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Abstract

Ivan Niven’s proof of the irrationality of � is often cited because it is

brief and uses only calculus. However it is not well motivated. Using the

concept that a quadratic function with the same symmetric properties as sine

should when multiplied by sine and integrated obey upper and lower bounds

for the integral, a contradiction is generated for rational candidate values of

� . This simplifying concept yields a more motivated proof of the irrational-

ity of � and �2.

Charles Hermite proved that e is transcendental in 1873 using a polynomial

that is the sum of derivatives of another polynomial [8]. Ivan Niven in 1947 found

a way to use Hermite’s technique to prove that � is irrational [12]. Lambert in

1767 had proven this result in a twelve-page article using continued fractions [10].

Niven’s half-page proof, using only algebra and calculus, is frequently cited and

sometimes reproduced in textbooks [14]. Although his proof is brief and uses

ostensibly simple mathematics, it begins by defining functions as in the technique

of Hermite without any motivation. In this article a simplifying concept is used

that provides a more motivated and straightforward proof than Niven’s. Using this

concept, we, as it were, discover that � might be irrational and then confirm that

it is with a proof.

1 A MOTIVATED APPROACH.

We seek to combine a known falsity with a known truth and then to derive a

contradiction from the combination. If � is assumed to be rational, � D p=q
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with p and q natural numbers, then the maximum of sin x occurs at p=.2q/. The

quadratic �qx2 C px D x.p � qx/ will have its maximum at the same point, as

will the product of the two functions. If we have a blender that allows inferences

from this statement we might be able to derive a contradiction.

Such a blender exists in a definite integral. A definite integral allows for eval-

uations that might contradict upper or lower bounds. We have

0 <

Z p=q

0

x.p � qx/ sin x dx �
p2

4q
�

p

q
D

p3

4q2
; (1)

where the lower bound holds as the integrand is always positive,1 and the upper

bound is formed from the length of the interval of integration multiplied by the

maximum value of the integrand [16, Property 8, p. 389].

For a polynomial f .x/, repeated integration by parts2 gives the indefinite in-

tegral pattern

Z

f .x/ sin x dx D f .x/ cos x � f 0.x/ sin x C f 00.x/ cos x � f 000.x/ sin x � : : : :

For the function f .x/ D x.p � qx/, as f .k/.x/ D 0 for k � 3, we have

Z p=q

0

f .x/ sin x dx D ff .x/ cos x � f 0.x/ sin x C f 00.x/ cos xg
ˇ

ˇ

ˇ

p=q

0

and the odd term drops out (sin p=q D sin 0 D 0) leaving an alternating sum of

even derivatives of f .x/ evaluated at the endpoints:

Z p=q

0

f .x/ sin x dx D f .p=q/ C f .0/ � f 00.p=q/ � f 00.0/: (2)

The sum is 4q. Combining (1) and (2), we have

0 < 4q �
p3

4q2
: (3)

1To see that the inequality is strict, consider:

Z p=.4q/

0

x.p � qx/ sin x dx C

Z 3p=.4q/

p=.4q/

x.p � qx/ sin x dx C

Z p=q

3p=.4q/

x.p � qx/ sin x dx:

2Tabular integration by parts (see [11, p. 532], [5] and Appendix A) is especially suited for

integrals of the type given in (1).
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2 DISCOVERING � IS IRRATIONAL.

2.1 Candidate � Values.

The inequalities in (3) show � does not equal 1 or 2. For � D 7=2, this n D 1

case of the general polynomial xn.p � qx/n does not give a contradiction. We

will try the n D 2 case and see if it works for this rational. This is possible as the

same reasoning about x.p�qx/ applies to xn.p�qx/n; it is symmetric like sin x

on Œ0; p=q� and xn.p � qx/n sin x when integrated in that interval should have a

value consistent with the integral’s upper and lower bounds.

2.2 The n D 2 Case.

With f .x/ D x2.p � qx/2, repeated integration by parts gives
Z p=q

0

f .x/ sin x dx D f .0/.p=q; 0/ � f .2/.p=q; 0/ C f .4/.p=q; 0/; (4)

where f .k/.p=q; 0/ D f .k/.p=q/ C f .k/.0/. Multiplying out f .x/, we have

f .x/ D x2.p � qx/2 D q2x4 � 2pqx3 C p2x2:

Derivatives for this function are easily computed. The values of these derivatives

at the endpoints 0 and p=q are given in 1. Using Table 1, with the same logic used

k f .k/.0/ f .k/.p=q/

0 0 0

1 0 0

2 2Š � p2 2Š � p2

3 �4Š � pq 4Š � pq

4 4Š � q2 4Š � q2

Table 1: Derivatives of x2.p � qx/2.

for the inequalities in (3), we form the inequality

0 < �4p2 C 48q2 �
p

q

�

p2

4q

�2

and letting p D 7 and q D 2, we get �4p2 C 48q2 D �4, a contradiction of the

lower bound.
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2.3 The n D 3, 4 Cases.

