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Abstract: The general equation of Beal’s conjecture 𝑥𝑎 + 𝑦𝑏 = 𝑧𝑐, at points where its 

variables are numerically equal, is identified as a univariate polynomial identity derived from 

algebraic expansion of powers of binomials which upon expansion and reduction to two terms 

produces 𝛼𝑥𝑙 + 𝛽𝑥𝑙 ≡ 𝛿𝑥𝑙, where the general polynomial equation has integer solution at the 

intersection with the line 𝑥 − 𝑦 = 0 as a special case and satisfies Beal’s condition of perfect 

power terms; 𝛼, 𝛽, 𝛿, 𝑙 are positive integers, 𝑙 > 2 and 𝛼 + 𝛽 = 𝛿. This algebraic identity can 

be represented by the addition of two vectors in the vector space of the set of all polynomials in 

the form 𝑝(𝑥) = 𝑎 𝑥𝑙  for 𝑎 ∈ ℚ as a subspace of the infinite vector space over ℚ of all 

polynomials with basis 1, 𝑥, 𝑥2, … with the ordinary addition of polynomials and multiplication 

by a scalar from ℚ, where 𝑙 is particular to any solution to the equation. Here we look for 

elements in the ℚ field where the rational number can be converted to a number in exponential 

form that successfully combines with the basis-element 𝑥𝑙 to produce perfect power terms. 

Accordingly, it is shown that all three monomials of the identity equation numerically produce 

terms of perfect powers by following the rules of exponentiation which produces integer 

solutions to Beal’s general equation and can be obtained by expanding the corresponding 

binomial identity. 
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1. Introduction and conclusion  

Beal’s conjecture states that if  𝑥𝑎 + 𝑦𝑏 = 𝑧𝑐, where a, b, c, x, y and z are positive integers and 

a, b, c > 2, then x, y, and z have a common prime factor. The conjecture was made by math 

enthusiast Daniel Andrew Beal in 1997 [1]. It is a generalization of Fermat’s Last Theorem 

(FLT) which has been considered extensively in the literature [2-7] and was proved by Andrew 

Wiles [8]. Similar problems to Beal’s conjecture have been suggested as early as the year 1914 

[9] and the conjecture maybe referred to by different names in the literature [10-11]. So far a 

proof to the conjecture has been a challenge to the public as well as to mathematicians and no 

counterexample has been successfully presented to disprove it, i.e. Peter Norvig reported 

having conducted a series of numerical searches for counterexamples to Beal's conjecture. 

Among his results, he excluded all possible solutions having each of a, b, c ≤ 7 and each of x, y, 

z ≤ 250,000, as well as possible solutions having each of a, b, c ≤ 100 and each of x, y, z ≤ 

10,000 [12]. 

Even though many partial results of the problem have been proved [13-16] and physical 

elementary approaches have been attempted [17], but no solid approach to solve the general 

problem has been presented in the literature and therefore any serious contribution to it is 

considered an important advancement in algebraic number theory especially because it implies 

FLT. In this paper the conjecture is presented by a univariate polynomial identity that produces 

solutions with terms that must share the indeterminate (bound variable) to fulfill the identity 

property, and hence share a prime factor.  
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The search for solutions to Diophantine Beal’s type equations by designating each term a 

different variable complicates finding one tremendously; i.e. the proof of Fermat’s type 

Diophantine equations of powers 2 is made difficult by seeking a proof via modular arithmetic 

of elliptic curves. It has been the trend to consider such algebraic equations as equations in 

several variables. Such approach is extensively handled by algebraic geometry of systems of 

polynomial equations in several variables, Diophantine geometry, and algebraic number theory, 

which studies the existence of solutions to Diophantine equations of univariate nature. For 

higher number of addends, the solutions or proofs become progressively difficult. Unlike 

polynomial equations in several variables as handled by the literature, here all equations that 

satisfy Beal’s conjecture are treated as polynomial equations in single variable that follow the 

proposed identity and simplify to Beal’s type numerical equations.   

It is claimed here that any integer solution to the general equation of Beal’s conjecture is a 

special case over the rational field where the solution of the equation lies on the line 𝑥 − 𝑦 = 0 

renders the equation single variable polynomial identity, e.g., binomial equations whose 

solutions lie on the line 𝑥 − 𝑦 = 0 and whose terms are perfect powers. Perhaps the simplest 

example of a polynomial equation in several variables that can be treated as polynomial in one 

variable with a solution on the line 𝑥 − 𝑦 = 0 is the equation of the circle centered at the 

origin  𝑥2 + 𝑦2 = 𝑧𝑐. This can be viewed as due to symmetry at 450 angle.  Here, Beal’s 

numerical solution is where the circle intersects the line 𝑥 − 𝑦 = 0. This leads to 𝑥 = 𝑦 and the 

polynomial becomes  2𝑥2 = 𝑧𝑐. As an identity, the bound variable 𝑥 must take the value 2 and 

the algebraic sum 𝑧𝑐 must then be 23. An integer solution to the Diophantine equation   𝑥2 +

𝑦2 = 𝑧𝑐 can be uniquely then identified from all rational solutions by recognizing it as a 

univariate identity and utilizing the exponential identities. It simply means I am adding two 

same squared basis-elements of 2 on the 2-dimensional Euclidean space. This Diophantine 

equation 22 + 22 = 23 is not classified as Beal’s but it is a simple example of a single 

polynomial identity that is expressed in perfect power terms as Beal’s conjecture requires. 

