Move the tip to the right — A language based computeranimation system in
Box2D

Frank Schroder
November 26, 2017

Germany, unpublished manuscript

Abstract

Not only “robots need language”, but sometimes a human-
operator too. To interact with complex domains, he needs a
vocabulary to init the robot, let him walk and grasping objects.
Natural language interfaces can support semi-autonomous and
fully-autonomous systems on both sides. Instead of using neu-
ral networks, the language grounding problem can be solved with
object-oriented programming. In the following paper a simulation
of micro-manipulation under a microscope is given which is con-
trolled with a C++ script. The small vocabulary consists of init,
pregrasp, grasp and place.
Keywords: Robotics

Contents

1

[2__Theoretical background| 1
2.1 Interactiv ntrolf 1
[2.2 _Symbolicplanning|. 2
[2.3 Domainknowledgel 2
[2.4 More about language grounding| 4

2.5 Action Primitivesl. 4

[2.6 Planning vs. language interface| 5
[3_Not working principles| 6
[3.1 Artificial Life and Learning| 6
[3.2 Deeplearning| 6
[4 Tmplementation| 6
4.1 Simulation in Box2D|. 6
[4.2 Programming| 6
4.3 readingl 7
4.4 Scalingup| oo 7
[References 7

1 Introduction

The most dominant problem in robotics is the optimal control
problem:

“Optimal control theory has received a lot of attention in
the last 50 years, and has found numerous applications
in both science and engineering” [20, page 1]

Many attempts in literature were started to solve this problem.
The reason why most of them fail is because the problem was
tried to solve with algorithmic methods. In most cases a reward
function is used, not because this is the right way, but because
this can described easier in mathematical formulas. Scientists
belief, that the optimal control problem can be handled inside
the area of mathematics, but they forget that the problem space
is too big.

In the following thesis a better approach is presented which
utilizes natural language and a symbolic planner for storing do-
main knowledge into normal C++ sourcecode. This approach
has nothing to do with neural networks, reinforcement learning
or genetic algorithms instead the human-machine interface gain
the attention.

2 Theoretical background

2.1 Interactive control

The normal and most easiest way of controlling a robot is interac-
tive manual control.[14] In most cases this is done with a remote
control on which the human operator presses buttons. From the
artificial intelligence point of view this paradigm is not the right
one because the robot doesn’t react autonomously instead he
is dependent on the control signals from a person. But from an
engineering perspective this kind of interface is the best way to
develop more complex control algorithms.

For a toy rc-car the remote control has no more then 4 but-
tons: forward, backward, left and right. If the robot is more com-
plicated for example an UAV drone or a biped robot, the number
of buttons increases up to 20 or even more. This kind of remote
control is very difficult to handle. The aim for the engineers is to
build a more easier remote control with less buttons.

The best-practice method in reaching that goal is to use nat-
ural language. Instead of using technical oriented buttons like
“joint #1 left”, the buttons get a nametag like “move left leg up” or
“init”.The new question is, how to connect the tags with concrete
actions. The most simple approach is to use joint patterns. A
action like “move leg right” will trigger the command “joint(0,2)
for 1 seconds”. The connection between a button and a servo-
command has to be programmed manually in a software engi-
neering process. After that, the user has a interface like a midi-
keyboard which is used by musicians who overlay the keys with

standup ()
walkright ()
walkright ()
handdown ()
graspapple ()

Figure 2.1: macro “grasp apple”

a dedicated sample. With this set-up, the operator can play with
the robot, he can press buttons in every order and see the im-
mediate result.

In academic literature this concept is sometimes called lan-
guage grounding, because words are connected to action. A
more suitable way is the term “language interface”, because the
system works like a mouse as a connection between a natural
person and a machine. For the robot it is the same, if the oper-
ator knows the command-name or not. For the robot all actions
are only numbers which are send to the servo motors. But for the
human operator natural language action-names makes the inter-
action much easier. He can create more advanced movement if
hew knows the meaning of each button.

2.2 Symbolic planning

The second part of a robot-control-system after the language-
based animation patterns is a symbolic planner. This is well
known under the Term PDDL and is able to bring a symbolic
system in a goal state. In literature the “monkey and banana”
problem is widely discussed,[18] but | want to use for clearness
another example. Suppose, the robot should stand up, walk to
the chair and grasp the apple. The naive technique would be
that the human-operator uses his midi-like keyboard and press
the right buttons in sequence. After some trials he will fulfil the
task.