Similar calculations can be carried out for the n D 3 and n D 4 cases. The

inequalities for each are

0 < �144p2q C 1440q3 �
p

q

�

p2

4q

�3

(5)

and

0 < 48p4 � 8640p2q2 C 80640q4 �
p

q

�

p2

4q

�4

; (6)

respectively.3

For the n D 3 case, when p=q equals 3=1, 13=4, 16=5, and 19=6 the upper or

lower bound of (5) is contradicted. We discover that 22=7 is not � using (6), the

n D 4 case.

3 PROVING � IS IRRATIONAL.

3.1 The General Case.

Referring to Table 1, it is likely that f .x/ D xn.p � qx/n will be such that the

alternating sum of its even derivatives evaluated at the endpoints 0 and p=q will

be divisible by nŠ. If the integral in

0 <

Z p=q

0

xn.p � qx/n sin x dx �
p

q

�

p2

4q

�n

< p2nC1 (7)

is divisible by nŠ then the upper bound on (7) can be used to prove � is irrational.

This follows as the integral is increasing with n factorially, but the upper bound

has polynomial growth. We know factorial growth exceeds polynomial – see [16,

Equation 10, p. 764]; [3, Example 2, p. 86] gives a direct proof of this result.

3Leibniz’s formula [1, Problem 4, p. 222] gives a means of calculating nth derivatives of a

product of two functions. In the case of the product of two polynomials, all derivatives can be

calculated by placing the derivative of one polynomial along the top row of a table, the derivatives

of the other polynomial along the left column, and forming a Pascal’s triangle in the interior table.

After forming products of these row and column entries with the binomial coefficients of Pascal’s

triangle, all derivatives are given by sums along interior diagonals, SW to NE, of the table. See

Appendix B for details.
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3.2 Proving the General Case.

The lower and upper bounds of (7) follow from the properties of the integrand.

Repeated integration by parts establishes that

Z p=q

0

xn.p � qx/n sin x dx D

n
X

kD0

.�1/kf .2k/.p=q; 0/: (8)

Consequently, we need only prove that the right-hand side of (8) is divisible by

nŠ.

First, symmetry of f .x/ allows us to consider only the left endpoint in this

sum. This follows as the equation f .x/ D f .p=q � x/, differentiated repeat-

edly, gives f 0.x/ D �f 0.p=q � x/, f 00.x/ D f 00.p=q � x/, and, by induction,

f .k/.x/ D .�1/kf .k/.p=q � x/. So f .k/.0/ D .�1/kf .k/.p=q/. For the even

derivatives, with which we are concerned, we have f .2k/.0/ D f .2k/.p=q/.

Next, f .x/ when expanded will have the form anx2n C� � �Ca0xn. For k < n,

f .k/.0/ D 0, and for k � n, f .k/.0/ is divisible by kŠ and therefore nŠ. We have

established that the sum in (8) is divisible by nŠ and that � must be irrational.

4 CONCLUSION.

Niven gives two proofs of the irrationality of � . One has been cited in the intro-

duction. The other occurs in his book on irrational numbers [13]; there he shows

the irrationality of �2. We will re-examine these proofs.4

Looking at Hermite’s transcendence of e proof [7, p. 152], one sees definitions

of two functions f .x/ and F.x/ with the derivatives of f .x/ being used in the

definition of F.x/. An integral is then used with the integrand having e�x in it. In

Niven’s � and �2 proofs he defines one function as the sum of the derivatives of

the other, as Hermite does. The manipulations Niven performs are to obtain forms

like Hermite’s. In both articles the integral of one function equals an expression

involving the other. To someone un-steeped in Hermite’s technique the motivation

for the proof must be unclear.

In this note a concept motivates the introduction of the polynomial Niven de-

fines. The concept is that if � is rational then the evaluation of a definite integral

comprised of the product of two functions symmetric about x D �=2 should be

consistent with bounds for the integral. This being shown not to be the case, a

4See Appendix C for a more detailed analysis of Niven’s proofs.
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contradiction occurs and � is proven irrational. The graphs of sin x, x.p � qx/,

and their product give the concept – visually.

