Author Barry Foster

Abstract The Goldbach Conjecture postulates that every even number greater than 4 is the sum of two primes.

Examples of Goldbach Pairs, GP's, are:

ProofEuclid proved there is an infinite number of primes.(1)Bertrand's postulate , (a theorem actually but "postulate " persists in the literature),
proves that for any number P the next prime is less than 2P(2)https://en.wikipedia.org/wiki/Bertrand's postulate(2)https://en.wikipedia.org/wiki/Bertrand's postulate(1)and (2)(2)imply the Goldbach Conjecture may be true.

The following table displays ordered data computed from the first 6 primes A and B. Thus 17>=A>=B>=3

A	3	5	5	7	7	7	11	11	11	11	13	13	13	13	13	17	17	17	17	17	17
в	3	3	5	3	5	7	3	5	7	11	3	5	7	11	13	3	5	7	11	13	17
A+B	6	8	10	10	12	14	14	16	18	22	16	18	20	24	26	20	22	24	28	30	34
2A	6	10	10	14	14	14	22	22	22	22	26	26	26	26	26	34	34	34	34	34	34
2В	6	6	10	6	10	14	6	10	14	22	6	10	14	22	26	6	10	14	22	26	34
А-В	0	2	0	4	2	0	8	6	4	0	10	8	6	2	0	14	12	10	6	4	0

We note that for any prime P there is a group of GP's where P is the larger prime, and in larger GP's it will occur as the smaller, an infinite number of times in fact. (1)

The GP's $6 \dots 10, \dots, 2P_K \dots 2P_{K+1}$ etc are separated by GP's if the conjecture is true.

We note all the differences for A-B: 0,2,4, ..., 14 exist as will always be the case because of (2) Any GP between $2P_{\kappa}$ and $P_{\kappa+1}$ must have A<= P_{κ} .

Further2A - 2B = (A - B) + (A - B)2A - (A - B) = 2B + (A - B)ieA+B exists as the midpoint of 2A-2B

This appears to confirm the conjecture.