The next better approach would be, that the human operator
not directly presses keys but writing a small script. This could be
the macro in figure It consists of textual commands which
will trigger animation actions. The problem with this script is, that
it is not flexible enough. The robot must be at the right place to
start the macro. If the robot is standing now in front of the table,
the script would again do walkright to the table, even if makes no
sense.

The third and most advanced problem solving technique is to
use the above mentioned PDDL-like planner to take the apple.
At first, the actionnames get two additional parameters: precon-
dition and effect. With this additional specification, the high-level
planner can bring the system to any state. He tries out the com-
mands in different order and see if the conditions matches the
rules. The implementation of the planner itself and the precondi-
tion / effects declaration must be done manually. It is not possible
to use machine learning or similar technique. It is more a ques-
tion of C++ programming and trial&error.

Classical planning In classical planning the usage of sym-
bolic notation is preferred. Symbolic means, that there is no di-
rect meaning behind the symbols and the planner acts more like
a nonsense generator which combines words together. | want to
give a short example.

robot is left
walkright
robit is middle
walkright
robot is right

event:
action:
event:
action:
event:

Figure 2.2: action and effects

The first step is to declare events which can happen in the
simulation. The events could be: robot is left, robot is in the
middle, robot is right. The event alone is only a string, it is a
symbol which is nothing more than a variable in the program,
perhaps this one “event="robotisleft””. The symbolic planner itself
is not able to connect an event to a real situation, he only knows
that a list of events is possible.

The action are operators in the game. An action could be
“walkleft” and results in a certain effect. In figure is a short
logfile given which describes the transition of the system. It looks
like a text-adventure game where the player has commands and
the system reacts. In the given example the robot is at the begin-
ning left on the screen, and the operator moves him to the right.
To bring the system in a certain goal-state a PDDL-like planner
is often used. In the simplest form the planner is based on brute-
force technique. He tries out different actions and evaluate the
results. The best action plan is presented as the solution.

This form of planning works reasonable well because of the
symbolic nature of the rules. There is no physics-engine in the
loop, the planner is focussed only on event-strings and actions
which can be executed. And yes, to create such a symbolic plan-
ner, not reinforcement learning is the right way but it's more the
programming and understanding of the given domain. The pos-
sible actions of a biped robot are different from the actions of a
UAV drone. The best method to specify the rules correctly is to
control at first the system by hand with a remote control, note
down what the operator has done and formalize the domain in
computercode. That’s are very old but effective technique which
works in every case. To improve the process, classical software-
engineering techniques like bugtracking, versioncontrol systems
and wikis are helpful. Sometimes it also helps to increase the
number of people who are involved in the process. |f more pro-
grammer are available the software can be developed faster.

Example [16] gives on page 5 an example how actions are for-
mal described. The figure looks like a C++ class and consists of
elements like: length, subaction, motion, involved agent, precon-
ditions and so forth. A simple action can be seen as a instance
in an array and the planner has to pickup the actions and bring
them into right order. The overall system is called Jack-MOO
and has many avatars which are controlled via language.

2.3 Domain knowledge

To program a robot-control-system some external knowledge
has to utilize first. In the literature the storing of such knowl-
edge is widely discussed [23][17ﬂ and most authors come to
the conclusion that semantic networks, RDF-triples and frames

Ton page 10 Schulz criticises RDF triple storage as too ambiguous and that
different modelling techniques comes to different results.

are the best way to do that. | have a different opinion. Stor-
ing knowledge is not a big deal, normally knowledge is stored
in sourcecode directly. And sourcecode is written in one of the
major programming languages. RDF-triple is one possibility but
simple C++ has the same capabilities. The more important prob-
lem is the question from where the knowledge come from. That
can’'t be answered by robotics itself, even the computer science
doesn’t know it. Because knowledge comes in every case from
outside. From normal academics books which describing lan-
guage, art, physics and so on. This sort of knowledge is in most
cases not formalized. Instead it is written in natural language
and in some cases also images are used to describe it.

The most interesting subject from robotics knowledge can
come from are the arts: painting, music and dance. Between
art and Artificial Intelligence is a huge gap. On the one hand we
have the traditional history of painting which is more then 5000
years old on the other hand we have the advanced robotics re-
search which is a spin-off from mathematics and is not older than
50 years. To connecting both disciplines is a motivating task.