Obviously, the equation has a common prime factor 2. For powers > 2, the similar 

equation 23 + 23 = 24, generated by the general equation of   𝑥3 + 𝑦3 = 𝑧𝑐 and a solution lies 

on 𝑥 − 𝑦 = 0, fits Beal’s requirements.  

The origin of Beal’s equation is a binomial identity which upon expansion and by Pascal’s 

rule produces terms of the same monomial degree if we convert the binomial identity into 

univariate equation by equating the two variables as suggested in this paper. We can proceed to 

prove by elementary algebra that Beal’s equation is in fact algebraic identity. Let’s recall that a 

binomial identity describes the expansion of powers of a binomial to produce terms of the same 

power as the degree of the binomial if we replace 𝑦 with  𝑥. If the terms on both sides of the 

expanded binomial identity, 

 (𝑥 + 𝑦)𝑛 = ∑ (
𝑛

𝑘
) 𝑥𝑛−𝑘𝑦𝑘

𝑛

𝑘=0

 

 (𝜆𝑥 + 𝛿𝑦)𝑛 = 𝜆𝑛𝑥𝑛 +····· +𝛿𝑛𝑦𝑛                                                        (1) 

where the coefficients 𝜆 , 𝛿 and the power 𝑛 are positive integers, are converted into monomials 

with the same variable as a special case as suggested in this paper, the terms can be added 
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algebraically to produce a univariate polynomial identity describing the LHS of Beal’s equation 

while the RHS is the algebraic sum of its monomials producing an identity on its own. It is to 

be noticed that replacing 𝑦 with 𝑥 on the LHS of the identity (𝜆 + 𝛿)𝑛𝑥𝑛 generates the RHS of 

Beal’s equation upon expanding and reducing the number of terms to 2, which is doable since 

all of the terms have the same power. This is clear since after we replace 𝑦 with 𝑥 we can 

expand the polynomial (𝑥 + 𝑥)𝑛 into a sum of terms of the form  𝛼𝑥𝑏𝑥𝑐, where the coefficient 

𝛼 is governed by Pascal’s rule and the exponents b and c are positive integers with 𝑏 + 𝑐 = 𝑛.  

 Starting with binomial of power 1 we simply add two terms and choosing the terms 

carefully we get,  

 (23𝑥3 + 𝑥3)1 = 32𝑥3 

Recognizing 𝑥 must equal 3 and simplifying by following exponential rules we get, 

63 + 33 = 35 

We obtain Beal’s equation of the form 𝑎, 𝑏, 𝑐 = (3, 3, 5) in this case. By carefully choosing our 

terms we can obtain different orders of (𝑎, 𝑏, 𝑐). 

For binomial of power 2,  (𝑥 + 𝑦)2 produces Beal’s-like equation of the form 𝑎, 𝑏, 𝑐 =

(2, 3,2). Expanding the binomial identity we get, 

 (𝑥 + 𝑥)2 = 𝑥2 + 2𝑥2 + 𝑥2 

Reducing to two terms and simplifying with the proper choice of the variable 𝑥, as 𝑥 = 3, to 

comply with the exponential rules we get, 

 (2𝑥)2 = 𝑥2 + 3𝑥2 

32 + 33 = 62 

This is not Beal’s equation because of the powers of 2. The terms in the equation are not 

coprime and therefore they are not considered to be of Fermat-Catalan form as well. We can 

generate other similar equations by varying the coefficients 𝜆 and 𝛿 in the binomial equation 

(1), e.g. the binomial  (2𝑥 + 𝑦)2 produces another non-Beal, non-Fermat-Catalan equation, 

102 + 53 = 152 

For 𝑛 ≥ 3, the identity produces Beal’s equations of powers (𝑎, 𝑏, 𝑐) > 2. For 𝑛 = 3, the 

binomial  (𝜆𝑥 + 𝛿𝑦)3 produces Beal’s equations of the form 𝑎, 𝑏, 𝑐 = (3, 4, 3), e.g. the equation, 

(𝑥 + 𝑥)3 = 𝑥3 + 3𝑥2𝑥 + 3𝑥2𝑥 + 𝑥3 

Simplifying we get,  

(2𝑥)3 = 𝑥3 + 7𝑥3 

Choosing 𝑥 = 7 we get Beal’s equation, 

73 + 74 = 143 
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Another example of binomial of power 3 is (2𝑥 + 𝑦)3. Expanding and following the same steps 

as above, we get, 

(2𝑥 + 𝑥)3 = 23𝑥3 + 3 · 4𝑥2𝑥 + 3𝑥2 · 2𝑥 + 𝑥3 

Simplifying and taking the term 23𝑥3 as the leading term; since it produces perfect power on its 

own, to produce only two terms on the RHS we get,  

(3𝑥)3 = 23𝑥3 + 19𝑥3 

This identity requires 𝑥 = 19 for the equation to have single power terms as required by Beal’s 

conjecture and produces Beal’s equation, 

383 + 194 = 573 

If we take 𝑥3 to be the leading term as it also makes perfect power, and proceed as above, we get Beal’s 

equation,  

263 + 264 = 783 

We can see that for binomials of powers 𝑛 > 2 the identity produces Beal’s equations of the 

order 𝑎, 𝑏, 𝑐 = (𝑛, 𝑛 + 1, 𝑛). Therefore, for any power of 𝑛 ≥ 3, there is an infinite number of 

Beal’s triples of this form. For a list of first orders see Appendix A.  

