ARTICLE 12 RELATION OF RIQUELME DE GOZY: LAN LINEALITY WITH ENERGY OF EXCITED STATES Javier Silvestre <u>www.eeatom.blogspot.com</u>

ABSTRACT

This is 12th article of 24 dedicated to atomic model based on Victoria equation (Articles index is at end). Excited state energy is attracted towards Torrebotana Central Line [1] and this attraction is accentuated as n and 1 are increased. LAN allows Serelles Secondary Lines creation depending on non-excited and excited states. LAN vs. n curve shows soft plain that leads to straight line equation in excited state energy function. Relation of Riquelme de Gozy is this line equation and now, Li detailed study of $1s^22s \rightarrow 1s^2ns$ is extended to this jump in other atoms and other jump types.

Initially, P50 Initial LAN value in jump from ns to ns is utilized with "Xorrador Approximation" that enables correct first estimate of excited state energies.

KEYWORDS

Tete-Vic equation. Torrebotana Central Line, Serelles Secondary Line, LAN plain, Relation of Riquelme de Gozy, z_{CT} (Zon Equation).

INTRODUCTION

Continuing with P49 LAN plain: Jump in Serelles Secondary Line, LAN linearity with destiny energy is corroborated with different atoms and jumps. This linearity is called Relation of Riquelme de Gozy and can be obtained with E_k (jump reference value [3]) or E_{dR} (destiny energy [3]) with equivalente results to being related by IE (Ionization Energy) although slope sign or Y-intercept are different. Abbreviations Table is at end article. As in [2], Relation of Riquelme de Gozy is calculated with E_{dR} and linearity is checked with 3 points even though linearity equation only requires 2: First three points are selected to see if linearity condition is reached. First three points are:

a) ns→ns
b) Other jumps
b) Other jumps
b) Other jumps
b) Other jumps
c) First three jumps
c) First three jumps

Lithium study in $1s^22s \rightarrow 1s^2ns$ (Term= ²S and J=1/2) jump is followed with identical steps taken and therefore not explained in such detailed way. $1s^22s \rightarrow 1s^2ns$ (Term= ²S and J=1/2) jump is ns \rightarrow ns jump and consequently in a) group of previous situation with special LAN(P50) importance [2]. LAN general equation and LAN(P50) particular case are given in (1) and (2) respectively [2]:

(1) - LAN
$$\approx -LAN_{R} = \left(\frac{z_{s}^{2}E_{o}}{z_{o}^{2}E_{dR}}\right)^{1/2} - n = \left(\frac{z_{s}^{2}E_{o}}{z_{o}^{2}(E_{K} + IE)}\right)^{1/2} - n$$

(2) - LAN(P50) = -LAN_{ns → ns} =
$$\frac{(-E_o)^{1/2} z_s}{(-IE)^{1/2} z_o} - n_{\text{initial}}$$

LAN(P50) is calculated for lower Z atoms with $2s \rightarrow ns$ jump in **Table 1** (Z=[3,13]). LAN is added to n and lacks unit, although Lanito is assigned and for example International System prefixes to name submultiples can be used in situation with low LAN. Millilanito (mLanito) is also shown in Table 1. Anyway, Lanito is unit used if submultiple is not indicated.

Table	Table 1 - LAN(P50) in $2s \rightarrow ns$ (Lanitos and mLanitos)					
Symbol	LAN(P50) (n=2)	LAN(P50) (n=2)				
	(Lanitos)	(mLanitos)				
Li	0,41144445	411,44445				
Be	0,27118299	271,18299				
В	0,20303233	203,03233				
С	0,16242214	162,42214				
Ν	0,13542253	135,42253				
0	0,11615164	116,15164				
F	0,10171511	101,71511				
Ne	0,09048397	90,48397				
Na	0,08151353	81,51353				
Mg	0,07419118	74,19118				
Al	0,06806405	68,06405				

1) Xorrador Approximation with first LAN value

Xorrador Approximation with First LAN value is an interesting tool because, even without knowing how varies with excited electron energy, can be used as constant for every excited state because P49 LAN plain stipulates low variation with energy. This first value is LAN(P50) for non-excited state in ns to ns jump (2) and first excited state for other jumps. For this fact, tool is still more surprising for ns—ns because estimation can be done for every ns with Ionization Energy and, therefore, without knowing any excited state energy.