The resulting machine would be an art creating robot. A robot
that can handle oil painting and sheet of paper. That domain
is interesting especially because an art-doing machine has no
dedicated purpose. He draws lines and colours on a white grid
and is not economical productive like a robot who makes cars. A
robot who is devoted to art, is focusing the attention away from
robotics into the external domain where the knowledge is stored
in reality. For painting an image, some kind of knowledge about
impressionism is necessary. That domain-specific knowledge is
in most cases available, otherwise it would not be possible for
humans to paint. All what the robotics programmers have to do is
search for art-related information and transfer it into a computer
program.[7,, 8]

On the formal way, art and artificial intelligence has nothing in
common. .The first is oriented on creativity and the second is
based on abstract mathematics. But in one aspect both subjects
are equal. They want to create something new. The aim of an
artist is to paint something which was never drawn before, and
robotics engineers tries to build machine which are also innova-
tive. So the general direction in which the disciplines are focused
is the same.

In university day-life both subjects are separated from each
other. Artificial intelligence and robotics is normally situated
into the hard-core science department together with physics and
mathematics, while art is often reached on art-schools outside
normal universities buildings together with singing, dancing and
writing. And in most cases robotics programmer and artists who
paint images by hand are not talking to each other. They know
from each other but they stay away from the others business.
But makes this separation sense? Wouldn't it be bether to teach
robotics in an art school and teach painting in a math-class?

There are working examples out there for example, fractals
are art which are researched by hard-core mathematicians and
sometimes artists are using a standard irobot Roomba robot for
creating chaotic painting on the floor. Every discipline alone
makes no sense. Computer-programming alone can not answer
the question what to do with a computerprogram, and art alone
have no knowledge about algorithms. But both disciplines com-
bined together are a powerful new kind of science which could
enrich the future.

Storing knowledge, but how exactly? The most common
technique in Al literature for storing domain knowledge are:

e Rules
e Frames
e Semantic networks

e Ontologies

predicate logic
e neural networks with word2vec

These techniques are often cited and are discussed over many
years in the past. At first it is important to know, that non of them
will work in practice. Behind every technique is a good idea, but
real-life demonstration on a concrete example is not available. It
is more an academic game to discussing the above mentioned
ideas without ask if they are useful or not. The best term to
describes this ideology is “academic artificial intelligence”:

“Definition of game artificial intelligence on the other
hand is slightly different from that of the (academic) ar-
tificial intelligence and it follows other goals.” [13} page
2]

The only form of storing knowledge, and which is widely used
in robotics challenges and computergames is traditional object
oriented programming. The nearest technique on the list is
“frames”, but object oriented programming can a lot more.

Here a short description of how the transfer of domain knowl-
edge into a computer-program works. At first, some information
are needed about the domain. In most cases these descriptions
are available in books and in replays of human players who are
involved in the domain. As an example the needed knowledge
could be 20 books about football playing, some Videos of real
football games, and perhaps a simulation as a computergame.
This information describes the domain in detail via text, videos
and images. The next step is, that a human programmer reads
all the material and becomes an expert for this domain. After
that, a first semi-autonomous prototype of a robot is constructed
which is controlled manually. That means, a human operator
with a joystick generates the control signals. The next step is
the most important step in the overall process: A language to
animation interface. That is the core of the Al system and it is
written in C++. It consists of one or more C++ classes which
provides functions for solving the game. In the football domain
a class “shot the ball” is possible, and inside the class there are
methods like “pass ball”, “take ball” and so on.

This process which is called in the Al literature “knowledge
engineering” is in reality that what ordinary C++ programmer do,
who are programming the Al for a commercial computergame.
They translate the given information into runnable C++ source-
code. As tools for improve their efficiency they are using C++
IDEs, bugtracker, wikis, scrum-meetings, versioncontrol, testing
of code and a lot of manpower.

Automation of this core process of programming an Al is not
possible. So it’s bit funny to compare the academic Al literature
which talks about frames and semantic networks, with the reality
which is 100% normal programming in a high level language. |

want to go a step further: it is not possible storing knowledge out-
side a C++ program, for example in vocabulary lists, RDF triples
or as predicate logic. The reason is, that these alternatives are
not powerful enough (a vocabulary list can not be executed in
Linux) or they not support very well the adding of new knowl-
edge like predicate logic which is programmed in Prolog. So,
C++ sourcecode is the only way to store knowledge. The vo-
cabulary of the given domain is reflected into the class names
and method names, the logic of tasks are hand-coded as C++
statements and for-loops. As a consequence, knowledge en-
gineering and C++ programming is exactly the same and other
techniques likes Protege ontologies or Frames only support the
development of C++ code.

