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Abstract

Making an intuitive assumption, and using the completeness of the position and
momentum eigenstates, along with the postulates of quantum mechanics, we provide a
geometric presentation of the position and momentum representations in quantum
mechanics, in the hope of offering a perspective complementary to those given in
standard textbooks.



1. The position representation — The position space
The position is an observable quantity, and thus the respective operator, i.e. the
position operator, is Hermitian and its eigenstates — the position eigenstates — form an
orthogonal basis in the state space (Hilbert space) of the examined particle (or
system).
We can use this basis to represent the states and operators of the state space.
This representation is called the position representation.
In other words, the position representation is the representation of the states and
operators of the state space of the particle (system) in the basis of the position
eigenstates.
More abstractly, we can think of the position representation as the representation of
the whole state space in the basis of the position eigenstates. In this sense, we’ll refer
to the position representation as the position space.

1.1 The position and momentum operators in the position representation

We’ll examine the one-dimensional case, as the generalization to three dimensions is
straightforward.

Let |x> be an arbitrary position eigenstate with eigenvalue x, i.e.

£ x)=x|x)

This means that if the particle is in the state |x> , it is located at the position x, and,
likewise, if the particle is located at x, it is described by the state |x> .

Obviously, the eigenvalue x is non-degenerate, since if the eigenstate |x’> also has

eigenvalue x, then it also describes a particle located at x, and then |x’> = |x> .

The position eigenstates are then non-degenerate, and thus, since the position operator
is Hermitian, two different position eigenstates are orthogonal.
The spectrum of the position operator is continuous and the orthogonality and
completeness of its eigenstates are expressed by the equations

(x|x") =5 (x-x") and T dx|x)(x|=1, respectively.

The norm of a position eigenstate |x> is infinite, since

[l =x]x) =/5(0) >0
The position eigenstates are then not normalizable, and thus the basis of the

position eigenstates, i.e. the basis {|x>} g 1 Ot orthonormal, it is orthogonal.
xXe

Also, since the position operator is Hermitian, its eigenvalues x are real, as they
should be, since they are the possible positions of the examined particle.

Let now

l//> be an arbitrary state of the particle. Using the completeness relation of

the position eigenstates, we expand the state |l//> in the basis of the position

eigenstates.
We have



v)=| [ @)l ly)= ] @l

As an integration variable, the variable in the completeness relation is a dummy
variable, and thus we can change it from X to x'.

Thus

['e]

)= ax(elw)l) @)

This is the expansion of the arbitrary state |l//> in the basis of the position eigenstates.
Using (1), the action of the position operator x on the state |l//> yields

[e]

v)=5] d (v ])v)

—00

A

X

We note that the inner product <x'| l//> is, generally, a complex number depending on
x', i.e. it is a complex function of x'.
The position operator X acts on states, and thus

] v () = [ v (vl 2]2) = J ae () o)

—0 —0 —0

In the last equality, we used that the state |x’> is a position eigenstate with eigenvalue

x!

Th;lS
v)= [ @ (|w)x]x) @

—00

This is the expansion of the state fc| l//> in the basis of the position eigenstates.
We now want to project the state fc|t//> on an arbitrary position eigenstate |x> , 1.e. we

want to calculate the inner product <x| fc| l//> .
Using (2), we have

['e] ['e]

(x| &) = (el [ ' () = [ o'l )

—0 —0

Since the eigenstates |x> and |x’> are orthogonal,
<x|x'> = §(x—x') ,

and thus



['e]

v)= [ ax' (' y)x's(x-2) = (xlw)x=x{xlw)

—0

x

(x
That is
(x| 2]y} = x{x[w) 3)

The inner product <x|t//> is the projection of the state |l//> on the arbitrary position

eigenstate |x> , or else, it is the projection of the state |l//> on the position space.
Similarly, the inner product <x|fc|y/> is the projection of the state fc|y/> on the

arbitrary position eigenstate |x> , or else, it is the projection of the state fc|y/> on the
position space.

Since the state fc|y/> results from the action of the position operator on the state |l//> ,
it is legitimate to assume that the projection of the state fc|y/> on the position space is

equal to the action of
- the expression of the position operator in the position space
on

- the projection of the state |l//> on the position space, i.e.
(xl2lw) = 2 (x)(xly) @

where %(x) is the expression — we’ll also call it “projection” — of the position

operator in the position space, i.e. it is the position representation of the position
operator.