It is important to emphasize here that algebraic theorems involving numerical operations 

from arithmetic are generalized to cover non-numerical objects such as polynomials. In this 

regard, we identify Beal’s equation  𝑥𝑎 + 𝑦𝑏 = 𝑧𝑐 as a particular numerical solution to the 

general polynomial identity 𝛼𝑥𝑙 + 𝛽𝑥𝑙 ≡ 𝛿𝑥𝑙, where 𝛼, 𝛽, 𝛿, 𝑙 are positive integers, 𝑙 > 2 and 𝑥 is 

the indeterminate whose value must combine with the coefficient of each term to produce a 

perfect power term following the rules of exponentiation, and (𝛼 + 𝛽) = 𝛿. The LHS of the 

univariate identity represents the sum of two vectors in a polynomial vector space. The variable 

𝑥 is a bound variable since we identified the equation as algebraic identity.    

To clarify the connection between the general equation of Beal’s conjecture (Beal’s equation) 

and the proposed binomial univariate identity, let’s emphasize that the two terms on the LHS of 

Beal’s equation can be combined by factorizing a CF and using the power rules to yield the 

RHS. In this sense, the LHS of Beal’s equation can be treated as the sum of two single same-

variable monomials of the same degree that necessarily must produce the monomial on the RHS 

of the equation. A greatest common divider (GCD) of the two monomials must exist then which 

allows for the process of combining the two LHS expressions into one by exponential rules. 

Suppose a solution to Beal’s equation produces 𝑐𝑧 = 35, which can in turn be split to 32 ∙ 33 

and the coefficient term 32 expands to (1 + 23) producing the equation, 

  33 + 63 =  35 

The path to proving Beal’s conjecture is seeking a polynomial identity such as the one that 

solves the Diophantine equation 𝑥𝑎 + 𝑦𝑏 = 𝑧𝑐 at the intersection points with the line 𝑥 − 𝑦 = 0 

which satisfies Beal’s condition of perfect power terms. The idea is to consider 𝑧𝑐 as an 

element in a polynomial vector space over the rational numbers ℚ[𝑥], i.e. the numerical value 
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of  𝑧𝑐 = 35  is obtained from the rational polynomial function 𝑎𝑥3, where x is allowed to 

assume values in ℤ, of indeterminate 𝑥 = 3 and coefficient 32. For later comparison of adding 

the two LHS terms to addition of fractions, the coefficient in exponential form as well as 

improper fractional form is introduced, e.g.  32 =
27

3
. Therefore an integer solution to Beal’s 

equation represents selective numbers in ℚ that meet the requirement of single integer power 

terms. In other words, the equation   33 + 63 =  35 is an integer solution of the general single 

polynomial identity 𝛼𝑥𝑙 + 𝛽𝑥𝑙 ≡ 𝛿𝑥𝑙. Beal’s equation then may be represented by the sum of 

two same degree monomials representing the addition of two vectors in the vector space of all 

polynomials  𝑝(𝑥) = 𝑎𝑥𝑙 over ℚ, being a subspace to the infinite-dimensional vector space of 

all polynomials over ℚ with basis 1, 𝑥, 𝑥2 …., where 𝑙 is positive integer indicating a particular 

solution to Beal’s equation. In other words, we are adding two same degree single-variable 

monomials with coefficients from ℚ that produce a sum of same degree monomial with the 

condition that the numerical valuation leads to perfect power terms. In the above example, the 

monomial-equation is,  

 

23𝑥3 + 𝑥3 = 32𝑥3 

The restriction introduced by Beal’s equation of perfect power terms requires the proper 

choice of the subspace as well as the proper choice of the coefficients in the rational numbers. 

The coefficients in the above equation are particular numbers in the rational field, specifically, 

23 is the improper fraction 24 3⁄   and  32 is 27 3⁄ . A solution to this numerical identity equation 

requires the indeterminate to be 3 and the specific subspace to be 𝑝(𝑥) = 𝑎𝑥3. For this particular 

example, the point on the line 𝑥 − 𝑦 = 0  that satisfies Beal’s requirement of perfect power is 

𝑥 = 𝑦 = 3 when employing the Diophantine equation 23𝑥3 + 𝑦3 = 35.  

We conclude that to fulfill the requirements of Beal’s conjecture of positive integer solutions 

and perfect power terms, Beal’s function must be single variable identity and that the 

intersection of Beal’s function with the line 𝑥 − 𝑦 = 0 produces the only integer solution. 

To graphically identify the common factor of Beal’s equation (integer solution), it is 

sufficient to find where Beal’s function intersects the line 𝑥 − 𝑦 = 0. In the example above, 

Beal’s equation  23𝑥3 + 𝑦3 = 35 intersects the line 𝑥 − 𝑦 = 0 at (3, 3); see figure 1.  
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Fig. 1. An integer solution of the Beal’s equation  23𝑥3 + 𝑦3 = 243 is where Beal’s function 

intersects the line 𝑥 − 𝑦 = 0 at (3, 3). The coordinates of the point of intersection make a 

common factor of the equation. 

