2νβ̇πβ̇

1 − (µβ̇νβ̇)
2 )

(13)
where wi is the weight of βi, and it holds that wi ≥ 0(i =
1, 2, . . . , n) and ∑n

i=1 wi = 1. In addition, it satisfies µ̂2 +

ν̂2 ≤ 1, and π̂ =

√
2π2

β̇
−πβ̇−2µβ̇νβ̇

1−(µβ̇νβ̇)
2 .

Example II.9. (Continued Example II.8) Let β1 =
P(0.9, 0.3), β2 = P(0.5, 0.6), and β3 = P(0.7, 0.4) be three
PFNs, the weight vector w = (0.3, 0.2, 0.5)T , the aggregated
result can be calculated based on Eq. (13) as:
Firstly,

µβ̇ = 0.3 · 0.92 + 0.2 · 0.52 + 0.5 · 0.72 = 0.5380,

νβ̇ = 0.3 · 0.32 + 0.2 · 0.62 + 0.5 · 0.42 = 0.1790,

πβ̇ = 1 − (0.3 · (0.92 + 0.32) + 0.2 · (0.52 + 0.62)

+ 0.5 · (0.72 + 0.42)) = 0.2830

Then,
PFWA(β1, β2, β3) =

P(

√
0.53802 + 2 · 0.5380 · 0.2830

1 − 2 · 0.5380 · 0.1790
,

√
0.17902 + 2 · 0.1790 · 0.2830

1 − 2 · 0.5380 · 0.1790
)

= P(0.8577, 0.4064)

Remark II.3. According to Definition II.7, the operational
laws of two PFNs: β1 = P(µβ1 , νβ1), β2 = P(µβ2 , νβ2) can
be defined naturally (when the number of PFNs degenerates
into 2) as follows:

let µβ = µ2
β1
+ µ2

β2
, νβ = ν2

β1
+ ν2

β2
, πβ = π2

β1
+ π2

β2
,

so β1 ⊕ β2 = P(

√√√√µβ(πβ +
1
2 µβ)

2 − µβνβ
,

√√√√ νβ(πβ +
1
2 νβ)

2 − µβνβ
)

(14)

where β1 and β2 are equal weights, denoted as wβ1 = wβ2 =
1
2 .

III. INTERVAL-VALUED PYTHAGOREAN FUZZY NUMBER

In the current section, the basic concept and related
definitions are introduced of IVPFNs firstly, then the
novel distance measure between two IVPNSs is devel-
oped and the closeness index for IVPNSs is proposed
based on the new distance measure. Next, the interval-
valued Pythagorean fuzzy weighted aggregation opera-
tor are defined for aggregating IVPNSs.

Definition III.1. Let a set X be fixed, an IVPFS P̃ in X is
defined by:

P̃ = {< x, P̃(µ̃P̃(x), ν̃P̃(x)) > |x ∈ X} (15)

where µ̃P̃(x), ν̃P̃(x) ∈ [0, 1] are interval values, µ̃L
P̃
(x) and

µ̃U
P̃
(x) are , respectively, the lower and upper limits of µ̃P̃(x);

similarly, ν̃L
P̃
(x) and ν̃U

P̃
(x) are , respectively, the lower and

upper limits of ν̃P̃(x), and with (µ̃U
P̃
(x))2 + (ν̃U

P̃
(x))2 ≤ 1.

An IVPFN is defined by Zhang [25] as P̃(µ̃P̃(x), ν̃P̃(x))
denoted by β̃ = P̃([µ̃L

β̃
, µ̃U

β̃
], [ν̃L

β̃
, ν̃U

β̃
]) for convenience.

Apparently, an IVPFN will degenerate into a PFN if
µ̃L

P̃(x) = µ̃U
P̃ (x) and ν̃L

P̃(x) = ν̃U
P̃ (x). In addition, an

IVPFN will degenerate into an interval-valued intuition-
istic fuzzy number (IVIFN) if µ̃U

P̃ (x) + ν̃U
P̃ (x) ≤ 1. The

comparison of spaces between IVIFN and IVPFN is
shown in Fig. 2, it is obvious that a IVPFS can express
more uncertain information than an IVIFS because it has
more space than IVIFS.

Remark III.1. IVPFN is an effective tool to deal with
MCDM problems because it can express more uncertainty
and fuzziness, mainly in the following two aspects: 1) it can
express more extensive information than PFN, for example,
IVPFN β̃ = P̃([0.4, 0.6], [0.2, 0.3]) means decision maker con-
siders the alternative meets the criterion of 0.4− 0.6, while the
non-criterion is 0.2− 0.3, however, PFNs can only express this
degree using a certain real number. 2) IVPFNs can express
more information than IVIFNs, as already mentioned in Def-
inition III.1, for example, IVPFN β̃ = P̃([0.7, 0.8], [0.4, 0.6]),
it represents the greatest degree of trust and mistrust the
alternative can meet the criterion as 0.8 and 0.6, respectively.
However, it is obvious that 0.82 + 0.62 ≥ 1, so IVIFNs will
fail to express the information precisely in this case.

To employ IVPFNs more effectively, a new distance
measure between different IVPFNs is proposed as below.

Definition III.2. Let β̃i = P̃([µ̃L
β̃i

, µ̃U
β̃i
], [ν̃L

β̃i
, ν̃U

β̃i
])(i = 1, 2)

be two IVPFNs, the distance measure between β̃1 and β̃2 is
defined as follows:

d(β̃1, β̃2) =

√
2

4
(
√
(µ̃L

β̃1
− µ̃L

β̃2
)2 + (ν̃L

β̃1
− ν̃L

β̃2
)2 +

√
(µ̃U

β̃1
− µ̃U

β̃2
)2 + (ν̃U

β̃1
− ν̃U

β̃2
)2)

(16)

Theorem III.1. Let β̃i = P̃([µ̃L
β̃i

, µ̃U
β̃i
], [ν̃L

β̃i
, ν̃U

β̃i
])(i = 1, 2) be

two IVPFNs, then 0 ≤ d(β̃1, β̃2) ≤ 1.
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Proof. Let

dL
Temp(β1, β2) =

√
(µ̃L

β̃1
− µ̃L

β̃2
)2 + (ν̃L

β̃1
− ν̃L

β̃2
)2 (17)

dU
Temp(β1, β2) =

√
(µ̃U

β̃1
− µ̃U

β̃2
)2 + (ν̃U

β̃1
− ν̃U

β̃2
)2 (18)

s.t.


0 ≤ (µ̃U

β̃1
)2 + (ν̃U

β̃1
)2 ≤ 1

0 ≤ (µ̃U
β̃2
)2 + (ν̃U

β̃2
)2 ≤ 1

0 ≤ µ̃U
β̃1

, ν̃U
β̃1

, µ̃U
β̃2

, ν̃U
β̃2

≤ 1

According to the proof of Theorem II.1, it is easy to have
dL

Temp(β1, β2) ∈ [0,
√

2] and dU
Temp(β1, β2) ∈ [0,

√
2], that

is, 0 ≤ d(β̃1, β̃2) ≤ 1 based on Eq. (16).

Theorem III.2. Let β̃i = P̃([µ̃L
β̃i

, µ̃U
β̃i
], [ν̃L

β̃i
, ν̃U

β̃i
])(i = 1, 2) be

two IVPFNs, then d(β̃1, β̃2) = 0 if and only if β̃1 = β̃2.

Theorem III.3. Let β̃i = P̃([µ̃L
β̃i

, µ̃U
β̃i
], [ν̃L

β̃i
, ν̃U

β̃i
])(i = 1, 2) be

two IVPFNs, then d(β̃1, β̃2) = d(β̃2, β̃1).

Theorem III.4. Let β̃i = P̃([µ̃L
β̃i

, µ̃U
β̃i
], [ν̃L

β̃i
, ν̃U

β̃i
])(i = 1, 2) be

three IVPFNs. If β̃1 ≤ β̃2 ≤ β̃3, then d(β̃1, β̃2) ≤ d(β̃1, β̃3)
and d(β̃2, β̃3) ≤ d(β̃1, β̃3).

As noted, Theorem III.2, III.3 and III.4 are natural to
be proved, so the proofs are omitted here.

Remark III.2. According to [25], the order relationship
between two IVPFNs β̃1 and β̃2 satisfies β̃1 ≥ β̃2 if and only
if µ̃L

β̃1
≥ µ̃L

β̃2
, µ̃U

β̃1
≥ µ̃U

β̃2
, ν̃L

β̃1
≤ ν̃L

β̃2
and ν̃U

β̃1
≤ ν̃U

β̃2
. So it

is natural to obtain the biggest IVPFN ξ̃+ = P̃([1, 1], [0, 0])
and the smallest IVPFN ξ̃− = P̃([0, 0], [1, 1]).

A novel concept of closeness index for IVPFNs is pre-
sented in this paper based on the new distance measure
in Definition III.2 as follows.

Definition III.3. Let β̃ = P̃([µ̃L
β̃
, µ̃U

β̃
], [ν̃L

β̃
, ν̃U

β̃
]) be an

IVPFN, ξ̃+ = P̃([1, 1], [0, 0]) be the positive ideal IVPFN
and ξ̃− = P̃([0, 0], [1, 1]) be the negative ideal IVPFN, then
the closeness index of β̃ is defined as follows:

ℜ(β̃) =
d(β̃, ξ̃−)

d(β̃, ξ̃−) + d(β̃, ξ̃+)

=

√
2

4 (
√
(µ̃L

β̃
)2 + (ν̃L

β̃
− 1)2 +

√
(µ̃U

β̃
)2 + (ν̃U

β̃
− 1)2)(√

2
4

(

√
(µ̃L

β̃
)2 + (ν̃L

β̃
− 1)2 +

√
(µ̃U

β̃
)2 + (ν̃U

β̃
− 1)2)

+

√
2

4
(

√
(µ̃L

β̃
− 1)2 + (ν̃L

β̃
)2 +

√
(µ̃U

β̃
− 1)2 + (ν̃U

β̃
)2)

)

=
(
√
(µ̃L

β̃
)2 + (ν̃L

β̃
− 1)2 +

√
(µ̃U

β̃
)2 + (ν̃U

β̃
− 1)2)(

(

√
(µ̃L

β̃
)2 + (ν̃L

β̃
− 1)2 +

√
(µ̃U

β̃
)2 + (ν̃U

β̃
− 1)2)

+(

√
(µ̃L

β̃
− 1)2 + (ν̃L

β̃
)2 +

√
(µ̃U

β̃
− 1)2 + (ν̃U

β̃
)2)

)
(19)

It is obvious if β̃ = ξ̃−, then ℜ(β̃) = 0; if β̃ = ξ̃+, then
ℜ(β̃) = 1. And the following theorems can be obtained.

