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Abstract

We show there are two colliding gravitational plane wave pulses that result in signals that travel
faster than light.

1 Introduction

We will be using [1]. We begin with a gravitational plane wave pulse with metric gµν so that [2]

ds2 = −dt2 + dx2 + [L(u)]2[e2β(u)dy2 + e−2β(u)dz2] (1)

where u = t− x and gµν(u) = ηµν for u < 0. The Einstein field equations give for this metric

d2L

du2
+

(
dβ

du

)2

L = 0 (2)

Since gµν(u) = ηµν for u < 0 we must have β(u) = 0 for u < 0. Choose β(u) so that β(u) is
increasing for small u > 0. Consequently by (2) there is a small u1 > 0 such that g22(u1) > 1 and
(dg22/du)(u1) 6= 0.

Let dx/dt, dy/dt, dz/dt be components of the velocity of a signal. If this signal does not travel
faster than light then

gµν
dxµ

dt

dxν

dt
≤ 0 (3)

2 Lorentz transformation

Consider a coordinate transformation from t, x, y, z to t′, x′, y′, z′ coordinates that is a composition
of a rotation by θ about the z axis followed by a boost by 2 cos θ/(1 + cos2 θ) in the x direction
followed by a rotation by θ + π about the z axis. For θ/π not an integer this is a proper Lorentz
transformation such that

t = t′(1 + 2 cot2 θ)− 2x′ cot2 θ + 2y′ cot θ (4)

x = 2t′ cot2 θ + x′(1− 2 cot2 θ) + 2y′ cot θ (5)

y = 2t′ cot θ − 2x′ cot θ + y′ (6)

z = z′ (7)

By (4) and (5) we have u = t− x = t′ − x′ = u′. For (4)-(7) the metric transforms as

g′µν(u) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(u) (8)

Since gµν(u) = ηµν for u < 0 and (4)-(7) is a Lorentz transformation we have g′µν(u) = ηµν for u < 0.
The metric g′µν(u) is then also the metric of a gravitational plane wave pulse.
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For the metric (1) we have by (4)-(8) that

g′00(u) = −1 + 4[g22(u)− 1] cot2 θ (9)

g′01(u) = −4[g22(u)− 1] cot2 θ (10)

g′11(u) = 1 + 4[g22(u)− 1] cot2 θ (11)

g′02(u) = −g′12(u) = 2[g22(u)− 1] cot θ (12)

g′22(u) = g22(u) g′03(u) = g′13(u) = g′23(u) = 0 g′33(u) = g33(u) (13)

3 Velocity quadric surface

Define the quadric surface

S ′(u) =
{

(v′x, v
′
y, v
′
z) ∈ R3 : g′00(u) + 2g′01(u)v′x + g′11(u)v′2x + 2g′12(u)v′xv

′
y + 2g′02(u)v′y

+ g′22(u)v′2y + 2g′03(u)v′z + 2g′13(u)v′xv
′
z + 2g′23(u)v′yv

′
z + g′33(u)v′2z = 0

}
(14)

formed from g′µν(u)dx
′µ

dt′
dx′ν

dt′
= 0 by setting v′x = dx′/dt′, v′y = dy′/dt′, v′z = dz′/dt′. Now S(u) is

symmetric about the plane having vz = 0 hence S ′(u) is symmetric about the plane having v′z = 0.
For the transformation (4)-(7)

v′x =
2 cot2 θ + vx(1− 2 cot2 θ)− 2vy cot θ

1 + 2 cot2 θ − 2vx cot2 θ + 2vy cot θ
(15)

v′y =
−2 cot θ + 2vx cot θ + vy

1 + 2 cot2 θ − 2vx cot2 θ + 2vy cot θ
(16)

v′z =
vz

1 + 2 cot2 θ − 2vx cot2 θ + 2vy cot θ
(17)

From the denominator of (15)-(17) construct the line of R2{
(vx, vy) ∈ R2 : 1 + 2 cot2 θ − 2vx cot2 θ + 2vy cot θ = 0

}
(18)

and the curve of R2 formed by setting vz = 0 in S(u1){
(vx, vy) ∈ R2 : −1 + v2x + g22(u1)v

2
y = 0

}
(19)

Solving for points of intersection of the line and curve gives

vx =
g22(u1) cot θ(1 + 2 cot2 θ)±

√
−4[g22(u1)− 1] cot2 θ − g22(u1)

