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Introduction

Various methods are used in elementary algebra to factor quadratics of the
form ax? + bx + ¢ with a an integer not equal to one. Two methods are
generally presented in current textbooks: trial and error and grouping [1, 2].
The goal in all factoring methods is to complete the task in a minimum
amount of time; factoring, when possible with a few easy steps, is quicker
than completing the square or using the quadratic formula.

However, the level of difficulty in factoring varies from problem to problem
depending on the number of factors in the a and c¢ coefficients. Trial and
error is used when only a few divisors are present in these coefficients and
grouping when several are present. In this article, we present a third method
of factoring, synthetic systematic factoring (SSF) and argue that it provides
a better pedagogical approach than that given in current textbooks. In
particular, it enables many standards of mathematical practice (SMPs) as
given by Common Core State Standards Initiative [3]. Students can explore
and discover properties of factoring quadratics with a few leading questions.

Systematic synthetic factoring

Given the quadratic axz? + bx + ¢, the goal of factoring is to find d, f, ¢, and
h such that
az® +bx +c = (dv + f)(gz + h), (1)

where all coefficients are natural numbers. From (1), we derive
(dz + f)(gz + h) = dga® + (dh + fg)z + fh. (2)
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The left hand side of (2) demonstrates the FOIL acronym for multiplying
the two binary forms (dz + f) and (gx + h). The first coefficients in each
form are multiplied for the coefficient of 22, then the outer, d and h, are
multiplied and added to the inner, f and g multiplied, to form the coefficient
of x, and, finally, the lasts, f and h, are multiplied to form the constant
term. It follows from this that a and ¢ from (1) must be split into pairs of
divisors: (d,g) and (f,h). The goal then is to find pairs so that the outer
plus the inner, dh + fg, equals the middle coefficient b.

We introduce a table that places all possible firsts (d, g)s, along the left-
most column and all lasts (f,h)s on the top row; the interior cells give all
outer dh and inner fg pairs: (dh, fg)s. These are summed and when this
sum equals the b coefficient of the quadratic, the required firsts and lasts are
directly to the left and above. These are transcribed from the table in the
usual form of a factored quadratic: (dz + f)(gx + h).

So, for example, given the quadratic 222 + 11z + 12, place all the ways
of splitting up 2 and 12 into two natural numbers along the left column and
along the top row, respectively, see Table 1.

112126 [34|143]62 |121
121122164 |46 (38212124
2112411228364 |46 |212

Table 1: Florida table for 222 + 11z + 12.

The tables are systematic in giving all possible combinations, given a and
¢, and synthetic by analogy with synthetic division, where the variable x
does not appear, but just the coefficients. As these tables consist of firsts
along the left and lasts on top, Florida tables (or FOIL tables) seems an
appropriate name for them; FL is the abbreviation for the state of Florida.

By ordering pairs with the smallest of the two first and going up, as is
done in Table 1, one has an assurance of getting all such possible pairs. The
pairs are found, then, by testing divisibility by each natural number in turn.
The interior table cells are formed by multiplying the outer and inner pairs
of numbers from the top row and left column. So, for example, the interior
cell 12 2 is a result of 1 x 12 (an outer) and 2 x 1 (an inner). When the sum
equals the middle coefficient of the quadratic, in this example 11, the left
column gives the firsts and top row gives the lasts. For this quadratic, we
use 8 3 from the third row and fourth column; the numbers add to 11, the
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middle coefficient. The answer is then transcribed from the table: (2z )(1z )
for the firsts (from the left column) (2x 3)(1x 4) for the lasts (from the top
row). For this form of a quadratic, az® + bz + ¢ both factors use addition:
the answer is (2z + 3)(x + 4).

Here’s an example that shows the use of Florida tables to determine that
a quadratic is prime. The Florida table for the quadratic 102% + 3x + 2 is
given in Table 2. One sees the systematic list of all two integer products
giving 10, left column, and all such giving 2, top row. As the outer and
inner’s, given by the interior cells for all these combinations, never yields a
sum equal to 3, this quadratic is a prime.