Generalizing the previous reasoning, we’ll assume that the projection of the state
resulting from the action of an operator O on a state |l//> is equal to the result of

the action of the projection of the operator O — let us denote it by O(x) — on the
w)=0(x)(x|y).

A

)

projection of the state |y}, i.e. (x

We’ll use the previous assumption in both the position and momentum spaces.
Comparing (3) and (4), we obtain

() (xly)=x{alw) )

Since the state |l//> is arbitrary, and so is the position eigenstate |x>, from (5) we

derive that
fc(x) =x (6)

This is the expression of the position operator in the position space, i.e. it is the
position operator in the position representation.

We see that, in the position space, the position operator is the position coordinate, or
else, it is equal to its eigenvalues, which is expected, since in the basis of its
eigenstates, the position operator is diagonal.



As we mentioned, the inner product <x| l//> , which is the projection of the state |l//> on

the position space, is a complex function of the real variable x.
We identify this function as the wave function in the position space — or in the

position representation — and we denote it by ¥ (x), i..

()= (alw) ()

To find the momentum operator in the position representation, we use the
commutation relation [fc, f?]zih, which holds in the state space and in every

representation of it.
In the position representation, the previous commutator is written as

[x, f)(x)] =ih
where p (x) is the momentum operator in the position representation.

Thus, if t//(x) is an arbitrary wave function in the position representation, then
[x,f)(x)] y(x)=ihy (x)= (xf)(x) - f)(x)x)l//(x) =iy (x)=

= 5 () (1)~ () (s () = ()

That is

() (0 ()~ () ()= —in () (8)

We observe that

v () = (0) x5 (3) = (s () xS () = ()

Multiplying both sides of the last equation by —i#, we obtain
d d
—ih—|(xy(x))—x| —ih— x)=—ihw(x
(v ()= o (3) = (3
Comparing the last equation with (8), we derive that
R d
x)=—ii— (9
p(x) = ©

This is the momentum operator in the position representation.

L d
Let us check if the operator —lhd— is Hermitian, as it should be.
X

Consider two wave functions f; (x), f;(X) that are square integrable on R .

The inner product ( fis f?fz) is then written as — using integration by parts —



&hix)_

(f,00,) = jdxf (zh—fz j— zhjdf s

B * df; (x) -
__de{Zjﬁ(fwxxn‘_z?_ﬂ(ﬂj_
h[f ()4 dﬂb—ff)ﬂ (x)j

Since the functions f; (x), f;(X) are square integrable,

| (90)| =] £5 ()| =
Thus

fl(ioo):fz(ioo)zo

and thus
fl* (ioo) = £, (ioo) =0
Then, the inner product ( £, pfs ) becomes

(/- 51) —zhjdx ()fz() (—in )*dedf‘ (x)fz(x)=

- J (i n @) (5)= [ e 17 () £ ()= 1.1
Thatls

(/1. 06,)=(P1. 1)

But, by definition,

(£.06)=(p"1.1,)

Comparing the last two equations, we conclude that

p=p'

L d
The operator —lhd— is thus Hermitian, as it should be.
X

As a consequence, the operator — is anti-Hermitian.
X

Indeed, using that the operator —ifi— is Hermitian, we obtain
X

T T T
(_mij :_mi:m(ij :_mi:{ij __ 4
dx dx dx dx dx dx

In other words, the derivative is anti-Hermitian operator.

We found that, in the position representation, %(x)=x and p(x)= —ihdi .
x

Then, an operator f (fc, f)) is represented by the differential operator f (x, —ih dij .
X



1.2 Position representation of states
As we saw, in the position representation, a state |l//> of the state space is represented
by the wave function (x)=(x|y), which is derived by projecting the state on the
position eigenstates.
The wave function t//(x) is then the projection of the state |l//> on the position space.
Consider now the state f (fc, [7)|1//>, i.e. the state resulting from the action of an
operator f (%, p) onastate |/).
In the position space, this state is represented by its projection on the position
eigenstates, i.e. it is represented by the inner product <x| 7%, fy)|y/>, for every (real)

value of the position x.
Using the assumption we made in 1.1, the inner product < | f X, f?

