
1

LEGENDRE 'S CONJECTURE PROOF.

BADO Olivier Idriss

(ISE 2)
Ecole Nationale Supérieure de Statistique et d'Economie.

08 BP 03 Abidjan 08, COTE D'IVOIRE.

E-mail : virostake@gmail.com

Abstract :
In this paper, we are going to give the proof of legendre conjecture by using the Chebotarev

-Artin 's theorem ,Dirichlet arithmetic theorem and the principle inclusion-exclusion of Moivre

1 Introduction

Legendre 's conjecture ,proposed by Andrien -Marie Legendre ,states that there is a prime
number between n2 and (n + 1)2 for every positive integer n. The conjecture is one of Lan-
dau's problems (1912) on prime numbers ;as of 2017,the conjecture has neither been proved nor
disproved . in this paper we are going to give the proof of this conjecture

1.1 Principle of the Demonstration

Let n an odd integer and denote by C2n−1 the set of the integers of [1, 2n− 1] and let fn be

the bijective mapping such that :
fn : C2n−1 → n2 + C2n−1

m 7→ n2 +m
Denote by Gn the subsect of n

2 +C2n−1 consisting of prime numbers and G′n that of composite
numbers we have n2 +C2n−1 = Gn∪G′n .Let P(n+1)2 the set of prime numbers less than or equal
to (n+ 1)2 . Let

δ(n) = card(Gn)

,as δ(n) represents the prime numbers between n2 and (n+1)2 then Π((n+1)2) = δ(n)+Π(n2)
,
Moreover C2n−1Observe that each integer m ∈ C2n−1 such that m ≥ 2 has at least one prime
divisor p ≤

√
2n− 1 .

Let P≤√2n−1 = {p1, p2, ...., pr} where p1 = 2,p2 = 3,...pr = max(P≤√2n−1).
Moreover, remembering that

C2n−1 =
⋃

p∈P≤√n,p≥2

Ap ∪ {1}

where

Ap = {p, 2p, 3p, 4p, .......(b2n− 1

p
c)p}

. We notice that Ap is an arithmetic sequence of �rst term p and reason p So

n2 + C2n−1 = fn(C2n−1) =
⋃

p∈P≤√2n−1,p≥2

fn(Ap) ∪ {n2 + 1}
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As

fn(Ap) = {n2 + p, n2 + 2p, n2 + 3p, .......n2 + b2n− 1

p
cp}

is an arithmetic sequence of �rst term n2 + p and reason p .
We will evaluate the quantity of prime numbers in

⋃
p∈P≤√2n−1,p≥2 fn(Ap)

by applying the principle -exclusion of Moivre and Chébotarev -Artin theorem in each fn(Ap)
in the case where p - n

2 Chebotarev-Artin 's Theorem

Let a, b > 0 such that gcd(a, b) = 1,Π(X, a, b) = card(p ≤ X, p ≡ a[b]) then ∃c > 0 such

that Π(X, a, b) = Li(X)
φ(b)

+©(cXe−
√

lnX)

The prime number theorem states that Li(X) ∼+∞ Π(X) so

Π(X, a, b) = Π(X)
φ(b)

+©(cXe−
√

lnX)

3 corollary

Let a, b > 0 such that gcd(a, b) = 1,Π(X, a, b) = card(p ≤ X, p ≡ a[b]) then ∃c > 0 such
that

Π(X, a, b)

Π(X)
=

1

φ(b)
+©(c lnXe−

√
lnX)

.
From probabilistic point of view, the probability of prime numbers less than or equal to X in
an arithmetic progression of reason b and of the �rst term has such that gcd(a, b) = 1 is worth

1
φ(b)

+©(c lnXe−
√

lnX) for X large enough .In the following we will justify the application of

Chebotein-Artin's theorem for sets
⋂k
j=1,pij∈P≤√2n−1

fn(A2pij
)

for 1 ≤ i1 < i2 < ..... < ik

3.1 Remarks

It is obvious to note that ,
⋂k
j=1,pij∈P≤√X

fn(Apij ) is the set of multiples of
∏k

j=1 pij which

allows us to write

k⋂
j=1,pij∈P≤√2n−1

fn(Apij ) = {n2 +m
k∏
j=2

pij |1 ≤ m ≤ b 2n− 1∏k
j=2 pij

c}

This set is an arithmetic sequence of reason
∏k

j=2 pij and �rst term n2 + b 2n−1∏k
j=2 pij

c
∏k

j=2 pij .

The hypothesis of application of Chebotarev-Artin's theorem will be justi�ed if and only if
gcd(

∏k
j=2 pij ,

∏k
j=2 pij + n2) = 1 which is the case if

∏k
j=2 pij - n

4 DEMONSTRATION OF LEGENDRE CONJECTURE

4.1 THEOREM

Let n an integer be an odd integer arbitrarily large , ψPn prime indicator . then

Π((n+ 1)2)− Π(n2) = ψn2+1 +
n−1∑
k=1

ψn2+2k

DEMONSTRATION OF LEGENDRE CONJECTURE .