Theorem III.5. For any IVPFN β̃ = P̃([µ̃L
β̃
, µ̃U

β̃
], [ν̃L

β̃
, ν̃U

β̃
]),

the closeness index ℜ(β̃) ∈ [0, 1].

Theorem III.6. For two IVPFNs β̃i =
P̃([µ̃L

β̃i
, µ̃U

β̃i
], [ν̃L

β̃i
, ν̃U

β̃i
])(i = 1, 2), if β̃1 ≤ β̃2, then

ℜ(β̃1) ≤ ℜ(β̃2).

Proof.

ℜ(β̃1)−ℜ(β̃2)

=
d(β̃1, ξ̃−)

d(β̃1, ξ̃−) + d(β̃1, ξ̃+)
− d(β̃2, ξ̃−)

d(β̃2, ξ̃−) + d(β̃2, ξ̃+)

=
(
√
(µ̃L

β̃1
)2 + (ν̃L

β̃1
− 1)2 +

√
(µ̃U

β̃1
)2 + (ν̃U

β̃1
− 1)2)(

(

√
(µ̃L

β̃1
)2 + (ν̃L

β̃1
− 1)2 +

√
(µ̃U

β̃1
)2 + (ν̃U

β̃1
− 1)2) +

(

√
(µ̃L

β̃1
− 1)2 + (ν̃L

β̃1
)2 +

√
(µ̃U

β̃1
− 1)2 + (ν̃U

β̃1
)2)

)

−
(
√
(µ̃L

β̃2
)2 + (ν̃L

β̃2
− 1)2 +

√
(µ̃U

β̃2
)2 + (ν̃U

β̃2
− 1)2)(

(

√
(µ̃L

β̃2
)2 + (ν̃L

β̃2
− 1)2 +

√
(µ̃U

β̃2
)2 + (ν̃U

β̃2
− 1)2) +

(

√
(µ̃L

β̃2
− 1)2 + (ν̃L

β̃2
)2 +

√
(µ̃U

β̃2
− 1)2 + (ν̃U

β̃2
)2)

)

=

(
(

√
(µ̃L

β̃1
)2 + (ν̃L

β̃1
− 1)2 +

√
(µ̃U

β̃1
)2 + (ν̃U

β̃1
− 1)2)

(

√
(µ̃L

β̃2
− 1)2 + (ν̃L

β̃2
)2 +

√
(µ̃U

β̃2
− 1)2 + (ν̃U

β̃2
)2) −

(

√
(µ̃L

β̃1
− 1)2 + (ν̃L

β̃1
)2 +

√
(µ̃U

β̃1
− 1)2 + (ν̃U

β̃1
)2)

(

√
(µ̃L

β̃2
)2 + (ν̃L

β̃2
− 1)2 +

√
(µ̃U

β̃2
)2 + (ν̃U

β̃2
− 1)2)

)
(
((

√
(µ̃L

β̃1
)2 + (ν̃L

β̃1
− 1)2 +

√
(µ̃U

β̃1
)2 + (ν̃U

β̃1
− 1)2) +

(

√
(µ̃L

β̃1
− 1)2 + (ν̃L

β̃1
)2 +

√
(µ̃U

β̃1
− 1)2 + (ν̃U

β̃1
)2))

((

√
(µ̃L

β̃2
)2 + (ν̃L

β̃2
− 1)2 +

√
(µ̃U

β̃2
)2 + (ν̃U

β̃2
− 1)2) +

(

√
(µ̃L

β̃2
− 1)2 + (ν̃L

β̃2
)2 +

√
(µ̃U

β̃2
− 1)2 + (ν̃U

β̃2
)2))

)
(20)

According to Eqs. (9) and corresponding definition in
[25], we have

(

√
(µ̃L

β̃1
)2 + (ν̃L

β̃1
− 1)2 +

√
(µ̃U

β̃1
)2 + (ν̃U

β̃1
− 1)2)

≤ (

√
(µ̃L

β̃2
)2 + (ν̃L

β̃2
− 1)2 +

√
(µ̃U

β̃2
)2 + (ν̃U

β̃2
− 1)2),

(

√
(µ̃L

β̃2
− 1)2 + (ν̃L

β̃2
)2 +

√
(µ̃U

β̃2
− 1)2 + (ν̃U

β̃2
)2)

≤ (

√
(µ̃L

β̃1
− 1)2 + (ν̃L

β̃1
)2 +

√
(µ̃U

β̃1
− 1)2 + (ν̃U

β̃1
)2)

(21)
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so,

(

√
(µ̃L

β̃1
)2 + (ν̃L

β̃1
− 1)2 +

√
(µ̃U

β̃1
)2 + (ν̃U

β̃1
− 1)2)

(

√
(µ̃L

β̃2
− 1)2 + (ν̃L

β̃2
)2 +

√
(µ̃U

β̃2
− 1)2 + (ν̃U

β̃2
)2)

≤ (

√
(µ̃L

β̃1
− 1)2 + (ν̃L

β̃1
)2 +

√
(µ̃U

β̃1
− 1)2 + (ν̃U

β̃1
)2)

(

√
(µ̃L

β̃2
)2 + (ν̃L

β̃2
− 1)2 +

√
(µ̃U

β̃2
)2 + (ν̃U

β̃2
− 1)2)

(22)

so,

(

√
(µ̃L

β̃1
)2 + (ν̃L

β̃1
− 1)2 +

√
(µ̃U

β̃1
)2 + (ν̃U

β̃1
− 1)2)

(

√
(µ̃L

β̃2
− 1)2 + (ν̃L

β̃2
)2 +

√
(µ̃U

β̃2
− 1)2 + (ν̃U

β̃2
)2)−

(

√
(µ̃L

β̃1
− 1)2 + (ν̃L

β̃1
)2 +

√
(µ̃U

β̃1
− 1)2 + (ν̃U

β̃1
)2)

(

√
(µ̃L

β̃2
)2 + (ν̃L

β̃2
− 1)2 +

√
(µ̃U

β̃2
)2 + (ν̃U

β̃2
− 1)2) ≤ 0

(23)
and,

((

√
(µ̃L

β̃1
)2 + (ν̃L

β̃1
− 1)2 +

√
(µ̃U

β̃1
)2 + (ν̃U

β̃1
− 1)2)+

(

√
(µ̃L

β̃1
− 1)2 + (ν̃L

β̃1
)2 +

√
(µ̃U

β̃1
− 1)2 + (ν̃U

β̃1
)2))

((

√
(µ̃L

β̃2
)2 + (ν̃L

β̃2
− 1)2 +

√
(µ̃U

β̃2
)2 + (ν̃U

β̃2
− 1)2)+

(

√
(µ̃L

β̃2
− 1)2 + (ν̃L

β̃2
)2 +

√
(µ̃U

β̃2
− 1)2 + (ν̃U

β̃2
)2)) ≥ 0

(24)
so, ℜ(β̃1)−ℜ(β̃2) ≤ 0, that is ℜ(β̃1) ≤ ℜ(β̃2).

Then a new ranking method for IVPFNs is proposed
based on the closeness index ℜ(β̃) as:

Definition III.4. Let β̃i = P̃([µ̃L
β̃i

, µ̃U
β̃i
], [ν̃L

β̃i
, ν̃U

β̃i
])(i = 1, 2)

be two IVPFNs, ℜ(β̃1) and ℜ(β̃2) are the closeness index of
β̃1 and β̃2, then

(1) If ℜ(β̃1) < ℜ(β̃2), then β̃1 ≺ℜ β̃2;
(2) If ℜ(β̃1) > ℜ(β̃2), then β̃1 ≻ℜ β̃2;
(3) If ℜ(β̃1) = ℜ(β̃2), then β̃1 ∼ℜ β̃2.

To select the best alternative in MCDM problems, the
preference information of decision makers need to be
aggregated by some proper aggregation operators, and
IVPFNs naturally suit this situation. A new aggregation
operator for IVPFNs is proposed in this paper denoted
as IVPFWA operator. Firstly, a method is developed to
convert IVPFNs to PFNs based on the C-OWA operator
introduced by Yager [50] to aggregate the elements on a
continuous interval as follows:

Definition III.5. A C-OWA operator is a mapping f : Ω →
R defined on a function Q as:

fQ([β
L, βU ]) =

∫ 1

0

dQ(y)
dy

· [βU − (βU − βL)y]dy, (25)

where Q is called the basic unit interval monotonic (BUM)
function, and Q : [0, 1] → [0, 1] is monotonic with Q(0) = 0
and Q(1) = 1. Ω denotes the collection of all closed intervals.

In addition, Yager [50] pointed out that if λ =∫ 1
0 Q(y)dy is the attitudinal character of Q, λ ∈
[0, 1], then the representation can be obtained as:
fQ([β

L, βU ]) = (1 − λ)βL + λβU . λ can be considered
as a representation of decision makers’ attitudes, and
optimistic tendency is denoted by 0.5 < λ ≤ 1, neutral is
λ = 0.5, and 0 ≤ λ < 0.5 means the pessimistic attitude.