The same logic used for � can be applied to �2. Assume �2 D a=b. We have

0 <

Z a=b

0

xn.a � bx/n sin
x

p

a=b
dx �

a

b

�

a2

4b

�n

; (9)

with the same reasoning as before: the integrand by assumption is a symmetric

function with its maximum at x D a=.2b/. The integral, using repeated integra-

tion by parts, evaluates to

n
X

kD0

.�1/k.
p

a=b/2kC1.f .2k/.a=b/ C f .2k/.0//;

where f .x/ D xn.a � bx/n. With some factoring, this sum is

�

bn

n
X

kD0

.�1/kbn�kak.f .2k/.a=b/ C f .2k/.0//:

With a multiplication by bn=� to clear �=bn from this sum, we have

0 <
bn

�

Z a=b

0

xn.a � bx/n sin
x

p

a=b
dx D nŠRn �

bn

�

a

b

�

a2

4b

�n

< a3nC1;

which gives a contradiction.

Note: reproductions of older articles by Hermite [8] and others can be found

in [2].
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A Tabular Integration

Tabular integration is based on integration by parts. Integration by parts is, in turn, based

on the product rule. Consider

.uv/0 D u0v C uv0

implies that
Z

.uv/0 D

Z

u0v C

Z

uv0

and so
Z

uv0 D uv �

Z

u0v: (10)

Using placement as an organizing principal, (10) translates into

Z

Œ1�Œ2� D Œsame�Œup� �

Z

Œdown�Œup�; (11)

where Œdown� means a derivative is taken and Œup� an integral. We now start with the

integral on the right of (11) and apply the pattern again:

Z

Œdown�Œup� D Œdown�Œupup� �

Z

Œdowndown�Œupup�

to get

Z

Œ1�Œ2� D Œsame�Œup� � .Œdown�Œupup� �

Z

Œdowndown�Œupup�/:

Using exponential notation in an obvious way, the formula for repeated integration by

parts is
Z

Œ1�Œ2� D su � du2 C d2u3 � d3u4 C � � � C .�1/n

Z

dnun: (12)

For polynomials that only have a finite number of non-zero derivatives eventually, if d is

the polynomial all zero terms will be reached. Also, a table is suggested as it is generally

easy to repeat taking progressive derivatives and integrals – just use the one above for

guidance. Table 2 gives the paradigm and Table 3 gives an easy first example: x sin x.

Reading the non-zero rows, we arrive at
R

x sin x D �x cos x C sin x and, taking deriva-

tives of the right-hand side, we confirm that it is correct.

A table to evaluate the definite integral in (8) is given in Table 4.
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d=dx
R

Œ2�

C Œ1�

Table 2: Paradigm for tabular integration.

d=dx
R

sin x

C x � cos x su

� 1 � sin x �du2

C 0 cos x d2u3

Table 3: Tabular integration shows
R

x sin x D �x cos x C sin x.

d=dx
R

ˇ

ˇ

�

0

P

sin x

C f .x/ � cos x � cos �f .�/ � .� cos 0/f .0/ f .�/ C f .0/

� f 0.x/ � sin x 0 0

C f 00.x/ cos x cos �f .�/ � cos 0f .0/ �f 00.�/ � f 00.0/

� f .3/.x/ sin x 0 0

C f .4/.x/ � cos x � cos �f .4/.�/ � .� cos 0/f .4/.0/ f .4/.�/ C f .4/.0/
:::

:::
:::

:::
:::

Table 4: Tabular integration used to derive (8).

B Leibniz Tables

Leibniz tables are an application of Leibniz’s formula. Here is Leibniz’s formula:

.f � g/.n/ D

n
X

kD0

 

n

k

!

f .n�k/g.k/:

This formula should immediately strike one as similar to the binomial theorem, also a

formula:

.a C b/n D

n
X

kD0

 

n

k

!

a.n�k/b.k/:
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Both formulas are proved using essentially the same induction argument.

Pascal’s triangle is a computing device used to find the binomial coefficients that occur

in both formulas. Strangely, no one, before now, has thought of making a similar device

for finding derivatives of all orders for products of two functions. Table 5 gives the idea.

A B C D E F G

1 f f 0 f 00 f .3/ f .4/ : : :

2 g 1 1 1 1 1 : : :

3 g0 1 2 3 4 5 : : :

4 g00 1 3 6 10 15 : : :

5 g.3/ 1 4 10 20 35 : : :

6 g.4/ 1 5 15 35 70 : : :

7
:::

:::
:::

:::
:::

:::
: : :

Table 5: A Leibniz table for general functions f and g.