Jump Energy and Destiny Energy deduced with Xorrador Approximation carry suffix A to mark that are approximate values and are connected with IE (3). Expression for reference data is analogous with E_k and E_{dR} as seen in introduction, [1] and [2] (4).

(3) $E_{dA}=E_{JA}+IE$

(4) $E_{dR} = E_k + IE$

Approximated destiny energy (E_{dA}) (5) has almost identical equation to E_{dS} (where S is Serelles) [2], but assuming license to consider constant LAN(P50) and valid for all excited state energy (6).

$$(5)E_{dA} = E_{JA} + IE = \frac{z_{s}^{2}E_{o}}{z_{o}^{2}(n - LAN(P50))^{2}}$$

$$(6) - LAN_{A} = constant = -LAN(P50) = \left(\frac{z_{s}^{2}E_{o}}{z_{o}^{2}E_{dA}}\right)^{1/2} - n = \left(\frac{z_{s}^{2}E_{o}}{z_{o}^{2}(E_{JA} + IE)}\right)^{1/2} - n$$

Table 2 contains necessary Neon data for LAN(P50) calculation (2):

 E_o is ionization energy of origin electronic system (OES IE) in all atom: 1s electron [4] IE is ionization energy for electron to be excited: born electronic system or BES [4] z_s and z_o are Start charge and 1s origin charge respectively according to P46 [1] LAN(P50) is Initial LAN value in ns \rightarrow ns jump when electron is non-excited. [2]

Table 2 - Ne $1s^22s \rightarrow 1s^2ns$ (Term= ² S J=1/2): data for LAN(P50) (2)					
E _o (eV) [4]	IE 2s (eV) [4]	Z_S	Zo	LAN(P50) (lanito)	
-1362,1991	-239,0969	8	10	0,09048397	

Comparison between E_{dA} provided by (5) and E_k (jump reference value [3]) is summarized in the **Table 3**:

n is excited state principal quantum number

 E_{dA} is approximated destiny energy (5)

 $E_{JA}\xspace$ is approximated jump energy and is related with $E_{dA}\xspace$ and IE by (3)

 E_k is jump reference value [3] and is related with E_{dR} and IE by (4)

AC is Actual Change (7)

% RC (Jump) is Relative Change based on jump energies (8)

 $\%\,RC$ (Destiny) is Relative Change based on destiny energies (9)

(7) Actual Change =
$$AC = \Delta = E_{JA} - E_k$$

(8)%RC(Jum p) =
$$\frac{(E_{JA} - E_{K})}{/E_{K}/} * 100$$

(9)% RC(Destiny) =
$$\frac{(E_{dA} - E_{dR})}{/E_{dR}/} * 100$$

	Table 3 - Ne $1s^22s \rightarrow 1s^2ns$ (Term= ² S J=1/2): Comparison between E_{JA} and E_k						
n	$E_{dA} (eV) (5)$	$E_{JA}\left(eV ight) \left(3 ight)$	E_k (eV) [3]	AC (eV) (7)	%RC (Jump)(8)	%RC (Destiny)(9)	
3	-102,986205	136,1106951	136,36848	0,2577849	0,19%	-0,25%	
4	-57,0393498	182,0575502	182,2092	0,15164984	0,08%	-0,27%	
5	-36,1695577	202,9273423	203,0192	0,09185772	0,05%	-0,25%	
6	-24,9641471	214,1327529	214,1925	0,0597471	0,03%	-0,24%	
7	-18,2610315	220,8358685	220,8772	0,0413315	0,02%	-0,23%	
8	-13,9354418	225,1614582	225,1915	0,0300418	0,01%	-0,22%	
9	-10,9827813	228,1141187	228,13675	0,02263131	0,01%	-0,21%	
10	-8,8780109	230,2188891	230,2365	0,0176109	0,01%	-0,20%	

Xorrador supplies good approximation between E_{JA} and E_k and better than provided by Torrebotana Central Line jump energy (E_J) where, for example in $1s^23s$ jump, $E_J\approx142,23$ eV which is farthest from $E_k=136,36848$ eV than Xorrador approximate value $E_{JA}=136,1106951$ eV. Therefore, Xorrador is good tool to have an impression closer to $2s \rightarrow ns$ Serelles Secondary Line and to destiny energy in that jump than Torrebotana Central Line.