To obtain the best alternative, some aggregation op-
erators were proposed for decision makers to aggregate
their preference information. Zhou et al. [51] proposed
the continuous interval-valued intuitionistic fuzzy or-
dered weighted averaging (C-IVIFOWA) operator based
on C-OWA operator, which was improved by Lin et al.
[52] by modifying some of the flaws. And the improved
C-IVIFOWA operator GQ is shown as follows:

GQ(β̃) = ( fλ([µ
L
β̃
, µU

β̃
]), f1−λ([ν

L
β̃

, νU
β̃
]))

= ((1 − λ)µL
β̃
+ λµU

β̃
, λνL

β̃
+ (1 − λ)νU

β̃
)

(26)

Motivated by the definition of Lin et al., we develop the
operator to aggregate IVPFNs into PFNs as follows.

Definition III.6. Let β̃ = P̃([µ̃L
β̃
, µ̃U

β̃
], [ν̃L

β̃
, ν̃U

β̃
]) be an

IVPFN, a continuous interval-valued Pythagorean fuzzy
weighted averaging (C-IVPFWA) operator is a mapping
G :◃▹→ ◃ defined on a function Q as:

G̃Q(β̃) = ( fλ([µ̃
L
β̃
, µ̃U

β̃
]), f1−λ([ν̃

L
β̃

, ν̃U
β̃
]))

= ((1 − λ)µ̃L
β̃
+ λµ̃U

β̃
, λν̃L

β̃
+ (1 − λ)ν̃U

β̃
)

(27)

where ◃▹ and ◃ are the collection of IVPFNs and PFNs,
respectively. G̃Q is also called G̃λ for convenience.

Since µ̃L
β̃
, µ̃U

β̃
, ν̃L

β̃
, ν̃U

β̃
∈ [0, 1], we have 0 ≤ (1 − λ)µ̃L

β̃
+

λµ̃U
β̃

≤ µ̃U
β̃

≤ 1, and 0 ≤ λν̃L
β̃
+ (1 − λ)ν̃U

β̃
≤ ν̃U

β̃
≤ 1,

then ((1−λ)µ̃L
β̃
+λµ̃U

β̃
)2 +(λν̃L

β̃
+(1−λ)ν̃U

β̃
)2 ≤ (µL

β̃
)2 +

(νL
β̃
)2 ≤ 1. So, G̃Q(β̃) is a PFN.

It is easy to defined the IVPFWA operator based on
Definition III.6 and II.7 to aggregate multiple IVPFNs as
follows.

Definition III.7. Let β̃i = P̃([µ̃L
β̃i

, µ̃U
β̃i
], [ν̃L

β̃i
, ν̃U

β̃i
])(i =

1, 2, . . . , n) be n IVPFNs. At first, we represent β̃i as a PFN
using C-IVPFWA proposed in Definition III.6 as:

G̃Q(β̃i) = ((1 − λ)µ̃L
β̃i
+ λµ̃U

β̃i
, λν̃L

β̃i
+ (1 − λ)ν̃U

β̃i
)

|= (µ̃β̃i
, ν̃β̃i

)
(28)

|= means ’Abbreviated as’ , the IVPFWA operator can be
defined as follows:

IVPFWA(β̃1, β̃2, . . . , β̃n) = w1 β̃1 ⊕ w2 β̃2 ⊕ · · · ⊕ wn β̃n

= P(

√√√√ µ̃2
β̇
+ 2µ̃β̇π̃β̇

1 − (µ̃β̇ν̃β̇)
2 ,

√√√√ ν̃2
β̇
+ 2ν̃β̇π̃β̇

1 − (µ̃β̇ν̃β̇)
2 )

(29)
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where µ̃β̇ = ∑n
i=1 wiµ̃

2
β̃i

, ν̃β̇ = ∑n
i=1 wi ν̃

2
β̃i

, and π̃β̇ = 1 −
∑n

i=1 wi(µ̃
2
β̃i
+ ν̃2

β̃i
), and wi indicates the importance degree

of β̃i, satisfying wi ≥ 0(i = 1, 2, . . . , n) and ∑n
i=1 wi = 1.

Example III.1. Let β̃1 = P([0.6, 0.8], [0.4, 0.5]), β̃2 =
P([0.6, 0.7], [0.4, 0.6]) and β̃3 = P([0.7, 0.8], [0.4, 0.5]) be
three IVPFNs, and the weight vector w = (0.3, 0.2, 0.5)T . As-
sume that decision maker select the BUM function Q(y) = y2,
so the attitudinal character λ =

∫ 1
0 Q(y)dy = 1

3 . These three
IVPFNs will first be aggregated into three PFNs, respectively,
based on Eq. (27).

G̃Q(β̃1) = ((1 − 1
3
) · 0.6 +

1
3
· 0.8,

1
3
· 0.4 + (1 − 1

3
) · 0.5)

= (0.6667, 0.4667)

G̃Q(β̃2) = ((1 − 1
3
) · 0.6 +

1
3
· 0.7,

1
3
· 0.4 + (1 − 1

3
) · 0.6)

= (0.6333, 0.5333)

G̃Q(β̃3) = ((1 − 1
3
) · 0.7 +

1
3
· 0.8,

1
3
· 0.4 + (1 − 1

3
) · 0.5)

= (0.7333, 0.4667)

Next, the aggregation results of β̃1, β̃2 and β̃3 are calculated
by Eq. (29) as:

IVPFWA(β̃1, β̃2, β̃3) = w1 β̃1 ⊕ w2 β̃2 ⊕ w3 β̃3

= P(0.7994, 0.4891)

Remark III.3. According to Definition III.7, the operational
laws of two IVPFNs β̃1 = P̃([µ̃L

β̃1
, µ̃U

β̃1
], [ν̃L

β̃1
, ν̃U

β̃1
]) and β̃2 =

P̃([µ̃L
β̃2

, µ̃U
β̃2
], [ν̃L

β̃2
, ν̃U

β̃2
]) can be defined naturally (when the

number of IVPFNs degenerates into 2) as follows:

Let µ̃β̃ = µ̃2
β̃1

+ µ̃2
β̃2

, ν̃β̃ = ν̃2
β̃1

+ ν̃2
β̃2

, π̃β̃ = π̃2
β̃1

+ π̃2
β̃2

so β̃1 ⊕ β̃2 = P(

√√√√ µ̃β̃(π̃β̃ +
1
2 µ̃β̃)

2 − µ̃β̃ν̃β̃

,

√√√√ ν̃β̃(π̃β̃ +
1
2 ν̃β̃)

2 − µ̃β̃ν̃β̃

)

(30)
where G̃Q(β̃1) = ((1−λ)µ̃L

β̃1
+λµ̃U

β̃1
, λν̃L

β̃1
+(1−λ)ν̃U

β̃1
) |=

(µ̃β̃1
, ν̃β̃1

) and
G̃Q(β̃2) = ((1 − λ)µ̃L

β̃2
+ λµ̃U

β̃2
, λν̃L

β̃2
+ (1 − λ)ν̃U

β̃2
) |=

(µ̃β̃2
, ν̃β̃2

).

IV. PYTHAGOREAN FUZZY APPROACH FOR MCDM
ANALYSIS

In this section, a hierarchical Pythagorean fuzzy de-
cision approach is proposed to solve MCDM problems
based on the defined closeness indexes and aggrega-
tion operators of PFNs and IVPFNs. To deal with the
Pythagorean fuzzy MCDM problems more factual and
reasonable, a method of weight determination is devel-
oped based on the defined distance measure of PFNs and
IVPFNs. In addition, some special cases of the proposed
approach are also discussed.

Determine the 

optimal solution

Criterion CnCriterion C2Criterion C1

Alternative A2Alternative A1

Criterion

C1(1)

Criterion

C1(2)

Criterion

C1(t1)

Alternative Am

Criterion

Cn(1)

Criterion

Cn(2)

Criterion

Cn(tn)

. . .

. . . .... . .

. . .

Goal 

level

Main

criteria

Sub

criteria

Altern-

atives

Fig. 7. The hierarchical framework of MCDM problem

TABLE I
THE PYTHAGOREAN FUZZY DECISION MATRIX

Alternatives
Main-criteria & Sub-criteria

C1 ... Ci ... Cn

C1(1) ...C1(t1)
Ci(1) ...Ci(ti )

Cn(1) ...Cn(tn )

A1 x11(1) ...x11(t1)
... x1i(1) ...x1i(ti )

... x1n(1) ...x1n(tn )
A2 x21(1) ...x21(t1)

... x2i(1) ...x2i(ti )
... x2n(1) ...x2n(tn )

... ... ... ... ... ...
Am xm1(1) ...xm1(t1)

... xmi(1) ...xmi(ti )
... xmn(1) ...xmn(tn )

A. Problem Description of Pythagorean Fuzzy Decision

Pythagorean fuzzy MCDM problems can be described
as having n (n ≥ 2) main criteria {C1, C2, . . . , Cn} and
m (m ≥ 2) alternatives {A1, A2, . . . , Am}. There are ti
sub-criteria {Ci(1), Ci(2), . . . , Ci(t(i))} under each main cri-
terion Ci(i ∈ 1, 2, . . . , n), where ti represents the number
of sub-criteria under ith main criterion. The hierarchical
framework of Pythagorean fuzzy MCDM problem with
two-layer criteria structure is shown in Fig. 7.

The preference information from the decision-maker
will be represented by PFNs or VIPFNs. As noted, we
defined the subset CI as the expression criteria whose
assessment information are denoted by PFNs, simultane-
ously, CI I is the representation criteria whose Pythagore-
an fuzzy information are indicated by IVPFNs. So it
satisfies CI ∪ CI I = C and CI ∩ CI I = ϕ, and if Cj(t) ∈ CI ,
then xij(t) means a PFN which denoted as βij(t) =
P(µβij(t)

, νβij(t)
); if Cj(t) ∈ CI I , then xij(t) means an IVPFN

which denoted as β̃ij(t) = P([µ̃L
β̃ij(t)

, µ̃U
β̃ij(t)

], [ν̃L
β̃ij(t)

, ν̃U
β̃ij(t)

]).

xij(t) expresses the Pythagorean fuzzy value of tth sub-
criterion under ith main criterion for alternative Aj,
then the decision matrix of Pythagorean fuzzy MCDM
problems can be represented as Table I.