To measure the progress of knowledge engineering the tradi-
tional “lines of code” is a good indicator. It means, if the domain
is small like a pick&place robot, only a few lines are necessary,
if the domain is complex like a football-playing robot much more
program code is used for storing the knowledge.

2.4 More about language grounding

Language grounding is the name for the problem of how to con-
nect natural language to animation actions. More or less, until
today the problem is unsolved ecause the natural language
describes a task on a knowledge level while lowlevel animation
control is oriented on number values. To give a short example:
A description in formal language of a task could be “stand up,
go to left, sit down”. For parsing the phrase the syntax or even
grammar level is not enough. It gives no additional advantage if
the software knows, that “go to” is a verb and that the comma
separates the actions. It is not a question of the vocabulary of
“sitting” instead the concept is situated in the domain of puppet
theatre. That has to do with art of animation and how characters
can move.

To solve the language grounding problem it is necessary
to connect lowlevel servo commands with high-level domain
knowledge[1], in this example with highlevel character animation
knowledge. To store domain knowledge in formal way is also an
unsolved problem. Languages like Prolog or RDF—triples are not
powerful enough.

The trick is to find a way around the language grounding prob-
lem. And here comes interactive animation into the game. In-
teractive animation means, that a human operator is in the loop.
With that trick his domain knowledge will be used for control the
character. So the language grounding problem will be trans-
formed into a interface problem. How should a man-machine
interface looks like to control a character by words?

In most cases the interface consists of buttons which are
named with words. The above phrase “stand up, go to left, sit
down” can be executed because the human operator has three
buttons which he presses after each other. It is comparable to
a midi-keyboard which activates sound-samples but in this case
the sample are motion pattern from the avatar.

With this little trick it is possible to create a language interface
without formalize the domain knowledge into a database. In-

20ne author believes, that symbol grounding problem has been solved: “Each
agent builds up a semiotic network relating sensations and sensory experiences
to perceptually grounded categories and symbols for these categories” [19) page
26]

stead, in every situation a puppet master will be in the loop and
he controls the robot. A second positive effect is, that a working
language interface can used again for a symbolic planner. If the
system has already buttons like “sit-down” and “go-left”, it is eas-
ier to extend the buttons to a complete work-flow with actions,
preconditions and reward values.

The baseline for advanced robotics system is a interface which
connects two sides: on the one hand the interface is utilized by
a human with normal words. On the other side the interface con-
trols a robot, he need number values for the servo-motors. How
exactly the interface has to look is depending on the domain. A
language interface for controlling a soccer robot consists of dif-
ferent vocabulary than an interface for an industrial robot.

Technical realization From sourcecode point-of-view the im-
plementation of a language interface is easy. A simple C++
method is enough which gets at a parameter a std::string with
the name of an action, e.g.:

action("go to left");

Inside the method some lowlevel commands will send to the
motor which drives the robot. A little bit more complicate is to
implement a complete language interface for a domain. There-
fore, the words have to be defined, the possible conflicts and the
lowlevel-servo-commands. If the robot has additional dynamic
aspects, that the case for biped robots which must balance the
legs, than the programming task is a way more complicated. In
most cases the domain-problem must be understand first and
only as a second task can be implemented as sourcecode. To
make it a little clearer: the domain knowledge has to be trans-
ferred from art-books about theatre and dance-motions into C++
code and natural language activates the subroutines.

This process itself can not be formalized. It is located in
the software-engineering-layer and will be completed with the
same tools, as computergames and operating system are pro-
grammed. At first, a developer team with skilled programmer is
needed, than a concrete goal what the teams want to reach, a
bugtracker, a shared programming language and a versioncon-
trol system [21] are used for communicating to each other.

I’'m not sure, if the process of creating a language interface
can be done easier with the help of neural networks. In the lit-
erature there are some example where instead of programming
the system by hand, deeplearning was used to connecting words
with actions. The problem with this idea is, that the domain-
knowledge is lost, instead the neural networks is trained by ab-
stract reward functions. So I'm in doubt if this will work.

Perhaps the domain-knowledge is stored into the examples
which are demonstrated to the neural network. An action con-
sists of a word and a servo pattern. But here is also the risk
high, that important information can be lost and at the end the
overall system will not work.

2.5 Action Primitives

In the literature the term Movement Primitive is used as least
since the 1980s. The first one was [10] who runs “Task primi-
tive” to get complex movement with Utah/Mit dexterous robotics
hand. Later, [16] has the same idea and called it “Parameterized

action representation (PAR)”. In the 2000s Stefan Schaal intro-
duced “Dynamic movement primitive” [15] for controlling a robot.
What these concepts have in common is, that inside the software
possible subactions are stored in a database. This database is
utilized later by the planner to bring the system to a goal-state.