12 121
1101210120
25 |45 |210
52 |102]|54
1011201102

Table 2: Florida table for 1022 + 3z + 2.

This approach to factoring trinomials stresses the Common Cores Stan-
dards for Mathematical Practice, in particular SMP 2: Reason abstractly
and quantitatively [3, p. 7] and SMP 7: Look for and make use of structure

13, p. 8.

Other aspects of Florida tables

There are properties of these tables that provide good shortcuts to factoring
and thus stress SMP 8: Look for and express regularity in repeated reasoning.
First, only one of a and ¢ needs to have all combinations of pairs given; the
other just needs half. This can be observed in Tables 1 and 2. No new
combinations are given by the additional three columns and two bottom
rows, respectively; this follows from commutativity of multiplication and
addition. In this regard, a nice classroom question is which should be given
a complete list of pairs? The answer is, of course, the number with the
fewest divisors. The second feature relates to the four cases of quadratics
possible. Students can explore and find rules that determine which factor
has an addition and which a subtraction for all the cases of quadratics. The
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details follow. In a classroom setting, guiding questions can be asked that
foster perseverance in problem solving and thus stress SMP 1: Make sense
of problems and persevere in solving them [3, p. 6].

There are four combinations possible in ax? £ bx £ ¢ + +, - +, + -
, and - - with all coefficients natural numbers. When factoring for these
cases it is possible to automatically find the signs to use in the factored
form, (cx £ d)(rez £ s). For the cases + + and - +, the sign combinations
are (cx + d)(rx + s) and (cx — d)(rx — s), respectively. These are forced,
meaning there is no decision to be made. For these two cases, the interior
cells are always added and when the sum equals the absolute value of b, the
corresponding cell in the left column gives the firsts and corresponding ones
in the top row give the lasts. For the remaining two cases, - - and + -, the
absolute value of the difference of the pairs in interior cells is used. When this
absolute value of the difference equals the absolute value of b, once again,
the corresponding left and top cells give the factors. Here are the rules for
these cases that determine which factor gets the plus: with - -, the larger
of the interior cell number points to the factor in the last’s, top row that
gets the plus sign; with 4 -, the smaller. The other factor is always minus.
The upper left corner of these tables is a perfect place to put the case of
the quadratic being factored; its a good reminder; the second sign indicates
whether interior cells are to be added or subtracted.

Here are examples of the various cases. Notice that left columns and top
rows, as well as interior cells are generally not completed in these examples.
These are intentional omissions to suggest that one does a few calculations
with only partially completed left columns and top rows, and, factors not
having been found, fills in more possible pairs on the top and left. Pairs in
interior cells themselves can mentally be checked, generally, with only the
correct combinations being written down and/or the corresponding top and
left pairs circled.

Example 1. Factor 1222 — 11z — 15. The Florida table for this example
is given in Table 3. The factors are immediately generated by the table
using the rule for this case. That is: the largest of the interior pair, 20,
corresponds to the top row factor 3 that receives the plus sign. The answer
is (3z — 5)(4x + 3).

Example 2. Factor 422 +4x —15. The Florida table for this example is given
in Table 4. We can immediately write (2x-3)(2x+5). The smaller interior



- - 115135153
112
26
34 9 20

Table 3: Florida table for 1222 — 11z — 15 with use of the sign rule.

number, 6 (bolded), corresponds to the 5 (bolded) in the top row; 5 gets the
plus for the factor (2x+75).

+-1115135
14 1154|512
221302]106
41

Table 4: Florida table for 422 + 4x — 15.

Comparison with other methods

There are three factoring techniques that are generally presented in text-
books: simple factoring, trial and error factoring, and factoring by grouping
(also known as the AC-method). We review each as it relates to SSF.