Remark IV.1. In practical decision-making process, if the
crisp values can be employed for decision-maker to determine
the degree to which an alternative meets a certain criterion,
PFNs would be used to express the assessment information
of decision-maker at this time; however, if it is difficult for
decision-maker to give the degree to which an alternative can
meet a certain criterion based on the crisp values, in which case
IVPFNs would be applied to express an assessment interval.
This flexible way to represent assessment information is also
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a great advantage of the proposed decision approach.

The Pythagorean fuzzy decision approach is proposed
in the following section.

B. Pythagorean Fuzzy Decision Approach
Firstly, according to the decision matrix given in Table

I, for each alternative Aj, its closeness index of tth sub-
criterion under ith main criterion ℜij(t) will be calculated
based on Eqs. (6) and (19). There exist m alternatives in
Pythagorean fuzzy MCDM problems based on the above
description, so naturally there are m! possible ranking
results for these m alternatives. The γth permutation £γ

is denoted as:

£γ = (. . . , Aξ , . . . , Aζ , . . .), γ = 1, 2, . . . , m! (31)

where Aξ and Aζ ∈ {A1, A2, . . . , Am}, and Aξ ranked
higher than Aζ .

With respect to a permutation £γ, we consider its ra-
tionality depends on how well the alternatives’ position
in this permutation matches their dominance relation.
In other words, if the alternatives in £γ are ranked
exactly as their performance, then £γ will be a perfec-
t permutation, and vice versa. So how to determine
whether a permutation is reasonable? We define a score
function F(£γ) as the representation of the rationality of
a permutation £γ. The core idea of function F is that
if Aζ is superior to Aξ , then we think their ranking is
consistent with their performance, in which case it is a
contribution to the permutation £γ and vice versa is a
rejection. Especially, if they have the same score, their
order has no effect on permutation £γ. The performance
of a couple of alternatives (Aξ , Aζ) can be calculated as
the concordance/discordance index based on the defined
closeness index under the Pythagorean fuzzy environ-
ment. So, the concordance/discordance index h̄γ

ξζi(t) for
the couple of alternatives (Aξ , Aζ) of γth permutation
under tth sub-criterion of ith main criterion can be
denoted as:

(I) When C ∈ CI ,

h̄γ
ξζi(t) = ℜ(βξi(t))−ℜ(βζi(t))

=

(
(
√

µ2
βξi(t)

+ (νβξi(t)
− 1)2)(

√
(µβζi(t)

− 1)2 + ν2
βζi(t)

)

−(
√

µ2
βζi(t)

+ (νβζi(t)
− 1)2)(

√
(µβξi(t)

− 1)2 + ν2
βξi(t)

)
)

(
(
√

µ2
βξi(t)

+ (νβξi(t)
− 1)2 +

√
(µβξ i(t) − 1)2 + ν2

βξi(t)
)

(
√

µ2
βζi(t)

+ (νβζi(t)
− 1)2 +

√
(µβζi(t)

− 1)2 + ν2
βζi(t)

)
)

(32)

where β ji(t) = P(µβ ji(t)
, νβ ji(t)

) is the Pythagorean fuzzy
expression of tth sub-criterion under ith main criterion
for alternative Aj.

The obvious conclusion can be drawn from Eq. (32)
that:

(i) IF ℜ(βξi(t)) > ℜ(βζi(t)), that is, h̄γ
ξζi(t) > 0, which

means the order Aξ ≻ Aζ is consistent with their factual
performance, i.e., this order can make a contribution to
the permutation £γi(t), denoted as F(£γi(t)) = F(£γi(t)) +

|h̄γ
ξζi(t)|, where £γi(t) means γth permutation of tth sub-

criterion under ith main criterion.
(ii) IF ℜ(βξi(t)) < ℜ(βζi(t)), that is, h̄γ

ξζi(t) < 0,
which means the order Aξ ≻ Aζ is inconsistent with
their factual performance, i.e., this order can make a
rejection to the permutation £γi(t), denoted as F(£γi(t)) =

F(£γi(t))− |h̄γ
ξζi(t)|.

(iii) IF ℜ(βξi(t)) = ℜ(βζi(t)), that is, h̄γ
ξζi(t) = 0, which

means Aξ and Aζ have the same factual performance,
i.e., this order has no effect on the permutation £γi(t), so
F(£γi(t)) remains the same value.

According to the above analyses, as the rationality of
the permutation £γ of tth sub-criterion under ith main
criterion, the score function F(£γi(t)) (C ∈ CI) can be
summarize as:

F(£γi(t)) =


F(£γi(t)) = F(£γi(t)) + |h̄γ

ξζi(t)|, h̄γ
ξζi(t) > 0

F(£γi(t)), h̄γ
ξζ = 0

F(£γi(t)) = F(£γi(t))− |h̄γ
ξζi(t)|, h̄γ

ξζi(t) < 0
(33)

(II) When C ∈ CI I ,
˜̄hγ

ξζi(t) = ℜ(β̃ξi(t))−ℜ(β̃ζi(t))

=

(
(
√
(µ̃L

β̃ξi(t)
)2 + (ν̃L

β̃ξi(t)
− 1)2 +

√
(µ̃U

β̃ξi(t)
)2 + (ν̃U

β̃ξi(t)
− 1)2)

(
√
(µ̃L

β̃ζi(t)
− 1)2 + (ν̃L

β̃ζi(t)
)2 +

√
(µ̃U

β̃ζi(t)
− 1)2 + (ν̃U

β̃ζi(t)
)2) −

(
√
(µ̃L

β̃ξi(t)
− 1)2 + (ν̃L

β̃ξi(t)
)2 +

√
(µ̃U

β̃ξi(t)
− 1)2 + (ν̃U

β̃ξi(t)
)2)

(
√
(µ̃L

β̃ζi(t)
)2 + (ν̃L

β̃ζi(t)
− 1)2 +

√
(µ̃U

β̃ζi(t)
)2 + (ν̃U

β̃ζi(t)
− 1)2)

)
(
((
√
(µ̃L

β̃ξi(t)
)2 + (ν̃L

β̃ξi(t)
− 1)2 +

√
(µ̃U

β̃ξi(t)
)2 + (ν̃U

β̃ξi(t)
− 1)2) +

(
√
(µ̃L

β̃ξi(t)
− 1)2 + (ν̃L

β̃ξi(t)
)2 +

√
(µ̃U

β̃ξi(t)
− 1)2 + (ν̃U

β̃ξi(t)
)2))

((
√
(µ̃L

β̃ζi(t)
)2 + (ν̃L

β̃ζi(t)
− 1)2 +

√
(µ̃U

β̃ζi(t)
)2 + (ν̃U

β̃ζi(t)
− 1)2) +

(
√
(µ̃L

β̃ζi(t)
− 1)2 + (ν̃L

β̃ζi(t)
)2 +

√
(µ̃U

β̃ζi(t)
− 1)2 + (ν̃U

β̃ζi(t)
)2))

)
(34)

where β̃ ji(t) = P̃([µ̃L
β̃ ji(t)

, µ̃U
β̃ ji(t)

], [ν̃L
β̃ ji(t)

, ν̃U
β̃ ji(t)

]) is the

interval-valued Pythagorean fuzzy expression of tth sub-
criterion under ith main criterion for alternative Aj.

The obvious conclusion can be drawn from Eq. (34)
that:

(i) IF ℜ(β̃ξi(t)) > ℜ(β̃ζi(t)), that is, ˜̄hγ
ξζi(t) > 0, which

means the order Aξ ≻ Aζ is consistent with their factual
performance, i.e., this order can make a contribution to
the permutation £γi(t), denoted as F(£γi(t)) = F(£γi(t)) +

| ˜̄hγ
ξζi(t)|.
(ii) IF ℜ(β̃ξi(t)) < ℜ(β̃ζi(t)), that is, ˜̄hγ

ξζi(t) < 0,
which means the order Aξ ≻ Aζ is inconsistent with
their factual performance, i.e., this order can make a
rejection to the permutation £γi(t), denoted as F(£γi(t)) =

F(£γi(t))− | ˜̄hγ
ξζi(t)|.

(iii) IF ℜ(β̃ξi(t)) = ℜ(β̃ζi(t)), that is, ˜̄hγ
ξζi(t) = 0, which

means Aξ and Aζ have the same factual performance,
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TABLE II
THE PYTHAGOREAN FUZZY DECISION MATRIX

Permutations
Main-criteria & Sub-criteria

C1 ... Cn

C1(1) , · · · , C1(t1)
Cn(1) , · · · , Cn(tn )

£1 F(£11(1)),...,F(£11(t1)
) ... F(£1n(1)),...,F(£1n(tn ))

£2 F(£21(1)),...,F(£21(t1)
) ... F(£2n(1)),...,F(£2n(tn ))

... ... ... ...
£m! F(£m!1(1)),...,F(£m!1(t1)

) ... F(£m!n(1)),...,F(£m!n(tn ))

i.e., this order has no effect on the permutation £γi(t), so
F(£γi(t)) remains the same value.

According to the above analyses, as the rationality of
the permutation £γ of tth sub-criterion under ith main
criterion, the score function F(£γi(t)) (C ∈ CI I) can be
summarize as:

F(£γi(t)) =


F(£γi(t)) = F(£γi(t)) + | ˜̄hγ

ξζi(t)|, ˜̄hγ
ξζi(t) > 0

F(£γi(t)), ˜̄hγ
ξζ = 0

F(£γi(t)) = F(£γi(t))− | ˜̄hγ
ξζi(t)|, ˜̄hγ

ξζi(t) < 0
(35)

Remark IV.2. With respect to F(£γi(t)) (γ = 1, 2, . . . , m!),
its initial value is 0, and there will be m(m − 1)/2 compar-
isons for m alternatives in the permutation £γ. The final score
of the γth permutation of tth sub-criterion under ith main
criterion should be the sum of all the m(m − 1)/2 operations.