Ne $1s^22s \rightarrow 1s^2ns$ (Term=²S J=1/2) has low LAN(P50) and close to 0 (LAN(P50)= 0,41144445 Lanitos) (Table 1). For a given jump (in this case ns \rightarrow ns (Term=²S J=1/2)), LAN increases generally when (10):

(10)
$$n\uparrow z_s \downarrow \rightarrow LAN \uparrow$$

Elevated LAN(P50) is sought to study situation antagonistic to that commented with Ne and its low LAN(P50). Example selected is Cesium which has larger n (n=6 for Cs vs. n=2 for Li) and smallest possible z_s (z_s =1). **Table 4** and **Table 5** are included in the same way as views for Neon. Xorrador is somewhat more removed from reference value that in Neon case because when LAN is increased has greater slope or variation of its value with energy and, therefore, implying that constant LAN(P50) use for all excited state (5) is worse approximation. Another notable fact is that deviation between Xorrador Approximation and reference data is practically constant for all jump:

 $(\% RC \text{ (Destiny)})_{\text{NEON}} \approx -0.2\%$ $(\% RC \text{ (Destiny)})_{\text{CESIUM}} \approx -5\%$

On the other hand, positive effect especially visible in first excited states carried out by Xorrador (E_{dA} and E_{JA}) of approach to reference data (E_{dR} and E_k) from indicated by Torrebotana Central Line jump energy (E_J and E_d) is more notorious when LAN(P50) is elevated (**Figure 1** and **Figure 2**).

Table 4 - Cs 6s \rightarrow ns (Term= ² S J=1/2): data for LAN(P50) (2)						
E _o (eV) [4]	IE 2s (eV) [4]	Z_S	Zo	LAN(P50) (lanito)		
-42912,99	-3,893905548	1	55	4,0912942		

	Table 5 – Cs 6s \rightarrow ns (Term= ² S J=1/2): Comparison between E _{JA} and E _k						
n	$E_{dA} (eV) (5)$	E _{JA} (eV) (3)	E _k (eV) [3]	AC (eV) (7)	%RC (Jump)(8)	%RC (Destiny)(9)	
7	-1,67673259	2,217172962	2,29811264	0,08093968	3,52%	-4,83%	
8	-0,92853319	2,965372359	3,014942251	0,04956989	1,64%	-5,34%	
9	-0,58874793	3,305157622	3,33649692	0,0313393	0,94%	-5,32%	
10	-0,40632979	3,487575758	3,50878114	0,02120538	0,60%	-5,22%	
11	-0,2972145	3,596691044	3,611874168	0,01518312	0,42%	-5,11%	

2) Relation of Riquelme de Gozy

2.1) 2s \rightarrow ns jump (Term=²S J=1/2)

P49 LAN plain: Jump in Serelles Secondary Line proposes Relation of Riquelme de Gozy that is linear tendency of LAN vs. electron energy or jump energy. This Relation is complemented for ns \rightarrow ns jumps with P50 Initial LAN value in jump from ns to ns, as Lithium example is carefully studied [2].

Line equation of Relation of Riquelme de Gozy (11) for $2s \rightarrow ns$ jump (Term=²S J=1/2) from Li to Ne is included in **Table 6**. Riquelme de Gozy equation (11) can be obtained with only two points, initial state and first excited state, because LAN_R and LAN(P50) are known by (1) and (2). Table 6 employs three states (initial state and first two excited states) to demonstrate optimum linearity between them.

$(11)LAN_{R} = a + b/E_{dR}/$

Table 6 - Relation of Riquelme de Gozy in Serelles Secundary line $2s \rightarrow ns$ (Term= ${}^{2}S$ and J=1/2) with first three data						
Symbol	a (lanito)	b (mililanito/eV)	\mathbb{R}^2			
Li	0,399193	2,272	1,000000			
Be	0,259453	0,644	0,999992			
В	0,192674	0,273	0,999999			
С	0,153208	0,143	0,999973			
Ν	0,127159	0,0845	0,999879			
0	0,108596	0,0548	0,999730			
F	0,094728	0,0378	0,999559			
Ne	0,0837893	0,0282	0,997324			