Let us categorize the idea a little in the context of Al history in
general. Widely known is Shakey the robot which at first time has
a goal-planner, called STRIPS which worked on a symbolic level.
Later, the STRIPS concept was extended to PDDL-planning. On
the other hand in robotics, there is a question called optimal con-
trol problem, which searches for an algorithm to realize a cer-
tain movement. Optimal control is often solved with reinforce-
ment learning, neural networks or even RRT state-space search.
Bringing both ideas together is not easy. On the one hand in the
PDDL context the items are expressed on an abstract symbolic
level. They are nothing more than words. On the other low-
end side were optimal control is located the domain is oriented
on mathematical values and reward functions. So the idea is to
connect both and in the middle are the Movement Primitives.

For getting into detail a look on page 5 in [16] helps. There
is a figure given which shows the main elements of a “Parame-
terized action representation (PAR)”. The description looks sim-
ilar to pddl-like subactions. It is an object instance, consisting
of fields like name, precondition, effect, duration, context, af-
fected objects and so forth. It is not important to realize all fields
in the own robot control system, the idea in general is remark-
able. It can be described as some form of sqgl-database. A robot
has some entries in his sql-database and with these patterns he
plans on a abstract level the actions. The advantage is, that the
in contrast to “behaviour trees” the order of the actions are no
longer fixed, but can be rearranged in every direction. Colloquial
this technique is called GOAP (goal oriented action planning)[9]
and is widely used by the gaming-industry. According to the
above cited literature it is possible to transfer it to the optimal
control problem in the robotics domain.

Now | want to explain the background in detail. From gamethe-
ory it is known that a game consists of states and action. A state
is a node in the gametree, and an action brings the game to new
node in the tree. That is the basis for most chess engines, which
are searching the gametree for a goalstate, where the opponent
is beaten. Movement primitives are heuristics for reducing the
possible actions in every gamestate. Only some of them which
full-fill the precondition can be executed as a certain point. An
example: If the robot’s hand is not over the apple, he can’t acti-
vate the grasp-action. To grasp the apple, the robot’s hand must
be at first over the apple. So, action primitives are some kind
of gamerules which describes the possible movements. With
that knowledge, a planner can search the gametree in a shorter
amount of time. Like the search procedure in computerchess,
the planner wants to reach a certain goalstate.

Movement primitives are a way for a structured storage of
heuristics about the game. It is possible for the game designer
to modify the movement library so, that the planner can bring the
robot to a given state. That can be anything, from grasping an
object up to walking to a point in the room. Oh | forget, there was
another author in history of Al who used the same principle. [2]
is a dissertation from the year 2013 which uses the same prin-
ciple but this time it is called “diverse actions” and is related to
planning with options.

Not all authors are using the same principle in their movement
primitive. [15] is based on neural networks, while [16] is based
on fixed values in a database. In general there are two possibili-
ties for storing movement primitives. The easiest form is to store
fixed patterns. A action is nothing more than joint-movement with
a value. It consists of a duration and a parameter. More com-
plexity can be reached if the action movement is seen as a com-
puterprogram which is learned via neural networks or genetic
algorithms. In that case (which is the concept of [15]) the action
primitive consists of a parameter which fluctuates a chaotic func-
tion. And the function drives the servo-motor. In this case, some
kind of movement compression is reached automatically and it
is well suited for storing motion capture data.

2.6 Planning vs. language interface

For realization of a robot-control-system there are two core mod-
ules. First, the language-to-animation interface and second a
high-level-symbolic planner. The second one is more popular in
the computer-science-community because it works like a soft-
ware should work. Because a planner consists of conditions
which have to be satisfied and a solver which uses brute-force-
searching to reach a goal. This kind of software-category is well
understood and easy to implement. The bad news is, that a sym-
bolic high-level-planner is the less important part of the overall
system. Because a planner requires knowledge which is stored
in a formal way. Knowledge about the domain, possible actions,
the task-ontology, mathematical functions like inverse kinemat-
ics and so on. In case of doubt there is no specified domain-
knowledge available so the planner is useless.