There is no doubt that the determination of criterion
weights is an important task in MCDM problems, in
some work weights are given by experts in advance [19],
[29], [42], [53], which will introduce more subjectivity
in the decision-making process. In order to minimize
inevitable subjectivity, in this paper, a novel weighting
approach is proposed based on the new defined similar-
ity measure in Pythagorean fuzzy environment. Next we
first introduce the similarity measure between two PFNs
or IVPFNs, which is driven by the distance measure
based on Definition II.2 and III.2.

Definition IV.1. Let βi = P(µβi , νβi )(i = 1, 2) be two
PFNs, the similarity between β1 and β2 is defined as:

s(β1, β2) =
d(β1, (β2)

c)

d(β1, β2) + d(β1, (β2)c)
(36)

where d(·) is the distance measure between PFNs, and (β2)
c

is the complement operation of PFN β2 defined in [6], [20].

Definition IV.2. Let β̃i = P̃([µ̃L
β̃i

, µ̃U
β̃i
], [ν̃L

β̃i
, ν̃U

β̃i
])(i = 1, 2)

be two IVPFNs, the similarity measure between β̃1 and β̃2 is
defined as follows:

s(β̃1, β̃2) =
d(β̃1, (β̃2)

c)

d(β̃1, β̃2) + d(β̃1, (β̃2)c)
(37)

where d(·) is the distance measure between IVPFNs and (β̃2)
c

is the complement operation of IVPFN β̃2 defined in [25].

It is easy to prove the defined similarity measures of
PFNs and IVPFNs satisfy the relevant axioms, so the
proof process is omitted here.

Suppose the number of criteria is n, and each criterion
is expressed under Pythagorean fuzzy environment by a
PFN or an IVPFN. The similarity measure of each couple
of PFNs and IVPFNs can be obtained based on Definition
IV.1 and IV.2, then the similarity measure matrix (SMM)
can be constructed which provides us the agreement
between different Pythagorean fuzzy expressions as:

SMM =



1 s12 · · · s1j · · · s1n
s21 1 · · · s2j · · · s2n
...

...
. . .

...
...

sj1 sj2 · · · 1 · · · sjn
...

...
...

. . .
...

sn1 sn2 · · · snj · · · snn


The support degree of criterion Ci is defined as:

Sup(Ci) =
n

∑
j=1,j ̸=i

s(Ci, Cj) (38)

The credibility degree of criterion Ci can be defined as:

Crd(Ci) =
Sup(Ci)

∑n
i=1 Sup(Ci)

(39)

It is noted that the credibility degree is actually the
weight of the criterion which denotes its relative im-
portance in all criteria and satisfies obviously that
∑n

i=1 Crd(Ci) = 1. The following example illustrates how
to determine the weight based on the above proposed
method.

Example IV.1. Consider a MCDM problem with four criteria
{C1, C2, C3, C4}, and the performance of alternative Aj under
each criterion are expressed by PFNs as: β j1 = P(0.5, 0.3),
β j2 = P(0.6, 0.7), β j3 = P(0.7, 0.4), β j4 = P(0.8, 0.3).
Then the similarity measure matrix can be obtained based on
Definition IV.1 and IV.2 as:

1 0.4665 0.6484 0.6422
0.4665 1 0.3874 0.4142
0.6484 0.3874 1 0.8000
0.6422 0.4142 0.8000 1


Then the support degree of each criterion can be calculated
based on Eq.(38) as: Sup(C1) = 1.7571, Sup(C2) = 1.2681,
Sup(C3) = 1.8358, Sup(C4) = 1.8564. Then the credibility
degree of each criterion can be obtained based on Eq.(39) as:
Crd(C1) = 0.2616, Crd(C2) = 0.1888, Crd(C3) = 0.2732,
Crd(C4) = 0.2764, that is, the weight of each criterion is
W1 = 0.2616, W2 = 0.1888, W3 = 0.2732, W4 = 0.2764.

After defining the method to determine weights, let’s
discuss how to implement the aggregation of sub-criteria
under each main criterion in the hierarchical framework
of MCDM problem. For alternative Aj, the weights of
sub-criteria under each main criterion Ci can be calcu-
lated based on Eq.(39) as wj

i(∗). Then the overall weights
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TABLE III
THE PYTHAGOREAN FUZZY DECISION MATRIX AFTER AGGREGATION
OPERATION. ON THE LEFT SIDE OF THE TABLE IS THE AGGREGATION

RESULT OF THE SUB-CRITERIA UNDER EACH OF THE MAIN CRITERION
IN TABLE I, AND ON THE RIGHT SIDE REPRESENTS THE AGGREGATION

RESULT OF ALL THE MAIN CRITERIA FROM THE LEFT SIDE

Alternatives Main criteria Decision objective
C1 ... Ci ... Cn

A1 x11 ... x1i ... x1n x1
A2 x21 ... x2i ... x2n x2
... ... ... ... ... ... ...

Am xm1 ... xmi ... xmn xm

of sub-criteria under each main criterion can be obtained
by calculating the average as wi(∗) = ∑m

j=1 wj
i(∗)/m. Then

the Pythagorean fuzzy expresses of sub-criteria can be
aggregated into their corresponding main criterion based
on Definition II.7 and III.7. For alternative Aj under
main criterion Ci, the aggregation result of sub-criteria
can be denoted as β ji = PFWA(β ji(1), . . . , β ji(ti)

) and
β̃ ji = IVPFWA(β̃ ji(1), . . . , β̃ ji(ti)

). The following example
is conducted to illustrate how to aggregate sub-criteria
into a main criterion based on the obtained weights.

Example IV.2. (Continued Example IV.1) Consider a M-
CDM problem with four criteria {C1, C2, C3, C4}, and the
performance of alternative Aj under each criterion are ex-
pressed by PFNs as: β j1 = P(0.5, 0.3), β j2 = P(0.6, 0.7),
β j3 = P(0.7, 0.4), β j4 = P(0.8, 0.3). According to Example
IV.1, the weights of the four criteria is W1 = 0.2616,
W2 = 0.1888, W3 = 0.2732, W4 = 0.2764. Now they
can be aggregated into a PFN based on Definition II.7 as:
βi = PFWA(β j1, β j2, β j3, β j4) = P(0.7940, 0.4525).

The MCDM framework after weighted aggregation is
shown in Table III.

So far the score F(£γi(t)) of permutation £γ and weight
of tth sub-criterion of ith main criterion have been
obtained, next, the score of permutation £γ of each main
criterion will be calculated by aggregating all of the sub-
criteria and denoted as F(£γi) = ∑ti

t=1 F(£γi(t)) · wt(i).
To obtain the final score of permutation £γ, the weights

of all the main criteria need to be calculated based on
the aggregated decision matrix shown in Table III as wi.
Then the final score of permutation £γ can be obtained as
F(£γ) = ∑n

i=1 F(£γi) · wi. Finally, the optimal alternative
should be the one with the highest score denoted as £∗ =
maxm!

γ=1{F(£γ)}.
Here we have finished the description of the MCDM

problems under Pythagorean fuzzy environment and
introduced the decision-making approach based on the
developed closeness index and aggregation operator. To
make the readers clearly understand the approach above
which is highly summarized as the following steps, and
the corresponding flow chart is also shown in Fig. 8.

• Step 1. According to the description of Pythagorean
fuzzy decision problem, the hierarchical framework
of MCDM problem can be determined and the

Pythagorean fuzzy decision matrix can be obtained.
• Step 2. List the possible m! permutations of the m

alternatives, and calculate the score of each permu-
tation based on the score function(Eq. (33) and (35)).

• Step 3. Calculate the weights of all the sub-criteria
under each main criterion based on Eq. (39), then
aggregate all sub-criteria under each main criterion
based on the obtained weights and Definition II.7
and III.7.

• Step 4. Calculate the score of permutation of each
main criterion by aggregating the scores of all the
sub-criteria.

• Step 5. Calculate the weights of all main criteria
based on Eq. (39).

• Step 6. Obtain the final score of each permutation
based on the data of Step 4 and weights of Step 5.

• Step 7. Select the permutation which has the highest
score as the final decision-making result.

C. Some Special Cases of the Proposed Approach

The decision approach under Pythagorean fuzzy en-
vironment is developed for the framework of two-level
criteria MCDM problems. In practice, there may exist
some special cases in this framework, for example, the
decision-making framework is a single-level structure,
the expression of decision matrix are given by PFNs
only, weights of criteria are given by decision makers in
advance, ect. In these special cases, special consideration
should be given to decision-making issues. Some of the
differences in the decision-making process and the issues
that need to be addressed are listed below.

Case 1: When the framework of MCDM problems
degenerate into a single criterion layer structure, the
decision-making process becomes simpler. Specifically,
the overall decision process needs only one weighting
operation, in this way, the aggregation process devel-
oped in Definition II.7 and III.7 is omitted, only need
to calculate the weights of all the criteria based on Eq.
(39), and then to aggregate the score of each criterion to
complete the decision-making activities.

Case 2: In a special case, the decision matrix given by
decision-making experts is only expressed by PFNs. The
decision-making process is still simplified in this case, for
example, calculating the closeness index, computing the
score of permutation and aggregating the Pythagorean
fuzzy expression are all available under the definition
of PFNs, thus greatly saving the algorithm’s time and
space overhead.

Case 3: In the process of decision-making, if the
weights of the criteria are given by decision-makers,
the step of calculating the weights is omitted in this
case, accordingly, the aggregation process of PFNs and
IVPFNs is unnecessary and the decision-making process
becomes more concise.
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Fig. 8. The flowchart of the proposed Pythagorean fuzzy decision approach

V. APPLICATION OF PYTHAGOREAN FUZZY DECISION
APPROACH IN RISK ASSESSMENT

In this section, the process of risk assessment of s-
trategic emerging industries is demonstrated based on
the above decision approach under Pythagorean fuzzy
environment, which is conducted to illustrate the appli-
cability and effectiveness of the proposed Pythagorean
fuzzy decision approach.