3

4.2 Useful Lemma

Let a1, a2, ......ar be r numbers then

1−
r∑
i=1

1

ai
+

∑
1≤i<j≤r

1

aiaj
+ .....+

(−1)r

a1a2....ar
=

r∏
i=1

ai − 1

ai

4.3 Proof

Let us consider the polynomial :P (X) =
∏r

i=1(X − 1
ai

) from the coe�cient-root relations

P (X) = Xr +
r∑

k=1

∑
1≤i1<i2<....<ik≤r

(−1)kXr−k∏k
j=1 aij

taking X = 1, the lemma is thus proved.

4.4 Proof of Theorem 1

According to the p rinciple of inclusion -exclusion of Moivre we have :

%(
⋃

p∈P≤√2n−1,p≥3,p-n

fn(Ap)) =
r∑

k=2

(−1)k
∑

2≤i2<i3<....<ik≤r

%(
k⋂

j=2,pij∈P≤√2n−1,pij -n

fn(Apij ))

where % represents the probability of prime numbers so

%(n2 + C2n−1\f(A2)) = %(
⋃

p∈P≤√2n−1,p≥3,p-n

fn(Ap))

. According to Chebotarev's theorem -Artin : ∀k ≥ 1

%(
k⋂

j=2,pij∈P≤√2n−1,pij -n

fn(Apij )) =
1

φ(
∏k

j=2 pij)
+ h((n+ 1)2)

with h((n+ 1)2) =©(c lnne−
√

lnn)
Thus

%(
⋃

p∈P≤√2n−1,p≥3,p-n

fn(Ap)) =
r∑

k=2

∑
2≤i2<i3<...<ik≤r

(−1)k∏k
j=2(pij − 1), pij - n

+ h((n+ 1)2)

and applying the useful lemma, we have :

%(
⋃

p∈P≤√2n−1,p≥3,p-n

fn(Ap)) = h((n+ 1)2) + [1−

√
2n−1∏

i=2,pi-n

pi − 2

pi − 1
]

As

%(
⋃

p∈P≤√2n−1,p≥3,p-n

fn(Ap) ∪ f(A2)) = %(f(A2)) + %(
⋃

p∈P≤√2n−1,p≥3,p-n

fn(Ap))− %(B)
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. where B = f(A2) ∩
⋃
p∈P≤√2n−1,p≥3,p-n fn(Ap) As

%(B) =
r∑

k=2

(−1)k
∑

2≤i2<i3<....<ik≤r

%(
k⋂

j=2,pij∈P≤√2n−1,pij -n

fn(Apij ) ∩ f(A2)

.Let
S2p = f(A2)) ∩ fn(Ap) = f(A2 ∩ Ap)

then S2p is an arithmetic sequence of �rst term n2 + 2p and reason 2p de�nie in the same
manner than the previous part so we have

%(B) =
r∑

k=2

(−1)k
∑

2≤i2<i3<....<ik≤r

%(
k⋂

j=2,pij∈P≤√2n−1,pij -n

fn(S2pij
))

then

%(B) = h((n+ 1)2) + [1−

√
2n−1∏

i=2,pi-n

pi − 2

pi − 1
] = %(

⋃
p∈P≤√2n−1,p≥3,p-n

fn(Ap))

thus
%(

⋃
p∈P≤√2n−1,p≥3,p-n

fn(Ap) ∪ f(A2)) = %(f(A2))

.As

%(
⋃

p∈P≤√2n−1,p≥3,p-n

fn(Ap) ∪ f(A2)) =
Π((n+ 1)2)− Π(n2)

Π((n+ 1)2)
= %(f(A2))

Noting that %(f(A2)) =
∑n−1

k=1 ψn2+2k

Π((n+1)2)
so

Π((n+ 1)2)− Π(n2) =
n−1∑
k=1

ψn2+2k

the theorem holds

5 Theorem 2

Let n an integer be an even integer arbitrarily large , ψPn prime indicator . then

Π((n+ 1)2)− Π(n2) =
n∑
k=1

ψ(n+1)2−2k

5.1 Proof of Theorem 2

Let
fn : C2n → (n+ 1)2 − C2n

m 7→ (n+ 1)2 −m

(n+ 1)2 − C2n = fn(C2n) =
⋃

p∈P≤√2n−1,p≥2

fn(Ap) ∪ {n2 + 2n}

As

fn(Ap) = {(n+ 1)2 − b2n
p
cp, .....(n+ 1)2 − 3p, (n+ 1)2 − 2p, n2 + 3p, (n+ 1)2 − p}

is an arithmetic sequence of �rst term (n + 1)2 − b2n
p
cp and reason p and applying the same

ideas the theorem holds, we can also prove it in obvious manner
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5.2 corollary

∃N ∈ N ∀n ≥ N ,Π((n+ 1)2)− Π(n2) ≥ 1

5.3 Proof

According to the theorem 1 and 2 we can write

Π((n+ 1)2)− Π(n2) =
n∑
k=1

ψ(n+1)2−2k +
n−1∑
k=1

ψn2+2k

As n+1 and n have not the same parity then
∑n

k=1 ψ(n+1)2−2k or
∑n−1

k=1 ψn2+2k represents the
arithmetic progression of reason 2 and �rst term n2 + 1 or n2 + 2 in the intervall of length at
most 2n + 1 when n goes to +∞ there is at least one prime according to Dirichlet arithmetic
progression theorem then ∃N ∈ N such that

∀n ≥ N,Π((n+ 1)2)− Π(n2) =
n∑
k=1

ψ(n+1)2−2k +
n−1∑
k=1

ψn2+2k ≥ 1
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