The general equation that describes Beal’s equation is,   

𝛼𝑥𝑙  + 𝛽𝑥𝑙  = 𝛿𝑥𝑙                                                                            (2) 

In equation (2) we are combining two same degree in single variable monomial functions by 

the rules of addition of polynomials and multiplication by a scalar. As mentioned earlier, the 

equation represents a simple algebraic identity which expands the equality (𝛼 + 𝛽)𝑥𝑙 = 𝛿𝑥𝑙 by 

the distributive law. It represents addition of two vectors in the vector space 𝑎𝑥𝑙 as a subspace 

of the general vector space of all polynomials over ℚ with basis 1, 𝑥, 𝑥2, 𝑥3 … Any of Beal’s 

equations then is a solution in the proper subspace. In the example above, the existence of the 

common basis element 𝑥3 in the equation is a must since we are adding vectors in the 

subspace 𝑎𝑥3, and the polynomial variable 𝑥 is a bound number that must have a value since the 

polynomial equation is identified as an identity. Any other solution to the equation of 𝑥 ≠ 3 or 

different coefficients that satisfy the condition (𝛼 + 𝛽) = 𝛿 but do not all successfully combine 

with the characteristic term 𝑥𝑙 by the power rules to produce perfect powers, satisfies the 

general polynomial identity but does not comply with Beal’s equation of perfect power terms. 

Integer solutions then to Beal’s equation only occur on the line of 𝑥 − 𝑦 = 0. We can compare 

Beal’s identity (2) with the two-variable identity (𝑥2 − 𝑦2)2 + (2𝑥𝑦)2 = (𝑥2 + 𝑦2)2 that 

produces Pythagorean triples by which we choose the proper value of the variables 𝑥 and 𝑦 to 

comply with the evenness and oddness of the numbers on the LHS of the identity to produce the 

proper triples. Simplifying the terms on both sides separately we get the same expression 

of 𝑥4 + 2 𝑥2𝑦2 + 𝑦4. Likewise, we can simplify the LHS of equation (2) and get the same 

expression of 𝛿𝑥𝑙 by exploiting the power rules and choosing the proper value of the (bound) 

variable 𝑥 in Beal’s identity as well as the proper coefficients that produce perfect power terms. 
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Equations of the form (2) that do not comply with Beal’s condition of perfect powers 

intersect the line 𝑥 − 𝑦 = 0 at a rational point i.e. the equation  23𝑥3 + 𝑦3 = 299 (made by 

slightly changing the numerical value on the right side of  23𝑥3 + 𝑦3 = 35) has a rational 

solution of (3.24, 3.24) at the intersection point with the line 𝑥 − 𝑦 = 0 and is not Beal’s 

identity since the coefficient of the term on the right side does not combine with the 

characteristic term 𝑥𝑙 by the power rules to form perfect power; see figure 2.  

 

 

Fig. 2. A rational solution of the equation 23𝑥3 + 𝑦3 = 299 at the intersection with the line 𝑥 −

𝑦 = 0.  

For any polynomial identity, a common factor must exist. In Pythagorean identity, the GCD 

polynomial is 𝑥0 derived from a primitive polynomial of basis-variable of the vector space 𝑎𝑥𝑙 

where 𝑙 is the nonnegative integer zero and the coefficient terms of equation (2) form single 

terms of power 2 as special case. For higher powers of 𝑙, the GCD of the basis-element in the 

polynomial identity constitutes an essential contribution to Beal’s equations, or any polynomial 

identity with higher number of addends, abiding with the condition of perfect power terms. The 

trickiest question that is easy to fall in is, why the coefficients 𝛼, 𝛽 and 𝛿 of equation (2) do not 

themselves make a polynomial identity if powers of Beal’s terms are > 2 by taking the basis-

element of power 𝑙 = 0? The answer is straight forward. If Beal’s terms’ powers are > 2, the 

powers must be contributed by the basis-element of the vector space involved, which 

effectively upgrades one or more of the terms to 𝑙 > 0. This process is a direct consequence to 

the basic arithmetic operations of the laws of exponentiation. On the other hand, special 

identities such as that of Pythagorean identity and those of higher number of addends such as 

  33 + 43+ 53 = 63 can be simply added by addition of terms in the subspace of 𝑎𝑥0 and 

therefore are trivial identities of Beal’s. They can also be summed in a higher degree of the 

polynomial subspace of  𝑝(𝑥) = 𝑎𝑥𝑙 that abides with exponentiation rules, i.e. Pythagorean 

identity by multiplying the identity equation by CF of  𝑥2 and the later one by  𝑥3. In other 
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words we upgrade them as addition of two vectors in the subspaces of   𝑎𝑥2 and 𝑎𝑥3 

respectively. 

The single variable identity of Beal’s equation which evaluates to integer solutions is similar 

to addition of two fractions. In this case we are adding two vectors in the subspace 𝑎𝑥𝑖 of the 

general infinite-dimensional vector space ℚ over itself with basis 1,
1

2
,

1

3
,

1

4
…. While addition of 

fractions in the physical sense is obvious, similar addition of numbers in exponential form as 

that of Beal’s equation is not so obvious. The following is an example of adding two fractions 

in the vector space 𝑎𝑥𝑖 with the bound variable 𝑥𝑖 =
1

6
 ,  

5

3
+

7

2
= (

5

3
+

7

2
)

6

6
  ⇒  10 (

1

6
) + 21 (

1

6
) = 31 (

1

6
) 

In the example above, the right side is the identity fractional-equation which represents 

addition of two vectors in the vector space 𝑎𝑥𝑖 of numerical values of the sum 10 (
1

6
) + 21 (

1

6
) of 

the general identity equation 𝛼𝑥𝑖  + 𝛽𝑥𝑖  = 𝛿𝑥𝑖. By the use of the rules of addition of fractions 

and multiplication by a scalar in the vector space 𝑎𝑥𝑖, we take the basis-element as CF and 

combine the resulting two terms (coefficients) to obtain a single fractional term of 31 (
1

6
). If the 

basis-element 𝑥𝑖 is cancelled out from both sides of the equation, the equation reduces to the 

numerical trivial solution of 10 + 21 = 31 that represents simple addition of natural numbers in 

the field of the rational numbers. Like the exponential example above (or any solution to Beal’s 

equation), this example of adding fractions, as adding two vectors in a vector space, shows that 

the existence of the basis-element in the equation is an integrated part of the addition process of 

elements in the vector space and presents a valid justification of the intrinsic existence of a 

GCD monomial and the corresponding numerical GCD on the LHS of Beal’s equation once the 

equation is identified as a single polynomial identity.  