A. Description of the Risk Assessment Problem
Strategic emerging industries are based on major tech-

nological breakthroughs and major development needs.
They are industries that have a leading role in promoting
overall and long-term economic and social development,
which ensures the sustained economic growth in Chi-
na. They have the following characteristics: intensive
knowledge and technology, less consumption of material
resources, great potential for growth and good overall
efficiency. Thus, how to select the appropriate leading
company in strategic emerging industries is significant
to nurture and develop strategic emerging industries.
Strategic emerging industries are composed of seven
parts, they have been the key target and direction of
the national industry development, among which the
new energy industry has been vigorously supported and
promoted by the central government of China. There are
three leading companies (Jinko A1, Trina Solar A2 and
ReneSola A3) of a new energy industry are considered by
government [54], so the proposed MCDM approach will
be applied to select the best one from the perspective
of risk of the technique innovation. The hierarchy of
assessment criteria is a two-level structure with main
criteria and sub-criteria given by experts and shown in

the Table IV. This risk assessment issue is conducted in
Pythagorean fuzzy environment, the values under each
criterion of the alternatives will be represented by PFNs
or IVPFNs, and the data in this case come from [25],
which is illustrated in Table V.

TABLE IV
THE HIERARCHY OF CRITERIA FOR THE RISK ASSESSMENT PROBLEM

Main criterion Sub-criteria

C1 Technology risk

C1(1) Technological advancement
C1(2) Technological substitutability
C1(3) Technological reliability
C1(4) Technological suitability

C2 Market risk

C2(1) Market capacity
C2(2) Market share
C2(3) Product competitiveness
C2(4) Product life cycle
C2(5) Marketing strategies

C3 Policy risk
C3(1) Changes of national macro-economic policy
C3(2) New products industrys outlook
C3(3) Compatibility between projects and policies

C4 Financial risk
C4(1) Loan interest rate
C4(2) The ability of enterprise financing
C4(3) Return of investment

B. Decision Process

In Step 1 and 2, there will be 6 (= 3!) possible permu-
tations of three alternatives, and they are:

£1 = (A1, A2, A3), £2 = (A1, A3, A2), £3 = (A2, A1, A3),
£4 = (A2, A3, A1), £5 = (A3, A1, A2), £6 = (A3, A2, A1).

Then the score of each permutation under each sub-
criterion will be calculated based on the score function
F, and the results are shown in Table VI. In Step 3, the
weights of all the sub-criteria of each criterion will be
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TABLE VI
THE SCORE OF EACH PERMUTATION UNDER ALL THE SUB-CRITERIA

Permutations
Main-criteria & Sub-criteria

C1 C2 C3 C4

C1(1) C1(2) C1(3) C1(4) C2(1) C2(2) C2(3) C2(4) C2(5) C3(1) C3(2) C3(3) C4(1) C4(2) C4(3)

£1 .6000 -.0474 -.0034 -.5878 .1580 -.4934 .1488 -.0074 .2450 .1978 .2926 .1286 .3268 -.3738 .3494
£2 .2180 .0928 -.4414 -.5878 .4368 -.1920 -.2622 .3648 -.1750 .1252 -.1210 .2810 .0342 -.4080 .0168
£3 .3820 -.1402 .4380 0 -.2788 -.3014 .4110 -.3722 .4200 .0726 .4136 -.1524 .2926 .0342 .3326
£4 -.3820 .1402 -.4380 0 .2788 .3014 -.4110 .3722 -.4200 -.0726 -.4136 .1524 -.2926 -.0342 -.3326
£5 -.2180 -.0928 .4414 .5878 -.4368 .1920 .2622 -.3648 .1750 -.1252 .1210 -.2810 -.0342 .4080 -.0168
£6 -.6000 .0474 .0034 .5878 -.1580 .4934 -.1488 .0074 -.2450 -.1978 -.2926 -.1286 -.3268 .3738 -.3494

TABLE IX
THE WEIGHTS OF ALL THE SUB-CRITERIA OF EACH CRITERION

Alternatives
Main-criteria & Sub-criteria

C1 C2 C3 C4

C1(1) C1(2) C1(3) C1(4) C2(1) C2(2) C2(3) C2(4) C2(5) C3(1) C3(2) C3(3) C4(1) C4(2) C4(3)

A1 .2261 .2581 .2504 .2654 .2140 .1695 .2110 .1897 .2158 .3205 .3369 .3426 .3501 .2949 .3550
A2 .2600 .2074 .2705 .2621 .2111 .2045 .2346 .1175 .2323 .3295 .3244 .3461 .3217 .3404 .3379
A3 .2204 .2705 .2565 .2526 .2033 .1974 .1861 .2087 .2045 .3217 .3401 .3382 .3330 .3366 .3304

w̄i(j) .2355 .2453 .2592 .2600 .2094 .1905 .2106 .1720 .2175 .3239 .3338 .3423 .3349 .3240 .3411

TABLE V
THE VALUES OF ALTERNATIVES UNDER EACH CRITERION

Sub-criteria Alternatives

A1 A2 A3

C1(1) P(.8, .2) P(.8, .4) P(.6, .6)
C1(2) P̃([.6, .8], [.4, .5]) P̃([.6, .7], [.4, .6]) P̃([.7, .8], [.4, .5])
C1(3) P̃([.5, .7], [.3, .6]) P̃([.8, .9], [.2, .3]) P̃([.6, .7], [.4, .6])
C1(4) P(.6, .5) P(.9, .2) P(.8, .1)
C2(1) P̃([.8, .9], [.2, .3]) P̃([.5, .7], [.4, .5]) P̃([.7, .9], [.3, .4])
C2(2) P(.6, .6) P(.7, .5) P(.7, .2)
C2(3) P̃([.6, .7], [.3, .5]) P̃([.6, .9], [.1, .3]) P̃([.5, .7], [.4, .6])
C2(4) P(.7, .6) P(.5, .8) P(.6, .5)
C2(5) P̃([.6, .7], [.2, .3]) P̃([.7, .9], [.1, .3]) P̃([.5, .7], [.4, .5])
C3(1) P(.7, .4) P(.8, .6) P(.6, .5)
C3(2) P(.9, .3) P(.9, .2) P(.8, .5)
C3(3) P̃([.7, .9], [.1, .3]) P̃([.7, .8], [.4, .5]) P̃([.6, .8], [.2, .3])
C4(1) P(.8, .2) P(.9, .3) P(.8, .5)
C4(2) P(.7, .5) P(.8, .2) P(.7, .1)
C4(3) P̃([.8, .9], [.2, .3]) P̃([.7, .9], [.1, .3]) P̃([.5, .7], [.2, .5])

TABLE VII
THE PYTHAGOREAN FUZZY REPRESENTATION OF ALL THE

ALTERNATIVES UNDER MAIN CRITERIA

Alt Main criteria

C1 C2 C3 C4

A1 P(.7864, .4652) P(.8086, .4608) P(.9184, .2711) P(.9067, .3030)
A2 P(.9180, .3106) P(.7759, .5051) P(.9182, .3639) P(.9421, .1975)
A3 P(.6979, .4631) P(.7722, .4650) P(.8200, .4420) P(.8307, .3826)

determined based on the weighting method proposed in
section IV-B. Firstly, for each alternative, the weights of
each sub-criterion are computed, then the final weights
are determined by averaging all alternatives, and the
results are shown in Table IX. The next operation is to
aggregate all of the sub-criteria under each main criteri-
on, and the aggregation results are shown in Table VII. In
Step 4, the score of each permutation under all the main
criteria will be obtained based on the weights calculated

TABLE VIII
THE SCORE OF EACH PERMUTATION UNDER ALL THE MAIN CRITERIA

Permutations Main criteria

C1 C2 C3 C4

£1 -.0240 .0224 .2058 .1075
£2 -.1931 .0244 .0963 -.1150
£3 .1691 -.0019 .1094 .2225
£4 -.1691 .0019 -.1094 -.2225
£5 .1931 -.0244 -.0963 .1150
£6 .0240 -.0224 -.2058 -.1075
w̄i .2497 .2435 .2561 .2507

in Step 3, and the results are shown in Table VIII. In Step
5, the weights of all the main criteria will be calculated
based on the aggregation results of Table VII, and the
results are shown on the last line of Table VIII. In Step
6, the final score of each permutation will be obtained by
calculating the weighting values of the four main criteria
base on Table VIII, and the final results are shown in
Table X. In the last step, apparently, the conclusion can

TABLE X
THE FINAL SCORE OF EACH PERMUTATION

Permutations F(£γ)(γ = 1, 2, 3, 4, 5, 6) Ranking of alternatives

£1 .0791 A1 ≻ A2 ≻ A3
£2 -.0464 A1 ≻ A3 ≻ A2
£3 .1256 A2 ≻ A1 ≻ A3
£4 -.1256 A2 ≻ A3 ≻ A1
£5 .0464 A3 ≻ A1 ≻ A2
£6 -.0791 A3 ≻ A2 ≻ A1

be drawn from Table X that the optimal permutation is
£3 : A2 ≻ A3 ≻ A1, so the best leading company is
Trina Solar A2 from the results of risk assessment. It is
obvious the proposed Pythagorean fuzzy decision ap-
proach provide business or government with an effective
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way to handle hierarchical MCDM problems ,such as
risk assessment in Pythagorean fuzzy environment.