The better, but more difficult way for programming robots, is
to ignore the symbolic planner and focus on the language-to-
animation interface. Especially if the domain is complex it is the
better approach for automating tasks. For realizing such sys-
tems modelling techniques like object oriented design will help.
It is normally used for programming computergames and desk-
top applications but can be transferred to the area of agent-
programming.[3]

A finished languge-animation-interface is equal to an API.
In literature this is called a vocabulary list or an ontology and
means, that there are actions and subactions defined which can
be called from outside. An example action would be “manipu-
late.grasp(objectA)”. This action accesses the class “Manipula-
tion” and the subaction “grasp”. Usually, the action-names de-
pends on the domain-model. In the above example the robot is
able to grasp and ungrasp objects. The mapping between lan-
guage to actions is on the programming level equal to call a C++
method.

The technique to realize such systems is twofolded: one the
programming side, skills in object-oriented programming with
C++, and object-oriented modelling with UML diagrams are
necessary. On the domain side, knowledge about vocabulary,
domain-specific literature and important cases is utilized. To
combine both sides a programming challange is required. For
example:

The teams in a coding challenge get the task to program a
robot who should search for objects in a maze, collect the objects
and brings them to the trashcam. The task is described in normal
english and a drawing of the robot, the map and the objects are

given. The transformation from the domain-specific mission to
runnable C++ sourcecode is done in a certain amount of time
by the programming team. Normally, they will talk to each other
about the solution and then implementing the code with C++. At
the end, in the evaluation phase, the results from different teams
are compared and perhaps not all teams were successful with
their robot.

3 Not working principles

3.1 Artificial Life and Learning

In the literature not only manual definition of knowledge via
sourcecode is discussed but also a technique called artificial
life.[12] The idea is to establish a challenging environment where
simulated organisms like fishes must search for food. The
fitness can be improved with acquired behaviours which are
learnt through trial&error, from other species and with reason-
ing. Sometimes a learned vocabulary is used.

Can this concept improves the programming drastically? Un-
fortunately not. The possible actions of the simulated fished are
too simple, it is not possible for the meta-algorithm to generate
a high-performance path-planner from scratch or ask Wikipedia
for knowledge about which food is right. So most of these exper-
iments are not really demonstrations in artificial life, but there are
agent-development-kits. The game-engine is preprogrammed
and the player can write small code pieces for controlling the
robots. Atrtificial life and vocabulary learning are not techniques
for programming a robot-control-system, but it is a didactic con-
cept for explaining game-programming and artificial intelligence
to newbies. Perhaps it is comparable to the logo programming
language which is also a teaching tool for the classroom.

3.2 DeeplLearning

The roots of Cybernetics can be dated back to the science of
psychology. The researchers in the 1950s tried to explain human
behaviour. Even today, many artificial intelligence projects are
not oriented on practical demonstration but in the simulation of
the human brain and using psychological models for explaining
behaviour. Instead of engineering a system to a certain goal, the
researcher renounce to implement knowledge:

“The system learns to parse and generate commen-
taries without any engineered knowledge about the En-
glish language.” [5] page 1]

Another example where the aim is to use DeepLearning for rec-
ognizing images, videos and scene to connecting them with
language is [22] [6]. Both are using the LSTM-neural network
which is sometimes called “recurrent neural network”. The rea-
son why deeplearning is utilized is not because the result is so
overwhelming good and the videos are correct grounded to the
verbs, but the aim is to reproducing human-learning with a neu-
ral model. From a practical point of view, neural networks are
useless. They acting as a blackbox, and can not fulfil any re-
quirements in the software engineering process. The above cited
authors are using them, because they are belief, that humans

using also a neural network and they want to reproduce the hu-
man ability for language grounding. That was the core idea of
Cybernetics, to reproduce the human brain.

Or to explain the strong belief in neural networks are bit col-
loquial: if a LSTM network is in-the-loop, ,there is no longer a
software-engineering process needed. Instead of programming
a software, which is able to understand images, the project is
psychologically oriented and claims that the implemented recur-
rent network reproduces biological brain structure, and so it is
normal, that the performance of the system is poor ...

4 Implementation

4.1 Simulation in Box2D

Robotics are most realized as physical system. Some engineers
belief that a real robot consists of wires, electric current and
a motor. This precondition makes it very hard to develop ad-
vanced control software because the edit-compile-run cycle is
complicated. There are too much single point of failure. The
overall system can broke because of the hardware itself, the li-
dar detection system or the software. To focus only on the control
software a pure simulation in a controlled environment is the bet-
ter alternative. In most cases the systems are programmed as
game-like simulations. There is a graphic engine for the render-
ing, a physic engine for realistic torque calculation and a user-
input for query the keyboard for input signals. In the centre of a
agent-development-environment the most prominent part is the
physics engine. Box2D is a good choice but there are also other
engines available which support 3d space.