We can quickly find the value of the right hand side of (4). In Table 6, we have used

f .x/ D x2 and g.x/ D .p � qx/2 in a Leibniz table. Tables 7 and 8 evaluate this table

at x D 0 and x D p=q, respectively. The tables show f .0/.p=q; 0/ � f .2/.p=q; 0/ C

f .4/.p=q; 0/ D �4p2 C 48q2. With a little practice it is unnecessary to make separate

tables for evaluation purposes.

x2 2x 2Š

.p � qx/2 1,0 1, 1 1,2

2.p � qx/.�q/ 1, 1 2,2 3,3

2q2 1,2 3,3 6,4

Table 6: Leibniz table for x2.p � qx/2 with binomial coefficients and order of

derivatives: .coeff icient; order/.

Tables 9 and 11 confirm the results referenced in (5) and (6), respectively. The ta-

bles allow for efficient calculations: one can read which left and top entries yield 0 at

x D 0 and x D p=q. Also, only even derivatives need be calculated. In both cases the

calculations are easily done with a calculator. One can of course implement Table 9 in a

spreadsheet and then enter x values and have the spreadsheet crunch away.

To verify that the candidate rationals contradict these n D 3 and n D 4 cases, use a

spreadsheet.
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0 0 2

.p/2 0 0 2p2

2.p/.�q/ 0 0 �12pq

2q2 0 0 24q2

Table 7: Leibniz table for x2.p � qx/2 evaluated at x D 0.

.p=q/2 2.p=q/ 2Š

0 0 0 0

0 0 0 0

2q2 2p2 12pq 24q2

Table 8: Leibniz table for x2.p � qx/2 evaluated at x D p=q.

x3 3x2 3Šx 3Š

.p � qx/3 1 1 1 1

3.p � qx/2.�q/ 1 2 3 4

3Š.p � qx/.�q/2 1 3 6 10

�3Šq3 1 4 10 20

Table 9: Leibniz table for x3.p � qx/3. Only the circled entries need to be evalu-

ated.

x4 4x3 12x2 4Šx 4Š

.p � qx/4 1 1 1 1 1

4.p � qx/3.�q/ 1 2 3 4 5

12.p � qx/2.�q/2 1 3 6 10 15

4Š.p � qx/.�q/3 1 4 10 20 35

4Šq4 1 5 15 35 70

Table 10: Leibniz table for x4.p � qx/4. Only the circled entries need to be

evaluated.
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Leibniz tables can also be used for theoretical calculations. In Section 3.2 we proved

a result about an integral we can observe in a Leibniz table. As the integral in that section

is strictly positive for all n, we can conclude, with the help of Table 11, that the integral

is a multiple of nŠ.

xn nxn�1 : : : nŠx nŠ

.p � qx/n

n.p � qx/n�1.�q/
:::

nŠ.p � qx/.�q/n�1

nŠqn

Table 11: Leibniz table for xn.p � qx/n. Only the nŠ factors are relevant.

C Analysis of Niven’s proofs

Arguably, the proofs given in this article are even shorter than Niven’s famously short

� is irrational proof of 1946. Here goes. Assume � D p=q. Evaluating with tabular

integration the integral in

0 <

Z p=q

0

xn.p � qx/n sin x dx �
p

q

�

p2

4q

�n

< p2nC1

gives, via a Leibniz table evaluation, a contradiction of the upper bound. Most of the

work is done for a proof of �2’s irrationality. Assume �2 D a=b. Evaluating with tabular

integration the integral in

0 <

Z a=b

0

xn.a � bx/n sin
x

p

a=b
dx �

a

b

�

a2

4b

�n

gives, via a Leibniz table evaluation, a contradiction of the upper bound. Note: the de-

nominator in the argument of sin in the integral just makes it shaped like xn.a � bx/n

with the right zero values.

Niven effectively defines with a function what his (and our) integral evaluates to [2].

Why not just start with the integral?

The whole point of the math is to get F.x/, large factorial growth, to be expressed

with f .x/, small polynomial growth. In Hermite’s original transcendence proof for e,

and subsequent variations of it, the mean value theorem is used for this trick. Consider
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that the derivative of e�xF.x/ is �e�xF.x/ C e�xF 0.x/ D �e�x.F .x/ � F 0.x//. As

F.x/�F 0.x/ D f .x/, this reduction is accomplished: .f .x/Cf 0.x/C : : : /� .f 0.x/C

: : : / telescopes to f .x/. Niven almost accomplishes this same feat with

d

dx
F.x/ sin x D F 0.x/ sin x C F.x/ cos x;

but not quite. We need the difference of F.x/ � F 0.x/, so let’s try

d

dx

�

F 0.x/ sin x � F.x/ cos x
�

:

And this equals .F 00.x/ C F.x// sin x and if we define our F function as the alternat-

ing sum of even derivatives, this reduces to f .x/ sin x. We also have an easy time of

integration, as we are starting with a derivative.
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