Basically then we can convert Beal’s terms to improper fractions and proceed to add two 

fractions as above which necessarily includes a common factor of the base in exponential form 

as that of the denominator of the same number expressed as a fraction, i.e. the LHS of Beal’s 

equation 33 + 63 =  35 can be added as fractions as 
81

3
+

1296

6
=

81

3
+

648

3
=

729

3
=

 36

3
=  35. 

Addition of different fractions than those of Beal’s equations produces fractions that simply 

cannot be expressed as perfect power terms. Therefore, Beal’s binomial identity is in fact a 

special fractional identity equation whose terms can be converted to perfect powers.   

Beal’s equation then is a single polynomial identity such that both of the LHS and the RHS 

are equal polynomial functions for every x in their domain. In other words, the numerical 

solution of Beal’s equation is a particular solution to the general polynomial identity 

equation 𝛼𝑥𝑙  + 𝛽𝑥𝑙  ≡ 𝛿𝑥𝑙 that represents addition of two vectors in the vector space 𝑎𝑥𝑙  as 

subspace of the general vector space of all polynomials over the field ℚ with basis 1, 𝑥, 𝑥2, 𝑥3 …, 

where 𝑙 is positive integer specific to a particular numerical solution of Beal’s equation.  
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2. Beal’s equation as single polynomial identity 

Lemma 2.1. Let 𝑧𝑐 be any number in exponential form such that 𝑐 ≥ 3; 𝑧, 𝑐 are positive integers . 

Then the term is intrinsically a product of two numbers in exponential form.   

Proof. The proof is obvious by the rules of exponentiation.                                                         

Corollary 2.1. Let Beal’s equation be  𝑥𝑎 + 𝑦𝑏 = 𝑧𝑐. Then each term of its numerical solution 

can be represented as a product of two numbers in exponential form. 

Proof. The proof follows from Lemma 1 and the restriction of Beal’s conjecture that 𝑎, 𝑏, 𝑐 are 

integers ≥ 3.                                                                                                                                  

Proposition 2.1. Let P be the vector space of all polynomials over ℚ and power basis 

1, 𝑥, 𝑥2, . . ., with the addition operation and scalar multiplication are defined as the usual 

polynomial operations. Further, let the set of all polynomials of the form 𝑝(𝑥) = 𝑎𝑥𝑙 for 𝑎 ∈ ℚ  

and 𝑙 > 2 is positive integer. Then for any particular 𝑙 the set of polynomials 𝑝(𝑥) is a subspace 

of  𝑷. 

Proof. We check the criteria of 𝑝(𝑥) = 𝑎𝑥𝑙  for 𝑙 = 3  ,  

a. Contains the zero vector 

For all 𝑎 ∈ ℚ 

Let 𝑎 = 0; 𝑝(𝑥) = 0 is a vector in the set. 

For any 𝑝(𝑥): 𝑝(𝑥) + 0 = 𝑝(𝑥) 

 

b. Closed under addition 

Choose 𝑎1𝑥3 and 𝑎2𝑥3 

 𝑎1𝑥3 + 𝑎2𝑥3 = (𝑎1 + 𝑎2)𝑥3 ∈ 𝑎𝑥3 

  

c. Closed under scalar multiplication 

Choose 𝑎1𝑥3 and the scalar 𝑏 

𝑏𝑎1𝑥3 ∈ 𝑎𝑥3 

We conclude that polynomials 𝑝(𝑥) = 𝑎𝑥𝑙, where 𝑙 = 3 are subspace of  𝑷. Similarly we 

can prove that 𝑝(𝑥) = 𝑎𝑥𝑙 is a subspace for any value of 𝑙 > 3.                                                 

 

Proposition 2.2. Let the general polynomial identity equation of 𝛼𝑥𝑙 + 𝛽𝑥𝑙 = 𝛿𝑥𝑙 represent 

addition of two polynomials in the infinite vector space  𝑝(𝑥) as in proposition 1 with 

coefficients in ℚ. Then the solution to the polynomial equation is every integer value of the 

indeterminate 𝑥. 

Proof. The proof is obvious by the rules of addition of polynomials since the polynomial 

equation is identified as identity and represents the sum of two elements in the subspace 𝑝(𝑥) of 

the general vector space P.                                                                                                            

  

Corollary 2.2. Let Beal’s equation represent the solution to the general polynomial identity 

equation 𝛼𝑥𝑙 + 𝛽𝑥𝑙 = 𝛿𝑥𝑙 with the numerical valuation leads to perfect power terms. Then, 

there exists a particular solution to Beal’s equation where the coefficients of each of the 

polynomial terms 𝛼, 𝛽, 𝛿 must combine with the numerical value of the basis  𝑥𝑙 to produce 

perfect power number. 
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Proof. The proof is straight forward by employing Lemma 1 and corollary 1 and the use of 

exponential rules since the polynomial identity defines terms in one-variable and that the 

numerical solution requires combining the coefficients of the terms with 𝑥𝑙.                              