2 cot θ[1 + g22(u1) cot2 θ]
(20)

Since g22(u1) > 1 we have
−4[g22(u1)− 1] cot2 θ − g22(u1) < 0 (21)

so at u1 the line and curve have no points of intersection. Consequently the denominators of (15)-
(17) are not zero for all (vx, vy, vz) ∈ S(u1 ) hence v′x, v

′
y, v
′
z are finite. We can conclude S ′(u1) is an

ellipsoid of R3. Thre is then a v′− and a v′+ with v′− < v′+ such that planes{
(v′x, v

′
y, v
′
z) ∈ R3 : v′x = v′−

} {
(v′x, v

′
y, v
′
z) ∈ R3 : v′x = v′+

}
(22)

are tangent to S ′(u1). A point of S ′(u1) will be on or between these planes. Now S ′(u1) is symmetric
about v′z = 0 so the values v′± can be determined by taking the derivative of (14) and setting
v′z = dv′x/dv

′
y = 0. We obtain

2g′12(u1)v
′
x + 2g′02(u1) + 2g′22(u1)v

′
y = 0 (23)
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Substituting v′y from this equation into (14) with v′z = 0 and solving the resulting quadratic equation
for v′x gives

v′± =
−[g′01(u1)g

′
22(u1)− g′02(u1)g′12(u1)]

g′11(u1)g
′
22(u1)− g′12(u1)

2 (24)

±

√
[g′01(u1)g

′
22(u1)− g′02(u1)g′12(u1)]2 − [g′11(u1)g

′
22(u1)− g′12(u1)

2][g′00(u1)g
′
22(u1)− g′02(u1)

2]

g′11(u1)g
′
22(u1)− g′12(u1)

2

Substituting (9)-(13) in (24) gives

v′− =
4[g22(u1)− 1] cot2 θ − g22(u1)
4[g22(u1)− 1] cot2 θ + g22(u1)

v′+ = 1 (25)

Letting θ → 0 we have since g22(u1) > 1 that v′− → 1 at u1. Consequently if g22(u1) > 1 and θ close
to zero then any point of S ′(u1) has v′x close to +1.

4 Colliding gravitational plane wave pulses

Define the function u(t′) by
du

dt′
(t′) = 1− f(u) u(0) = 0 (26)

where
f(u) = min

{
v′x ∈ R : (v′x, v

′
y, v
′
z) ∈ S ′(u)

}
< v′+ = 1 (27)

By (26) we can define t′1 by

t′1 =

∫ u1

0

dw

1− f(w)
(28)

As we saw in the previous section for θ close to zero any point of S ′(u1) has v′x close to +1 hence
f(u1) is aproximately +1. Consequently we can choose θ so that t′1 > u1.

Let W ′
+ be the gravitational plane wave pulse g′µν(u) and let W ′

− be the reflection of W ′
+ about the

x′ plane. For a system of two gravitational plane wave pulses approaching each other and colliding
such that for t′ < 0 the two waves are W ′

+ and W ′
− we have at any time the metric to the right of

the x′ plane will be a reflection of the metric to the left of the x′ plane.
Define x′(t′) = t − u(t′). Define P ′(t′) ⊂ R3 to be the plane with normal the x′ axis and

(x′(t′), 0, 0) ∈ P ′(t′). Since (dx′/dt′)(t′) is the minimum v′x of all points of S ′(t′ − x′(t′)) we have, on
assuming signals cannot travel faster than light, that no signal originating to the right of P ′(t′) can
in time be to the left of P ′(t′). The wave coming from the right can be viewed as a signal. The metric
to the left of P ′(t′) is then just the metric of the wave coming from the left with no interference from
the wave coming from the right.

Since t′1 > u1 we have the origin is to the left of (x′(u1), 0, 0). Consequently the origin is to the
left of P ′(u1). The metric at the point (u1, 0, 0, 0) of R4 is then that due solely to the wave coming
from the left. We began with gµν(u) having (dg22/du)(u1) 6= 0 hence ∂g′22/∂x

′ 6= 0 at the point
(u1, 0, 0, 0). Consequently the metric to the right of the x′ plane will not be a reflection of the metric
to the left of the x′ plane. This is a contradiction. There are signals that travel faster than light.

5 Conclusion

Starting with a gravitational plane wave pulse with metric so that (1) we can construct a system of
two colliding gravitational plane wave pulses where signals travel faster than light.
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