Linear regression has excellent R^2 value which, although moves slightly from 1 as z_s increases, still has R^2 (Fluorine)=0,9996, i.e. after 7 atoms. This linearity has high sensibility to slight energy variations as is show in Lithium example [2]. This fact is corroborated with R^2 in **Table 7** dedicated to Beryllium and Fluorine. Jump reference value (E_k) [3] in 3s (first excited state) is modified from 1% to 0,0001%. Linear trend is lost to naked eye with $E_k(1s^23s)$ variation of 1 and 0,1%. Effects are less visible in Be than in F when change is 0,01%. Finally, R^2 modifications are very limited for lower $E_k(1s^23s)$ alteration.

	Table 7 - Be and F: $2s \rightarrow 1s^2ns$ (Term= ² S and J=1/2). R ² variation in Relation of Riquelme de Gozy by E _k (3s) modification							
		\mathbb{R}^2	of Relation of l	Riquelme de G	ozy			
Symbol	With [3] Data	+1%	+0,1%	+0,01%	+0,001%	+0,0001%		
Be	1,0000	0,3512	0,953	0,9993	1,0000	1,0000		
F	0,9996	0,5393	0,7972	0,989	0,9991	0,9995		
Symbol	With [3] Data	-1%	-0,1%	-0,01%	-0,001%	-0,0001%		
Be	1,0000	0,0172	0,9413	0,9996	1,0000	1,0000		
F	0,9996	0,4153	0,0107	0,9936	0,9999	0,9996		

LAN_R is affected to greater extent by these E_k percentage variations as destiny n increases because LAN_R calculation (1) is carried out with $/E_{dR}/$ and: $\uparrow n \rightarrow \uparrow E_k \rightarrow \downarrow /E_{dR}/$.

Differences between line equation of Relation of Riquelme de Gozy (11) for Li, Be, B and C can be appreciated in **Figure 3** where all allow to contemplate LAN plain idea and how its value and slope descend with z_s (Start charge according to P46 [1]). Figure 3 is Table 6 representation with three states (initial state and first two excited states) to demonstrate optimum linearity between them. Linear regression is extrapolated to Y-intercept of Relation of Riquelme de Gozy.

2.2) 3s \rightarrow ns jump (Term=²S J=1/2)

Line equation of Relation of Riquelme de Gozy (11) is for same jump as in previous point, but n=3 is initial or non-excited state. Relation of Riquelme de Gozy for jump $2p^63s \rightarrow 2p^6ns$ is made with three states (non-excited ($2p^63s$) and first two excited states ($2p^64s$ and $2p^65s$)) and is compiled in **Table 8**. All atoms that have at least the two jumps cited [3] are included in Table 8.

Table 8 – Relation of Riquelme de Gozy in Serelles Secundary line $3s \rightarrow ns$ (Term= ² S and J=1/2) with first three data					
Symbol	a (lanito)	b (mililanito/eV)	R ²		
Na	1,34467	5,27	0,9999		
Mg	1,0628	2,2	1,0000		
Al	0,88899	1,2	1,0000		
Si	0,76659	0,802	0,9986		
Р	0,67667	0,508	0,9999		
S	0,60557	0,366	0,9998		
Cl	0,54772	0,278	0,9995		
Ar	0,50089	0,212	0,9994		
К	0,46084	0,17	0,9992		
Ca	0,42649	0,14	0,9986		
Sc	0,39393	0,119	0,9987		
Ti	0,37138	0,0967	0,9993		
V	0,34838	0,0832	0,9990		
Cr	0,32636	0,0769	0,9923		
Mn	0,30775	0,0681	0,9899		
Fe	0,2945707	0,0526	0,9995		
Со	0,2774294	0,0511	0,9992		

Optimum linear adjustment reflected in R² regression coefficient close to 1 are produced again. R² majority is found in range: [0,999,1[Only 2 exception (Cr ($z_s=15$) and Mn ($z_s=16$)) with R²=0,99 are high z_s although z_s of their environment, slightly lower (V, Ti, Sc...) or higher (Fe and Co), has very good R²≈0,999. This fact suggests that either there is some effect not considered in these exceptions or there is some small error in [3].