 

Corollary 2.3. Let Beal’s equation represent the solution of the general polynomial identity 

equation of 𝛼𝑥𝑙 + 𝛽𝑥𝑙 = 𝛿𝑥𝑙  as in Corollary 2.2. Then the solution to the equation has a 

common polynomial GCD of 𝑥𝑙 and a common base of 𝑥 with numerical value.  

Proof. Since the general polynomial identity that represents Beal’s equation must have a 

common factor of  𝑥𝑙 as the basis element in the vector space 𝑝(𝑥) as in proposition 1, it 

follows that the specific solution of Beal’s equation must have a common base of the numerical 

value corresponding to that of the base 𝑥.                                                                                     

 

Corollary 2.4. Let Beal’s equation represent the solution of the general polynomial identity 

equation of 𝛼𝑥𝑙 + 𝛽𝑥𝑙 ≡ 𝛿𝑥𝑙  as in Corollary 2.2. Then, for 𝑙 > 2 there exists a solution to the 

equation where   𝑥𝑙   is a GCD polynomial. 

Proof. The proof is clear by corollary 3 and the argument above.                                                

3. Proof of Beal’s equation as univariate binomial identity  
 

Proposition 3.1. Beal’s equation is a univariate binomial identity with its expanded terms 

reduced to two terms. 

Proof. Firstly, Suppose Beal’s equations are not comprime. Then the general polynomial 

identity equation that represents Beal’s equation must be in the form of, 

 

𝛼𝑥𝑙 + 𝛽𝑥𝑙 = 𝛿𝑥𝑙                                                                  3.1 

 

where  α, β, δ, l are positive integers. 

 

Secondly, let the binomial identity be univariate as a special case. Its general form is, 

 

 (𝑥 + 𝑦)𝑛 = ∑ (
𝑛

𝑘
) 𝑥𝑛−𝑘𝑦𝑘

𝑛

𝑘=0

 

Expanding the RHS we get, 

 

 (𝜆𝑥 + 𝛿𝑦)𝑛 = 𝜆𝑛𝑥𝑛 +····· +𝛿𝑛𝑦𝑛                                               3.2 

 

For a special case, substitute 𝑥 for 𝑦 to get, 

 

 (𝜆 + 𝑦)𝑛 𝑥𝑛 = 𝜆𝑛𝑥𝑛 +···· +𝛿𝑛𝑥𝑛                                                                 3.3 

 

All the terms on the RHS have the same exponent since they are all have the form 𝛼𝑥𝑏𝑥𝑐; 

where 𝑎 + 𝑏 = 𝑛. Taking the first or last term to be the leading term because it is perfect power 
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and summing over the rest of the terms we can reduce the RHS to two terms representing 

Beal’s equation as in proposition 1. The equation becomes, 

 

 (𝜆 + 𝑦)𝑛 𝑥𝑛 = 𝜆𝑛𝑥𝑛 + 𝑘𝑥𝑛                                                   3.4 

 

By comparing equations (3.1) and (3.4) and equating coefficients we obtain 𝛼 =  (𝜆 + 𝑦)𝑛, 

𝛽 = 𝜆𝑛and 𝛿 = 𝑘. The two equations are then equivalent.                                                           

 

Corollary 3.1. For > 2 , all solutions to Beal’s general equation (1) are solutions to the 

binomial identity equation (3.4). 

Proof. It is easy to see that the powers of the terms of equation (3.4) are ≥ 𝑛. This is because 

they are evaluated according to the value of the coefficient k in the last term to produce Beal’s 

equation by setting the variable 𝑥 = 𝑘. In the case of the binomial  (𝜆𝑥𝑙 + 𝛿𝑦𝑙)𝑛of power 1, k 

can take the value of either 𝜆 or 𝛿 and the final powers are dependent on the power of the 

variables 𝑙. This produces powers of the terms of Beal’s equation ≥ 3 if 𝑙 ≥ 3 according to 

Beal’s conjecture.                                                                                                                          

4. Appendix A: Beal’s examples from direct expansion of binomial identities 

(1) 

The following are examples of numerical solutions of Beal’s equation derived from direct 

expansion of binomial identity (1).  

 

From binomial of power 3 with signature 𝒂, 𝒃, 𝒄 = (𝟑, 𝟒, 𝟑): 

 

Example 4.1 (3𝑥 + 𝑦)3 gives, 

 

(3𝑥 + 𝑥)3 = 33𝑥3 + 3 · 32𝑥3𝑥 + 3𝑥2 · 3𝑥 + 𝑥3 

 

(4𝑥)3 = 33𝑥3 + 37𝑥3 

 

Which upon substituting 𝑥 with numerical value 37 gives Beal’s equation, 

 
1113 + 374 = 1483 

 
Example 4.2 (4𝑥 + 𝑦)3 gives, 

 

(4𝑥 + 𝑥)3 = 43𝑥3 + 3 · 16 · 𝑥2𝑥 + 3𝑥2 · 4𝑥 + 𝑥3 

 

Taking 43𝑥3 as the leading term since it makes a perfect power and simplifying we get, 

 

(5𝑥)3 = 43𝑥3 + 61𝑥3 
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Which upon substituting 𝑥 with numerical value 61 gives Beal’s equation, 

 
2443 + 614 = 3053 

 

If we take the perfect power term 𝑥3 as the leading term we get Beal’s equation, 

 

1243 + 1244 = 6203 

 

Example 4.3 (5𝑥 + 3𝑦)3 gives, 

 

(5𝑥 + 3𝑥)3 = 53𝑥3 + 3 · 9𝑥2 · 5𝑥 + 3 · 25𝑥2 · 3𝑥 + 33𝑥3 

 