Simple factoring is used for monic quadratics, that is, quadratics with a
leading coefficient of one. The challenge in factoring this type is to find two
integers whose product is the last coefficient and whose sum is the middle.
For example, given x2 —x — 12, we consider the ways -12 can be factored into
two numbers whose sum is -1.

-- 1112126134
11 43

Table 5: Simple factoring: 4 points to 3 for (z + 3)(x — 4).

A Florida table organizes and systematizes the search for such a pair, see
Table 5. It also abstracts just the essentials of the problem. The only factors
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for a=11in ax?+bx +c are 1 1, so only half the combinations need to be given
in the top row for the c coefficient. The rules for the four cases given for non-
monic quadratics apply. Simple factoring is the base case for SSF; students
can build on their knowledge of simple factoring using SSF [5]. The trial
and error method, as given in text books, is used for non-monic quadratics
when the a and c coefficients have relatively few factors. The method is to
apply an ad hoc way of trying factors until the correct ones are found. SSF
provides a way to perform this method in an organized and systematic way.
It removes the guess work involved.

The AC-method makes the method for non-monic quadratics similar to
the method of simple factoring for monic quadratics. Given ax? & bz + c,
multiply a and ¢ and then look for factors of this product that when added
or subtracted give b. With simple factoring, there is no multiplication (other
than by 1); one just uses factors of ¢ that add to b. This method is frequently
called the grouping method as this is the next step in the factoring procedure.
Well give an example using this method.

--11241212(38
11 83

Table 6: Florida table used for the key step in the AC-method.

Example 3. Factor 222 — 52 — 12 using the AC-method. Look for the
factors of 2(-12) = -24 such that when added give —5. We can do this with
a Florida table, see Table 6. Technically, we would have to consider all plus
and minus combinations in using the AC-method, but 38 = —5 is apparent
from the table. Next, the quadratic is re-expressed using the found numbers:
202 — 5z — 12 = 222 + 3z — 8z — 12. The first and last two terms are then
grouped and recombined for the answer:

22% + 3z — 81 — 12 = x(22 + 3)4(2x + 3) = (v — 4)(2z + 3). (3)

Note the rules for the plus sign determination in the - - case apply in the
sense that the larger of the interior cell pair, 8 3, points to the 3 which is
added in 43z — 8z of the grouping step in (3). We also get 8 3 as an interior
cell value using SSF without the non-sensical multiplication before factoring
of the AC-method.



A single edit of Table 1, a change from + + to - - as the case type, allows
a fast factoring of this quadratic using SSF. Multiplication of a and ¢ and
the grouping step are not necessary. It is a faster, more direct way to factor
than the AC-method. The time savings is pronounced when the product of
ac results in a relatively large number. Factoring 822 + 30z — 27, for example,
with both methods demonstrates this.

Conclusion

Unlike the three methods currently used in textbooks, SSF gives a way to
systematically and in an organized manner find all pertinent factors when
factoring a quadratic. In the case of the grouping method, it provides the
key pair necessary, but without the need for the grouping step. This suggests
that, if speed and ease are the criteria for comparing factoring methods, SSF
is more efficient than the grouping method.

Additionally, SSF allows for a natural pedagogical development in the
textbook treatments of factoring trinomials. Simple factoring can be taught
using Florida tables. The case mechanisms for determining the signs in-
side the factors apply to simple factoring, so these rules can be developed
with the simplest monic quadratics first. Factoring non-monic quadratics is
then a natural extension of simple factoring. Thus with SSF all factorable
quadratics are given a unified method that fosters systematic thinking and
abstraction of essential elements in solving problems. Students, with some
guiding questions, can evolve their sophistication and understanding of fac-
toring from the simplest monic quadratics with two additions to general non-
monic quadratics with all the plus/minus combinations. These goals conform
to the essence of modern pedagogical goals: enable students to explore and
discover mathematics on their own [4, 5].
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