The Box2D engine is documented online [4] and consists of
moving parts (called dynamic bodies) which are connected to
each other with joints. A joint is similar to a servo motor and can
be driven to the left or to right with variable speed. For handling
the real-time aspect of the overall system some kind of thread-
ing mechanism is needed. In C++ environment, the most dom-
inant library is part of the language specification and is called
“pthread”. With threads it is possible to let the GUI run in normal
speed and in the background move a joint for 1 seconds to a
certain direction.

4.2 Programming

In the domain of micro-manipulation under a microscope there is
the standard pick&place problem given. The tool consists of two
tips, left and right which can be controlled separately by a human
operator. In Figure 4.7 the Box2D physics engine is used as a
simulater. The aim is to write a short macro which automates the
manipulation.

After activating the macro the micromanipuulator goes at first
into rest-position, then it grasps the object and brings it to the
goal position. A look into the sourcecode in figure shows,
that a language-to-animation interface was used. | want to give
some details.

At first the pick&place task was described with a vocabulary
list:

e pregrasp

427 move tip left
427 move tip right
574 plnr\n
574 move tip left
| 574 move tip right
Figure 4.1: Micromanipulation with a tool
void action(std::string name) {

(name=="init—left") move("left",{200,80});

(name=="init—right") move("right",{500,80});

(name=="pregraspleft") move("left",{200,245});

if (name=="pregraspright") move("right",{300,245});

(name=="graspleft") move(" left",{235,245});
(name=="graspright") move("right",{265,245});
(name=="placeleft") move(" left",{235+50,245—-100});
(name=="placeright") move("right",{265+50,245—100});

}
void init() {
std ::thread t1,t2;
myactionlist.add(frame," init","");
t1=std ::thread (&Behavior :: action, this ,"init—left");

t1.detach () ;
t2=std :: thread(&Behavior :: action , this ," init—right");
t2.join ();
}
Figure 4.2: Sourcecode
e grasp
e place

Every command activates a certain control pattern of the servo
motor inside the Box2d simulation. The overall task was done
with executing the vocabulary words in a certain order. With
the help of C++ std::threads two actions can be executed at the
same time.

4.3 Threading

In the C++ programming language the out-of-the box functional-
ity for running tasks in parallel is called “std::threading”. Instead
of start a method of a class after the other in linear fashion, two
methods are running at the same time. This is necessary if the
left tip and right tip of a micromanipulator should move together
while they a holding an object. “std::threading” is an advanced
programming techniques which is not easy to realize, but it works
stable. The user has many options, he can a task running in
background with the “detach()” parameter, or he can wait in the
main program until the task ends with “join()”. While running
a task in background, the GUI in the foreground must run con-
tinuously and update the screen. So, in reality often threads are
structured hierarchically: thread1 starts thread2 and thread3 and
thread3 starts further threads.

The difficulty in implementation is not because a certain do-
main is so complex, or that a planning aspect is involved, in most
cases the combination of Box2D, C++ programming, threading

and executing of scripts was not understand well. In the set-
ting of game-programming normally the game-engine handles
the thread-mechanism. Because the most game-engines are
undocumented and not available in sourcecode, it is comparable
to alchemy.[11, page 263ff]

4.4 Scaling up

The most important question which remains open is how to scale
up the shown solution. Currently the system can only pick&place
an object, and that only sometimes (if the object is in the right
position). Potential failures would be:

e tool is loosing the objects while moving
e object is at a different place
e objects starts to rotate

e other grasps are needed, for example from top to bottom
and not from left to right

So there is some mechanism necessary to extend the function-
ality. It seems too easy, but scaling up works best with extending
the sourcecode. The functionality depends in a linear fashion
from the “lines of code” metric. With only 10 “lines of code” for
move, init, pick and place the system has a limited scope. With
100 “lines of code” which is organized in classes more vocab-
ulary with higher functions can be realized, including a failure
recognition- and correction mechanism.

References

[1] Yiannis Aloimonos. Sensory grammars for sensor net-
works. Journal of ambient intelligence and smart environ-
ments, 1(1):15-21, 2009.

[2] Jennifer Lynn Barry. Manipulation with diverse actions. PhD
thesis, Massachusetts Institute of Technology, 2013.

[3] Joanna Bryson and Brendan McGonigle. Agent architec-
ture as object oriented design. In International Workshop
on Agent Theories, Architectures, and Languages, pages
15—29. Springer, 1997.