C. Discussion and Analysis
The ranking of alternatives can be obtained using

the above Pythagorean fuzzy decision approach, so that
the best goal can be selected naturally. As noted, to
determine the weights of main criteria, all sub-criteria
under each main criterion are aggregated in Step 3. In the
decision-making method presented above, the purpose
of this operation is simply to obtain weights of main
criteria, but after this operation, if we aggregate all of the
main criteria to obtain the corresponding Pythagorean
fuzzy representation of each alternative, then the close-
ness index of each alternative can be calculated based
on Eqs. (6) and (19), which can also be considered as
a measure to make decisions. Based on this considera-
tion, the aggregation results of all the main criteria and
corresponding closeness indexes of all the alternatives
are calculated and shown in Table XI, where the rank-
ing of all the alternatives is easy to be obtained that
A2 ≻ A1 ≻ A3 based on the values of closeness indexes.
The decision process of the proposed approach in Section
IV-B for permutation £3 is given in Fig. 9 (a), and the
process using the weighted aggregation method to get
the final closeness index for alternative A2 is shown in
Fig. 9 (b). By comparison, we can find that the weighted
aggregation method mainly provides the weights for
criteria of each layer for the decision approach proposed
in this paper, while the weighted aggregation method
itself can also work as a decision method. Consider the
Case 3 mentioned in section IV-C, when the weights of
criteria are given by the decision-makers, the approach
we proposed can also work independently of the weight-
ed aggregation method, and at this time, they are two
independent decision algorithm. A lot of work has been

TABLE XI
THE RANKING RESULTS BY AGGREGATING ALL THE CRITERIA AND

COMPARING THE CLOSENESS INDEX OF ALTERNATIVES

Alternatives Aggregation results Closeness index Ranking

A1 P(.9544, .2680) 0.8156 2
A2 P(.9733, .2138) 0.8531 1
A3 P(.8960, .3838) 0.7322 3

tried by scholars to deal with MCDM problems under
Pythagorean fuzzy environment. In what follows, we
will compare our approach with some other existing
methods from the aspects of application environment,
type of criteria weights, type of problem, main idea, etc.,
separately. As Table XII shows, the following conclusions
can be easily obtained:

(i) The proposed approach can be applied syn-
chronously in the PFN and IVPFN decision environment,
while other methods can not work except [25], for ex-
ample, method [14] can only be used with PFNs data,
method [28] can only work on IVPFNs data and method
[55] can only act on HPFNs data.
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Fig. 9. The comparison of the decision process between the pro-
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(ii) With regard to the expression and determination of
criterion weights, except for the approach we proposed,
the weights of other methods all come from the decision-
maker, which undoubtedly increases the subjectivity
of decision-making process. Our approach determines
the weights according to the decision matrix, doing so
can effectively weaken the subjective factors of human
decision-making and make the result of decision-making
more accurately.

(iii) The proposed approach and method [25] can ef-
fectively deal with hierarchical MCDM problems, which
can not be done by method [14], [28] and [55]. From the
view of main idea and contribution, our work is more
prominent than other papers, mainly in the following as-
pects: our paper proposed the distance measure between
different PFNs and IVPFNs, and based on this we define
the closeness indexes of PFNs and VIPFNs. In addition,
the weighted aggregation operators of PFNs and IVPFNs
are developed, which ensure the efficient and accurate
implementation of Pythagorean fuzzy decision-making.

VI. EXTENSION OF THE PROPOSED DECISION
APPROACH FOR OTHER UNCERTAIN INFORMATION

In the previous sections, the Pythagorean fuzzy ap-
proach for MCDM problems has been introduced based
on PFNs and IVPFNs expression of decision information.
Consider that the decision matrix may be represent-
ed by other uncertain information, in order to adapt
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TABLE XII
COMPARISON ANALYSIS BETWEEN THE PROPOSED APPROACH AND THE EXISTING METHODS

The method Environment Type of criteria weights Type of problem Main idea

Ma’s method [14] PFNs Crisp numbers MCDM Symmetric Pythagorean Fuzzy
Weighted Geometric Operators

Garg’s method [28] IVPFNs Crisp numbers MCDM
Interval-valued Pythagorean fuzzy

weighted average and weighted geometric
operators & accuracy function

Liang’s method [55] HPFNs Crisp numbers MCDM extension of TOPSIS method
under hesitant Pythagorean fuzzy sets

Zhang’s method [25] PFNs & IVPFNs IVPFNs &
Crisp numbers Hierarchical MCDM Hierarchical QUALIFLEX approach

Our method PFNs & IVPFNs PFNs & IVPFNs Hierarchical MCDM
The closeness index-based score function

& Aggregate operator
& Weighting method

our approach to a broader uncertain environment, the
proposed approach is extended further to handle other
uncertain information, including fuzzy numbers (FNs),
triangular fuzzy numbers (TFNs), intuitionistic fuzzy
numbers (IFNs), hesitation fuzzy numbers (HFNs), in-
terval numbers (INs) and interval valued fuzzy numbers
(IVFNs).

As aforementioned, we define six subsets Cψ(ψ =
1, 2, 3, 4, 5, 6) as the expression of criteria whose assess-
ment information are denoted by FNs, TFNs , IFNs,
HFNs, INs, IVFNs, respectively, which can be denoted
as:

• When Ci(t) ∈ C1, xij(t) = F(µij(t)) will be expressed
by FNs;

• When Ci(t) ∈ C2, xij(t) = T(aL
ij(t), aM

ij(t), aU
ij(t)) will be

expressed by TFNs;
• When Ci(t) ∈ C3, xij(t) = I(µij(t), νij(t)) will be

expressed by IFNs;
• When Ci(t) ∈ C4, xij(t) = H(h1

ij(t), h1
ij(t), ..., h

#xij(t)
ij(t) ) will

be expressed by HFNs;
• When Ci(t) ∈ C5, xij(t) = ã[a−ij(t), a+ij(t)] will be

expressed by INs;
• When Ci(t) ∈ C6, xij(t) = Ĩ([µL

ij(t), µU
ij(t)], [ν

L
ij(t), νU

ij(t)])

will be expressed by IVFNs.

The main reason why the proposed Pythagorean fuzzy
decision approach is effective is that the closeness index-
es of PFNs and IVPFNs are defined, which play a crucial
role in the final ranking of the alternatives. Therefore,
as an extension of the proposed decision approach, we
first define the closeness index of different assessment
information for MCDM problems, and note that all the
expressions of uncertain information are assumed to be
normalized. The closeness indexes of FNs, TFNs, IFNs,
HFNs, INs and IVFNs are defined, separately, as follows:

Definition VI.1. Consider a normalized decision matrix
M = (xij(t))m×n×tj expressed by uncertain information, if
Cj(t) ∈ C1, then xij(t) = F(µij(t)) is a FN, whose closeness
index can be defined as:

ℜ(ij(t)) = µij(t) (40)

Definition VI.2. Consider a normalized decision matrix
M = (xij(t))m×n×tj expressed by uncertain information, if
Cj(t) ∈ C2, then xij(t) = T(aL

ij(t), aM
ij(t), aU

ij(t)) is a TFN, whose
closeness index can be defined as:

ℜ(ij(t)) =

√
1
3 [(aL

ij(t))
2 + (aM

ij(t))
2 + (aU

ij(t))
2]√

1
3
[(aL

ij(t))
2 + (aM

ij(t))
2 + (aU

ij(t))
2]+√

1
3
[(1 − aL

ij(t))
2 + (1 − aM

ij(t))
2 + (1 − aU

ij(t))
2]

(42)

Definition VI.3. Consider a normalized decision matrix
M = (xij(t))m×n×tj expressed by uncertain information, if
Cj(t) ∈ C3, then xij(t) = I(µij(t), νij(t)) is an IFN, whose
closeness index can be defined as:

ℜ(ij(t)) =

√
1
2 [µ

2
ij(t) + (νij(t) − 1)2 + π2

ij(t)]√
1
2
[µ2

ij(t) + (νij(t) − 1)2 + π2
ij(t)]+√

1
2
[(1 − µij(t))

2 + ν2
ij(t) + π2

ij(t)]

(43)

where πij(t) = 1 − µij(t) − νij(t).

Definition VI.4. Consider a normalized decision matrix
M = (xij(t))m×n×tj expressed by uncertain information, if

Cj(t) ∈ C4, then xij(t) = H(h1
ij(t), h1

ij(t), ..., h
#xij(t)
ij(t) ) is a HFN,

whose closeness index can be defined as:

ℜ(ij(t)) =

√
1

#xij(t)
∑

#xij(t)
σ=1 (hσ

ij(t))
2√

1
#xij(t)

∑
#xij(t)
σ=1 (hσ

ij(t))
2 +

√
1

#xij(t)
∑

#xij(t)
σ=1 (1 − hσ

ij(t))
2

(44)
where #xij(t) is the number of the elements in xij(t).

Definition VI.5. Consider a normalized decision matrix
M = (xij(t))m×n×tj expressed by uncertain information, if
Cj(t) ∈ C5, then xij(t) = ã[a−ij(t), a+ij(t)] is an IN, whose
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˘̄h
γ
ξζi(t) = ℜ(xξi(t))−ℜ(xζi(t))

=



µξi(t) − µζi(t), Ci(t) ∈ C1
√

1
3 [(aL

ξi(t))
2+(aM

ξi(t))
2+(aU

ξi(t))
2]√

1
3 [(aL

ξi(t))
2+(aM

ξi(t))
2+(aU

ξi(t))
2]+

√
1
3 [(1−aL

ξi(t))
2+(1−aM

ξi(t))
2+(1−aU

ξi(t))
2]
−√

1
3 [(aL

ζi(t))
2+(aM

ζi(t))
2+(aU

ζi(t))
2]√

1
3 [(aL

ζi(t))
2+(aM

ζi(t))
2+(aU

ζi(t))
2]+

√
1
3 [(1−aL

ζi(t))
2+(1−aM

ζi(t))
2+(1−aU

ζi(t))
2]

 , Ci(t) ∈ C2


√

1
2 [µ

2
ξi(t)+(νξi(t)−1)2+π2

ξi(t)]√
1
2 [µ

2
ξi(t)+(νξi(t)−1)2+π2

ξi(t) ]+
√

1
2 [(1−µξi(t))

2+ν2
ξi(t)+π2

ξi(t)]
−√

1
2 [µ

2
ζi(t)+(νζi(t)−1)2+π2

ζi(t)]√
1
2 [µ

2
ζi(t)+(νζi(t)−1)2+π2

ζi(t) ]+
√

1
2 [(1−µζi(t))