Another important aspect is clear downward trend of Y-intercept (a) and slope (b) as z_s increases (12). This trend is most pronounced when z_s is low:

(12)
$$z_s \uparrow \rightarrow Y$$
-intercept (a) \downarrow & slope (b) \downarrow

Line equation of Relation of Riquelme de Gozy (11) (Table 8) are extrapolated to Xintercept producing atomic sequencing (Na, Mg, Al, Si...) and with approximately constant spacing (**Figure 4**). Another relationship is slope of Riquelme de Gozy (b) vs. IE^{-1} where IE is ionization energy of excited electron (**Figure 5**). Slope from Table 6 and 8 as well IE from [4] have been employed in Figure 5. Two data have only been discarded: Be (2s to ns) and Si (3s to ns). Both curves present second-degree polynomial regression with R²=1,0000 and tend to point (0,0). These and other observable trends are prelude to theory that relates LAN with energy function.

2.3) 4s \rightarrow ns jump (Term=²S J=1/2)

Line equation of Relation of Riquelme de Gozy (11) is in **Table 9**. Relation of Riquelme de Gozy for jump $4s \rightarrow ns$ is made with three states (non-excited (4s) and first two excited states (5s and 6s) to check linearity as in previous cases. All atoms that have at least the two jumps cited [3] are included in Table 9.

Table 9 – Relation of Riquelme de Gozy in Serelles Secundary line $4s \rightarrow ns$ (Term= ² S and J=1/2) with first three data						
Curve	Symbol	a (lanito) b (mililanito/eV) R ²				
	K	2,16934	12,97	0,9997		
M	Ca	1,78859	5,47	0,9999		
SSIU	Sc	1,54536	3,08	0,9999		
DTAS	Ti	1,36978	1,97	1,0000		
PC	V	1,23446	1,36	1,0000		
	Cr	1,12599	0,988	1,0000		
	Ga	1,90598	2,78	0,9993		
PER	Kr	1,25633	0,828	0,9936		
COP	Rb	1,19154	0,528	0,9977		
	Sr	1,10808	0,531	0,9891		

K, C and Ga are atoms equivalent to Na, Mg and Al or Li, Be and B, but Transition metals have a divergence from what is seen in two previous points. For example, Sc is $3p^63d4s^2$ and when looses one electron is $3p^63d4s$ (Term=¹D and J=2) instead of $3p^64s$ (Term=²S and J=1/2) which are values being used. Following steps (13) must be performed so that electron is located in correct configuration:

(13) Transition metal $3p^63d^x4s^y \rightarrow \text{electron loss} \rightarrow 3p^63d \rightarrow \text{outermost electron excitation (3d)} \rightarrow 3p^64s \text{ (Term=}^2S \text{ and J=}1/2)$

Two transition metals (Sc with $z_s=3$ and Ti with $z_s=4$) have been selected by way of example with IE, $/E_{dR}/$, LAN(P50) and LAN_R in **Table 10**. Trends indicated previously are maintained:

Table 10 - $/Ed_R/$ and LAN_R in transition metals. First three datafor Serelles Secundaryline 4s \rightarrow ns (Term= 2S and J=1/2).						
	S	c	Ţ	Ci		
Configuration	$/Ed_{R}/(eV)$	LAN _R (lanito)	$/Ed_{R}/(eV)$	LAN _R (lanito)		
3p ⁶ 3d	24,75666 (IE)		43,26717 (IE)			
3p ⁶ 4s	21,590188	1,6118173 LAN(P50)	33,300214	1,4353200 LAN(P50)		
3p ⁶ 5s	10,515528	1,57799832	16,932016	1,4033153		
3p ⁶ 6s	6,258958	1,56447796	10,306291	1,3899514		

a) a and b drop with z_s . Novel nuance is two curves creation (first headed by K and second by Cu) as result of intercalated transition metals.

b) R^2 continues with value close to 1 even with transition metals. Kr R^2 is lower, but can reach R^2 =1,0000 with, for example, slight energetic variation of $E_k(4s \rightarrow 6s)$ from 85,8613 to 85,7926 eV (%RC \approx 0,08%).