(8𝑥)3 = 53𝑥3 + 387𝑥3 

 

Which upon substituting 𝑥 with numerical value 387 gives Beal’s equation, 

 
19353 + 3874 = 30963 

 
From binomial of power 4 with signature 𝒂, 𝒃, 𝒄 = (𝟒, 𝟓, 𝟒): 

 
Example 4.4 (𝑥 + 𝑦)4 gives, 

 

(𝑥 + 𝑥)4 = 𝑥4 + 4𝑥3 · 𝑥 + 6𝑥2 · 𝑥2 + 4𝑥 · 𝑥3 + 𝑥4 

 

(2𝑥)4 = 𝑥4 + 15𝑥4 

 

Which upon substituting 𝑥 with numerical value 15 gives Beal’s equation, 

 

154 + 155 = 304 

 
Example 4.5 (2𝑥 + 𝑦)4 gives, 

 

(2𝑥 + 𝑥)4 = 24𝑥4 + 4 · 23 · 𝑥3 · 𝑥 + 6 · 4𝑥2 · 𝑥2 + 4 · 2𝑥 · 𝑥3 + 𝑥4 

 

(3𝑥)4 = 24𝑥4 + 65𝑥4 

 

Which upon substituting 𝑥 with numerical value 65 gives Beal’s equation, 

 

1304 + 655 = 1954 
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From binomial of power 5 with signature 𝒂, 𝒃, 𝒄 = (𝟓, 𝟔, 𝟓): 

 
Example 4.6 (𝑥 + 𝑦)5 gives, 

 

(𝑥 + 𝑥)5 = 𝑥5 + 5𝑥4 · 𝑥 + 10𝑥3 · 𝑥2 + 10𝑥2 · 𝑥3 + 5𝑥 · 𝑥4 + 𝑥5 

 

(2𝑥)5 = 𝑥5 + 31𝑥5 

 

Which upon substituting 𝑥 with numerical value 31 gives Beal’s equation, 

 

315 + 316 = 625 

 
Example 4.7 (3𝑥 + 𝑦)5 gives, 

 

(3𝑥 + 𝑥)5 = 35𝑥5 + 5 · 34𝑥4 · 𝑥 + 10 · 33𝑥3 · 𝑥2 + 10 · 32𝑥2 · 𝑥3 

+5 · 3𝑥 · 𝑥4 + 𝑥5 

 

(4𝑥)5 = 35𝑥5 + 781𝑥5 

  

Which upon substituting 𝑥 with numerical value 781 gives Beal’s equation, 

 

23435 + 7816 = 31245 

 

From binomial of power 7 with signature 𝒂, 𝒃, 𝒄 = (𝟕, 𝟖, 𝟕): 

 

Example 4.8 (2𝑥 + 𝑦)7 gives, 

 

(2𝑥 + 𝑥)7 = 27𝑥7 + 7 · 26𝑥6 · 𝑥 + 21 · 25𝑥5 · 𝑥2 + 35 · 24𝑥4 · 𝑥3 + 35 · 23𝑥3 · 𝑥4 + 21 ·

22𝑥2 · 𝑥5 + 7 · 2𝑥 · 𝑥6 + 𝑥7  

 

(3𝑥)7 = 27𝑥7 + 2059𝑥7  

  

Which upon substituting 𝑥 with numerical value 2059 gives Beal’s equation, 

 
41187 + 20598 = 61777 

 

Beal’s equations of orders different than (𝑛, 𝑛 + 1, 𝑛) may be produced by binomial of power 1, 

characterized by equation (2) as shown in appendix B. 

5. Appendix B: Beal’s examples following the general equation (2) 
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The following are examples of numerical solutions of Beal’s general equation 𝛼𝑥𝑙  + 𝛽𝑥𝑙  = 𝛿𝑥𝑙. 

The examples show how we can take the GCD of 𝑥𝑙 on the LHS of the equation and combine it 

with the sum of the coefficients by the power rules to produce the RHS.  

Example 5.1 The equation 703 + 1053 =  354 complies with Beal’s conjecture. Factoring the 

GCD of  353 from the LHS we obtain ( 33 +  23) 353. Simplifying we obtain 35 ∙ 353 =  354; the 

RHS of the equation. The characteristic 𝑥𝑙   here is 353 and the point of intersection with the 

line 𝑥 − 𝑦 = 0 is (35, 35), and the corresponding binomial of power 1 is ( 33 𝑥3 +  23𝑦3)1. 

Example 5.2 For the equation 76 +  77 = 983, taking CD of 73 from the LHS we get ( 73 +

 74) 73. The sum of the coefficient terms yields 2744 which can be shaped to 143 by taking the 

third root, which produces the RHS of the equation upon combining the terms by the power rule 

of the product of two numbers having the same exponent. If we factor out the GCD of  76 from 

the LHS of the equation, the expression becomes (1 + 7)76 and can further be expressed 

as  23 ∙ 76. Simplifying we get 23 ∙ 493 =  983; the RHS. This example works with two 

possible CF because the GCF of the characteristic 𝑥𝑙 can be shaped to 𝑥𝑙 = 𝑥2𝑛 representing 

 𝑥𝑙 =  76 and  𝑥𝑛 =  73. 

 

Example 5.3 For the equation 345 + 514 = 854, factoring the GCD 174 gives 25 ∙ 17 ∙ 174 +  34 ∙

 174 =  54 ∙  174 = 854; the RHS. The characteristic 𝑥𝑙   here is 174 and the point of intersection 

with the line 𝑥 − 𝑦 = 0 is (17, 17). 