2+ν2
ζi(t)+π2

ζi(t)]

 , Ci(t) ∈ C3



√
1

#xξi(t)
∑

#xξi(t)
σ=1 (hσ

ξi(t))
2√

1
#xξi(t)

∑
#xξi(t)
σ=1 (hσ

ξi(t))
2+

√
1

#xξi(t)
∑

#xξi(t)
σ=1 (1−hσ

ξi(t))
2

−

√
1

#xζi(t)
∑

#xζi(t)
σ=1 (hσ

ζi(t))
2√

1
#xζi(t)

∑
#xζi(t)
σ=1 (hσ

ζi(t))
2+

√
1

#xζi(t)
∑

#xζi(t)
σ=1 (1−hσ

ζi(t))
2


, Ci(t) ∈ C4


√

1
2 ((a−

ξi(t))
2+(a+

ξi(t))
2)√

1
2 ((a−

ξi(t))
2+(a+

ξi(t))
2)+

√
1
2 ((1−a−

ξi(t))
2+(1−a+

ξi(t))
2)
−√

1
2 ((a−

ζi(t))
2+(a+

ζi(t))
2)√

1
2 ((a−

ζi(t))
2+(a+

ζi(t))
2)+

√
1
2 ((1−a−

ζi(t))
2+(1−a+

ζi(t))
2)

 , Ci(t) ∈ C5



√
1
4 [(µ

L
ξi(t))

2+(µU
ξi(t))

2+(1−νL
ξi(t))

2+(1−νU
ξi(t))

2+(πL
ξi(t))

2+(πU
ξi(t))

2]√
1
4
[(µL

ξi(t))
2 + (µU

ξi(t))
2 + (1 − νL

ξi(t))
2 + (1 − νU

ξi(t))
2 + (πL

ξi(t))
2 + (πU

ξi(t))
2]+√

1
4
[(1 − µL

ξi(t))
2 + (1 − µU

ξi(t))
2 + (νL

ξi(t))
2 + (νU

ξi(t))
2 + (πL

ξi(t))
2 + (πU

ξi(t))
2]

−

√
1
4 [(µ

L
ζi(t))

2+(µU
ζi(t))

2+(1−νL
ζi(t))

2+(1−νU
ζi(t))

2+(πL
ζi(t))

2+(πU
ζi(t))

2]√
1
4
[(µL

ζi(t))
2 + (µU

ζi(t))
2 + (1 − νL

ζi(t))
2 + (1 − νU

ζi(t))
2 + (πL

ζi(t))
2 + (πU

ζi(t))
2]+√

1
4
[(1 − µL

ζi(t))
2 + (1 − µU

ζi(t))
2 + (νL

ζi(t))
2 + (νU

ζi(t))
2 + (πL

ζi(t))
2 + (πU

ζi(t))
2]


, Ci(t) ∈ C6

(41)

closeness index can be defined as:

ℜ(ij(t)) =

√
1
2 ((a−ij(t))

2 + (a+ij(t))
2)√

1
2
((a−ij(t))

2 + (a+ij(t))
2)+√

1
2
((1 − a−ij(t))

2 + (1 − a+ij(t))
2)

(45)

Definition VI.6. Consider a normalized decision matrix
M = (xij(t))m×n×tj expressed by uncertain information, if
Cj(t) ∈ C6, then xij(t) = Ĩ([µL

ij(t), µU
ij(t)], [ν

L
ij(t), νU

ij(t)]) is an
IVFN, whose closeness index can be defined as:

ℜ(ij(t)) =√
1
4 [(µ

L
ij(t))

2 + (µU
ij(t))

2 + (1 − νL
ij(t))

2 + (1 − νU
ij(t))

2 + (πL
ij(t))

2 + (πU
ij(t))

2]√
1
4
[(µL

ij(t))
2 + (µU

ij(t))
2 + (1 − νL

ij(t))
2 + (1 − νU

ij(t))
2 + (πL

ij(t))
2 + (πU

ij(t))
2]+√

1
4
[(1 − µL

ij(t))
2 + (1 − µU

ij(t))
2 + (νL

ij(t))
2 + (νU

ij(t))
2 + (πL

ij(t))
2 + (πU

ij(t))
2]

(46)

where πL
ij(t) =

√
1 − (µL

ij(t))
2 − (νL

ij(t))
2 and πU

ij(t) =√
1 − (µU

ij(t))
2 − (νU

ij(t))
2.

It is noted that the distance measures used in Defini-
tion VI.1-VI.6 are normalized Euclidean distance.

There will be m! possible ranking results for m al-
ternatives in MCDM problems to be dealt with. The
concordance/discordance index ˇ̄h

γ
ξζ j(t) for a couple of

alternatives (Aξ , Aζ) of γth permutation under tth sub-
criterion of ith main criterion can be denoted as Eq. (41).

According to the aforementioned analyses, as the ra-
tionality of the permutation £γ of tth sub-criterion under
ith main criterion, the score function F(£γi(t)) (C ∈ Cψ,
ψ = 1, 2, 3, 4, 5, 6) can be summarize as:

F(£γi(t)) =


F(£γi(t)) = F(£γi(t)) + | ˘̄hγ

ξζi(t)|, ˘̄h
γ
ξζi(t) > 0

F(£γi(t)), ˘̄h
γ
ξζ = 0

F(£γi(t)) = F(£γi(t))− | ˘̄hγ
ξζi(t)|, ˘̄h

γ
ξζi(t) < 0

(47)
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When the score function F(£γi(t)) is obtained, the other
decision processes are similar to the Section IV-B, and
the specific details are omitted here.

As noted, the weights of criteria in above MCDM
problems may be derived from decision makers, or
determined using a method similar to the one in Section
IV-B. In addition, the weights may be expressed in crisp
numbers or in the same form as assessment information,
and of course, they can also be represented in a mixed
way. Because this is beyond the scope of this paper, there
is not too much illustration here.

VII. CONCLUSION AND FURTHER STUDY

In this paper, we proposed a novel approach for hi-
erarchical multi-criteria decision-making problems from
Pythagorean fuzzy perspective. Within the framework of
hierarchical MCDM approach, the distance measures are
initially defined for PFNs and IVPFNs and some basic
theorems are developed and proved to satisfy the cor-
responding axioms. Based on the defined distance mea-
sures, the closeness indexes are presented for PFNs and
IVPFNs as the measure of their magnitude motivated by
TOPSIS idea. Afterward, the score function is defined to
calculate the score, denoted as the rationality, of each
permutation for the optimal objective. With respect to
criterion weights, taking into account the weights given
by decision makers in advance would increase the uncer-
tainty of the decision process, a novel weight determina-
tion method is presented, which employs Pythagorean
fuzzy data from decision matrix. Furthermore, in the
process of dealing with hierarchical MCDM problem, the
fusion of different criteria would be conducted to obtain
the upper level goal, so the new weighted aggregation
operators, called PFWA and IVPFWA are developed for
PFNs and IVPFNs, respectively. And finally, the optimal
permutation will be determined as the one with the
highest score according to the score function. In order
to demonstrate the effectiveness and superiority of the
proposed decision approach, an experiment about risk
assessment is conducted under Pythagorean fuzzy en-
vironment. As illustrated in Section II, the novel dis-
tance measure is superior to other existing methods,
which determines that the developed closeness index
is better than others, which undoubtedly can increase
the accuracy of the decision results. In addition, the
new presented criterion weight determination method
can reduce human’s subjectivity to a certain extent and
also laid the foundation for the reliability of decision
making. The final extension of the proposed decision
approach for heterogeneous information also provides a
reference for its further application in other fields, which
greatly enriches its flexibility and extensibility. What’s
more, as depicted in the comparison analysis of Section
V-C, the proposed approach have different degrees of
advantage over other methods in several aspects, such
as the usage environment, the type of criterion weights
and the problems that can be solved.

Admittedly, there still remain some issues to be ad-
dressed in future research, in what follows we summary
several noticeable aspects. First, the number of per-
mutations increases tremendously with the number of
alternatives, which specifically means that m alternatives
correspond to m! permutations, this will increase the
computational complexity of the decision approach; Sec-
ond, the presented aggregation operators for PFNs and
IVPFNs does not preserve the property that the mem-
bership value in the aggregated result is between all the
source Pythagorean fuzzy representation. For example,
assume two PFNs: P1 = (0.5, 0.1) and P2 = (0.6, 0.2), the
result can be denoted as P1

⊕
P2 = (0.7138, 0.1863) using

the proposed aggregation operator for PFNs. Obviously
0.7138 > 0.5 and 0.7138 > 0.6, it can be seen that the
belief of the aggregated PFNs moves closer to a certain
element, which may also be seen as a breakthrough,
because it can help decision makers employ multi-source
information better; Third, the BUM function is needed
based on the aforementioned conversion method from
the continuous IVPFNs to PFNs, but there is no spe-
cific discussion on how to determine this function in
this paper, which may effect the final decision results.
Although there are some drawbacks at present, the
proposed Pythagorean fuzzy decision approach is still
an useful tool for hierarchical MCDM problem.

In future studies, the issues in the current version
listed above will be improved firstly, mainly including
the reduction of the approach’s computational complex-
ity, the further explanation of the aggregation operators’
properties, and the sensitivity analysis of the BUM func-
tion. Another significant topic is to explore the relation-
ship between these two methods, which are mentioned
and discussed in Section V-C. As it describes, in addition
to the decision approach proposed in this paper, the
weighted aggregation method itself can also work as
a decision method, and the decision results based on
these two methods for the case of risk assessment are
consistent, then whether this is a coincidence, or there is
a certain quantitative relationship between them, which
will be further studied in the following work. Addition-
ally, in future research, the decision-making ideas of this
paper will be extended to solve more MCDM problems
in Pythagorean fuzzy linguistic environment and type-2
Pythagorean fuzzy environment.
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