2.4) Jump other than ns→ns

Study has been focused on for Serelles Secundary line ns \rightarrow ns (Term= ²S and J=1/2), but Relation of Riquelme de Gozy can be verified with jump whose start state and excited state are different and that consequently also differ their Term and J. Relation of Riquelme de Gozy is very sensitive to slight Energy deviations and, in any jump type, linearity deviations of Riquelme de Gozy may be due to one or more of these causes:

a) Reference data has small deviation or assignation is not correct.

b) Relation linearity apparently turns to curvature as excited state n increases. This fact is accelerated under certain conditions. Divergence between E_{dR} (reference destiny energy) and E_{dRI} (ideal E_{dR}) [2] is explained after articles dedicated to another Relations which include LAN.

c) Phenomena not included and affecting specific atoms.

Table 11 summarizes examples of different jump type: not ns and/or do not jump to ns excited state together with Na 3s \rightarrow ns. As indicated in introduction, non-excited state (LAN(P50)) is only applicated to ns \rightarrow ns jump, therefore three excited states must be selected to corroborate linearity with three points: jumps are towards n=3, 4 and 5 when indicated as (*) and n=4, 5 and 6 when marked as (**). Applicability of Riquelme de Gozy is demonstrated with R² very close to 1 for different jumps. R² is indicated with 4 decimal digits and only exceed in case of superior linearity to 1.0000 (For example, Na case with 1,000000).

Table	Table 11 - Linearity Coefficient R^2 in Relation of Riquelme de Gozy- First three excitedstates for Serelles Secundary Line of differents configurations and jumps((*) n = 3, 4 and 5 and (**) n = 4, 5 and 6)					
Atom	Configuration	Zs	Term & J	Excited state	Term & J	\mathbb{R}^2
Na	2p ⁶ 3s	1	² S & 1/2	2p ⁶ np (*)	² P° & 3/2	1,000000
Mg	2p ⁶ 3s	2	² S & 1/2	2p ⁶ np (*)	² P° & 3/2	1,0000
Mg	2p ⁶ 3s ²	1	¹ S & 0	3snp (*)	¹ P° & 1	0,9980
Mg	2p ⁶ 3s ²	1	¹ S & 0	3snp (**)	¹ P° & 1	0,9999
Al	2p ⁶ 3s ²	2	¹ S & 0	3snp (*)	¹ P° & 1	0,9929
Al	2p ⁶ 3s ² 3p	1	2P° & 1/2	3s ² ns (**)	² S & 1/2	1,0000
Si	$2p^63s^23p^2$	1	2P° & 1/2	3s ² 3pns (**)	² S & 1/2	0,9998
Sc	3p ⁶ 3d	3	¹ D & 3/2	3p ⁶ np (**)	² P° & 3/2	1,00000
Ti	3p ⁶ 3d	4	¹ D & 3/2	3p ⁶ np (**)	² P° & 3/2	0,9997
Sc	3p ⁶ 3d	3	¹ D & 3/2	$3p^{6}nd(**)$	2 D & 5/2	1,00000

BIBLIOGRAPHY

[1] Javier Silvestre. Excited electrons by Torrebotana Central Line: Tete Vic Equation. Sent to: <u>http://vixra.org/author/javier_silvestre</u>

[2] Javier Silvestre. Excited electrons: LAN plains for Tete Vic Equation. Sent to: http://vixra.org/author/javier silvestre

[3] Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2015). *NIST Atomic Spectra Database* (ver. 5.3), [Online]. Available: http://physics.nist.gov/asd [2016, May 18]. National Institute of Standards and Technology, Gaithersburg, MD.

[4] Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2014). *NIST Atomic Spectra Database* (ver. 5.2), [Online]. Available: http://physics.nist.gov/asd [2016, May 18]. National Institute of Standards and Technology, Gaithersburg, MD.