Example 5.4 The LHS of the equation  7603 + 4563 = 1524 can be factored to the product of 

base primes and becomes 53 ∙ 29 · 193 +  33 ∙ 29 · 193. The two terms now can be combined to 

yield ( 33 + 53) 29 · 193, and by shaping 29 to  83 the expression becomes ( 33 + 53) 83 · 193 

with a GCD of  1523 to yield 152 ∙ 1523 = 1524; the RHS. The characteristic 𝑥𝑙   here is 1523 

and the point of intersection with the line 𝑥 − 𝑦 = 0 is (152, 152). 

Example 5.5 Let’s consider the equation 274 + 1623 = 97. By factoring the GCD 274 we 

get (1 +  23)274, which becomes 32 ∙ 312 and produces 314, which can be shaped to produce 97; 

the RHS of the equation. The characteristic 𝑥𝑙   here is 274 and the point of intersection with the 

line 𝑥 − 𝑦 = 0 is (27, 27). It is important to make sure that the sum-term on the RHS of the 

equation has not been shaped differently before we judge whether the resulting equation is 

identical to the given one. 

Example 5.6 Another example to beware of the end result as deemed different is the 

equation  335 + 665 = 10893. The GCD on the LHS of the equation is 335. Simplifying we 

get (1 + 32)335 = 336, which can easily be shaped to 10893; the RHS of the equation. The 

characteristic 𝑥𝑙   here is 335 and the point of intersection with the line 𝑥 − 𝑦 = 0 

is (33, 33).The same goes with the equation  83 + 83 = 45; we get the sum as 210 or   322 which 

can be shaped to 45. The last example simply can be simplified by shaping the terms to  29 +

  29 = 210, which simplifies as  2 ∙  29 =   210. It is obvious here that both terms on the LHS have 

the same prime base-unit of 2 no matter what shape the terms take. Compare here with the 

special case of the equation of a circle in the introduction of   𝑥2 + 𝑦2 = 𝑐𝑧 that produced the 

equation 22 + 22 = 23 at the intersection point of (2,2) with the line 𝑥 − 𝑦 = 0, and by Beal’s 

condition of single-power integer terms. Also compare with the case of the vector space 𝑎3𝑙, of 
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variable equals 3, we can add three terms and get  3𝑙 + 3𝑙 + 3𝑙 = 3𝑙+1 and we can add four 

elements in the vector space 𝑎4𝑙 , of variable equals 4, to get  4𝑙 +  4𝑙 +  4𝑙 +  4𝑙 =  4𝑙+1 and 

so on.  

Example 5.7 By factoring the GCD of 193 from the LHS of the equation 194 + 383 = 573 we 

obtain (19 + 8) 193. Simplifying we get  27 ∙  193 which by shaping 27 becomes  33 ∙ 193 and 

yields the RHS of the equation. The characteristic 𝑥𝑙   here is 193 and the point of intersection 

with the line 𝑥 − 𝑦 = 0 is (19, 19). This is the example in the introduction with corresponding 

binomial of power 3 is (2𝑥 + 𝑦)3. 

 

Example 5.8 By factoring out the GCD of  8012 from the LHS of the equation  8012 + 8013 =

15360004 we obtain (1 + 80) 8012. Simplifying we get  81 ∙  8012 which becomes 34 ∙ 8012, 

and by shaping  8012 as  5120004 we get the RHS of the equation. The characteristic 𝑥𝑙   here is 

8012 and the point of intersection with the line 𝑥 − 𝑦 = 0 is (80, 80). 

 

Example 5.9 By factoring out the GCD of  283 from the LHS of the equation 843 + 283 = 284 

we obtain (27 + 1) 283. Simplifying, we get  28 ∙  283 which becomes the RHS. The 

characteristic 𝑥𝑙   here is 283 and the point of intersection with the line 𝑥 − 𝑦 = 0 is (28, 28). 

 

Example 5.10 By factoring out the GCD of  18383 from the LHS of the equation  18383 +

974143 = 55144 we obtain (1 + 148877) 18383. By borrowing 1838 factor from the 

coefficient term and simplifying we get  81 ∙  18384. The 81 can be shaped to 34 and the 

product yields the RHS. The characteristic 𝑥𝑙   here is 18384 and the point of intersection with 

the line 𝑥 − 𝑦 = 0 is (1838, 1838). 

 

Remark The author has checked many of Beal’s numerical equations and found that they all 

comply with the assumption that Beal’s equation is an identity with characteristic equation as 

expressed in equations (1) and (2). 

6. Conclusion 

The general equation of Beal’s conjecture is identified as a univariate algebraic identity derived 

from algebraic expansion of powers of binomials and defined at the points of intersection of the 

identity equation with the line 𝑥 − 𝑦 = 0. Therefore the equation is characterized by a common 

bound variable that defines a common factor. The identity was represented by the addition of 

two vectors in the vector space of the set of all polynomials in the form 𝑝(𝑥) = 𝑎 𝑥𝑙 for 𝑎 ∈ ℚ 

as a subspace of the infinite vector space over ℚ of all polynomials with basis 1, 𝑥, 𝑥2 … The 

identity was contrasted with the addition of two fractions that produces similar fractional-

identity equation. As an integer solution, it was found that Beal’s general equation is a binomial 

identity. It is concluded that identifying Beal’s equation as a univariate binomial identity 

presents a proof to Beal’s conjecture. 
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