[4] Erin Catto. Box2d. Available fro m: http://www. box2d. org,
2010.

[5] David L Chen and Raymond J Mooney. Learning to
sportscast: a test of grounded language acquisition. In Pro-
ceedings of the 25th international conference on Machine
learning, pages 128—-135. ACM, 2008.

[6] Lea Frermann, Shay B Cohen, and Mirella Lapata. Who-
dunnit? crime drama as a case for natural language under-
standing. arXiv preprint arXiv:1710.11601, 2017.

[7] Shunsuke Kudoh, Koichi Ogawara, Miti Ruchanurucks, and
Katsushi lkeuchi. Painting robot with multi-fingered hands
and stereo vision. Robotics and Autonomous Systems,
57(3):279-288, 2009.

(8]

9]

(10]

(1]

[12]

(13]

(14]

(18]

[16]

(17]

(18]

(19]

(20]

(21]

Thomas Lindemeier, Jens Metzner, Lena Pollak, and Oliver
Deussen. Hardware-based non-photorealistic rendering us-
ing a painting robot. In Computer Graphics Forum, vol-
ume 34, pages 311-323. Wiley Online Library, 2015.

Edmund Long. Enhanced NPC behaviour using goal ori-
ented action planning. PhD thesis, University of Abertay
Dundee, 2007.

Paul Michelman and Peter Allen. Forming complex dex-
trous manipulations from task primitives. In Robotics and
Automation, 1994. Proceedings., 1994 IEEE International
Conference on, pages 3383-3388. IEEE, 1994.

Druhin Mukherjee. C++ Game Development Cookbook.
Packt Publishing Ltd, 2016.

Marcio Lobo Netto, Marcos Antonio Cavalhieri, and Luciene
Cristina Rinaldi Rodrigues. From genetic evolution of simple
organisms to learning abilities and persuasion on cognitive
characters. RITA, 12(2):31-60, 2005.

Damijan Novak and Domen Verber. Real-time strategy
games bot based on a non-simultaneous human-like move-
ment characteristic. GSTF Journal on Computing (JoC),
3(2):43, 2013.

Edwin Olson, Johannes Strom, Ryan Morton, Andrew
Richardson, Pradeep Ranganathan, Robert Goeddel, Mihai
Bulic, Jacob Crossman, and Bob Marinier. Progress toward
multi-robot reconnaissance and the magic 2010 competi-
tion. Journal of Field Robotics, 29(5):762—-792, 2012.

Stefan Schaal. Dynamic movement primitives-a framework
for motor control in humans and humanoid robotics. In
Adaptive motion of animals and machines, pages 261-280.
Springer, 2006.

William Schuler, Liwei Zhao, and Martha Palmer. Parame-
terized action representation for virtual human agents. Em-
bodied conversational agents, 256, 2000.

Stefan Schulz, Ludger Jansen, et al. Formal ontologies in
biomedical knowledge representation. Yearb Med Inform,
8(1):132-46, 2013.

Gerardo | Simari, Diego R Garcia, and Gabriel R Filocamo.
The monkey and bananas problem revisited: a situation cal-
culus approach. In IX Congreso Argentino de Ciencias de
la Computacion, 2003.

Luc Steels. The symbol grounding problem has been
solved. so whats next. Symbols and embodiment: Debates
on meaning and cognition, pages 223—244, 2008.

Emanuel Todorov and Weiwei Li. A generalized iterative lqg
method for locally-optimal feedback control of constrained
nonlinear stochastic systems. In American Control Con-
ference, 2005. Proceedings of the 2005, pages 300-306.
IEEE, 2005.

Linus Torvalds and Junio Hamano. Git: Fast version control
system. URL http://git-scm. com, 2010.

[22] Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Mar-

cus Rohrbach, Raymond Mooney, and Kate Saenko. Trans-
lating videos to natural language using deep recurrent neu-
ral networks. arXiv preprint arXiv:1412.4729, 2014.

[23] Stefan Zander and Yingbing Hua. Utilizing ontological clas-

sification systems and reasoning for cyber-physical sys-
tems. In Karlsruhe Service Summit Research Workshop,
Feburary, 2016.

	Introduction
	Theoretical background
	Interactive control
	Symbolic planning
	Domain knowledge
	More about language grounding
	Action Primitives
	Planning vs. language interface

	Not working principles
	Artificial Life and Learning
	DeepLearning

	Implementation
	Simulation in Box2D
	Programming
	Threading
	Scaling up

	References