Abbreviations Table					
Following Table indicates abbreviations used in this theory and its use in article in question					
1s marked with	X.	101	S []]	, 11 is [2] and 12 is present article.	
Abbreviation	10	11	12	Meaning	
AC	X		X	Actual Change	
BES	Х	Х		Born Electronic System	
Ed	Х	Χ		Excited state destiny energy	
EdA			Х	Destiny Energy deduced with Xorrador Approximation	
EdI		Χ		Excited state destiny energy obtained from ideal E_d	
E _{dR}		Χ	Χ	Reference destiny energy	
E_{dRI}		X	X	Ideal E_{dR} obtained from extrapolation of others E_{dR} satisfying Relation of Riquelme de Gozy	
Eds		Χ		Excited state destiny energy in Serelles Secondary Line	
EJ	Χ	Χ		Jump energy in Torrebotana Central Line	
EJA			Χ	Jump Energy deduced with Xorrador Approximation	
E _{J, R}	Х			Referenced E _J to IE	
EJS		Χ		Jump energy in Serelles Secondary Line	
E _k	Х	Χ	Χ	Reference Jump energy	
E _{k, R}	Х			Referenced E _k to IE	
Eo	Х	Χ	Χ	1s OES Ionization energy	
El	Х	Χ		Es, Ep, Ed and Ef are energies to reach ns, np, nd & nf	
IE	Х	Χ	Χ	Ionization energy	
1	Х	Χ	Χ	Orbital quantum number	
LAN	Х	Χ	Χ	Serelles Secondary Lines Factor	
LAN _I LAN _{RI}		Х		Ideal LAN obtained from E_d or E_{dRI}	
LAN _R		Χ	Χ	LAN with reference data	
LAN _{R,M}		Χ		LAN _R with modification	
LAN(P50)		Χ	Χ	Initial LAN value in ns to ns jump. LAN with IE	
n	Х	Χ	Χ	Principal quantum number	
n _{initial} or n _s		Χ	Χ	n of non-excited electron	
NIN	Χ			Negative in negative	
OES	Х	Χ		Origin Electronic System	
RC	Χ		Χ	Relative Change	
Z	Χ			Effective nuclear charge	
Z	Χ			Atomic Number	
Z _{CT}	Χ	Х		Excited state charge	
Zo	Χ	Х	Х	1s Origin charge according to P46	

Zs	Χ	X	Χ	Start charge according to P46
ZSS		Х		Serelles secondary charge

I

ARTICLES INDEX					
Part	Number	Title			
I - Victoria Equation and Feliz Solutions	01	Victoria Equation - The dark side of the electron.			
	02	Electronic extremes: orbital and spin (introduction)			
	03	Relations between electronic extremes: Rotation time as probability and Feliz I.			
	04	Feliz II the prudent: Probability radial closure with high order variable C_F			
	05	Feliz III The King Major: Orbital filled keeping Probability electronic distribution.			
	06	Feliz IV Planet Coupling: Probability curves NIN coupling from origin electron.			
	07	NIN Coupling values in n=2 and Oxygen electronic density.			
art	08	Electron Probability with NIN coupling in n=2.			
Ь	09	Electron probability with NIN coupling in n>2 and necessary NIN relationships.			
II – Excited electron: Tete Vic and LAN	10	Excited electrons by Torrebotana Central Line: Tete Vic Equation.			
	11	Excited electrons: LAN plains for Tete Vic Equation.			
	12	Relation of Riquelme de Gozy: LAN linearity with energy of excited states.			
	13	Relation of Fly Piep de Garberí: LAN ⁻¹ and Ionization Energy.			
	14	Relation of Silva de Peral & Alameda: LAN interatomicity with energetic relation.			
	15	Relation of Silva de Peral & Alameda II: jump from n _s s to ns.			
	16	SPA III: Mc Flui transform for Silpovgar III and Silpovgar IV.			
	17	SPA IV: Silpovgar IV with Piepflui. Excess Relativistic: influence in LAN and SPA			
	18	Feliz Theory of Eo vision - Relativistic II: influence in Riquelme de Gozy			
19		Pepliz LAN Empire I: $LAN_{n\to\infty}$ vs. $LAN(P50)$			
Р	20	Pepliz LAN Empire II: LAN _{$n\to\infty$} vs. LAN(P50)			
Part III - NIN: CPEP & CPOTI	21	Electron Probability: PUB C_{PEP} I (Probability Union Between C_{PEP}) - Necessary NIN relationships			
	22	Electron Probability: PUB C _{PEP} II in "Flui BAR" (Flui (BES A (Global Advance) Region)			
	23	Orbital capacity by advancement of numbers - Electron Probability: PUB C _{PEP} III: "Flui BAR" II and C _{PEP-i}			
	24	Electron Probability: 1s electron birth: The last diligence to Poti Rock & Snow Hill Victoria			
24 hours of new day					