(x| £ (& 2)lw) = 1 (3(x), £ (x)){x]w)
where %(x) and p(x) are, respectively, the position and momentum operators in the

position representation, 1.e. x(x) =x and p(x) = —zhd— .
x

> 1s written as

Also, <x| l//> =y (x) is the wave function of the state |l//> in the position space.
Thus

(x|7(3.5)

d
x,—ih— X
)= (5o ()
Therefore, the position representation of the state f ()%, [7) | l//> is the wave function
f(x,—ihdijt//(x), or, in other words, the wave function f(x,—ihdijt//(x) is the
X X

projection of the state f (%, p)

l//> on the position space.

1.3 Position and momentum eigenfunctions in the position
representation

In the position representation, the position and momentum eigenstates are also
represented by wave functions, which are called, respectively, position and
momentum eigenfunctions.

We saw that the orthogonality of the position eigenstates is expressed by the relation

<x|x’> =5(x—x").

But, <x|x’> is also the projection of the position eigenstate |x’> on the arbitrary
position eigenstate |x>, which is identified as the wave function of the position
eigenstate |x’> in the position representation.

Therefore, the delta function & (x—x’) is the position eigenfunction with eigenvalue

x". It represents, in the position representation or in the position space, the state |x’> .



Thus, in the position space, a particle located at x' is described by the delta
function &(x—x').

Now, we’ll find the wave function representing, in the position space, the momentum
eigenstate | p>.

That is, we’ll find the momentum eigenfunction with eigenvalue p, in the position
space.

The meaning of the state | p> is that it describes a particle with momentum p .

Since the state | p> is the momentum eigenstate with eigenvalue p, it satisfies the

eigenvalue equation

plp)=p|p)

To write the previous eigenvalue equation in the position representation, we project
both sides of the equation on an arbitrary position eigenstate |x> .

Thus, we have
p)=(x|p|p) (10

Since p is a number,

(x|

(xlplp)=p{x[p).
where <x| p> is the wave function of the state | p> in the position representation, i.e. it
is the momentum eigenfunction with eigenvalue p, in the position representation.

Besides, using the assumption we made in 1.1, the inner product <x| [7| p> is written

as

(x|p|p)=p(x)(x] p).

where p (x) is the momentum operator in the position representation.

Thus, (10) is written as

p(x){x[p)=pr(x|p)

Denoting by p(x) the momentum eigenfunction <x| p> and using (9), the last

equation is written as

—ih%p (x) =pp (x)

This is an easily solved differential equation.
Indeed, we have




That is
p(x) = Aexp(%j (11)
where A is a complex constant.

Note that the constant 4 does not depend either on the position X or on the
momentum p .

We observe that the momentum eigenfunctions are not square integrable, since from
(11) we have ‘p(x)‘ =|A , and thus ‘p(ioo)‘ = |A| >0.

Therefore, the momentum eigenfunctions are not normalizable.

Thus, the constant 4 cannot be calculated by the normalization condition.

However, it can be calculated using the orthogonality of the momentum eigenstates.
From (11), we see that each eigenvalue p of the momentum corresponds to only one

momentum eigenfunction p(x). Thus, the momentum eigenfunctions, and the

momentum eigenstates too, are non-degenerate.

Then, since the momentum operator is Hermitian, as it describes the momentum,
which is an observable quantity, its non-degenerate eigenstates are orthogonal.

Thus, since the spectrum of the momentum operator is continuous, the orthogonality

of the momentum eigenstates | p> and | p’> is expressed by the relation

s(p'-p)=(p'|p) (12)

Using the completeness relation of the position eigenstates, i.e.

.[ dx|x><x| =1,
(12) is written as

['e] ['e]

s(p'-p)=(p ];deXWI |p)= [ dx(p'|x){x[p)= [ dx{x[p') (x| p)

—o0 —o0
N ——
1

That is

['e]

8(p'=p)=[ (x| p) (x|p) (13)

—0

But <x| p> = p(x) is the momentum eigenfunction with eigenvalue (momentum) p,

and, obviously, (x|p')=p'(x) is the momentum eigenfunction with eigenvalue

(momentum) p'.
Then, (13) is written as

§(p'—p) = T dxp” (x)p(x) (14)



This is the orthogonality relation of the momentum eigenfunctions in the position
space.
By means of (11), (14) becomes

o10/=p)= f st oo =22 e 2 [ oo 122

We remind that the constant 4 in (11) does not depend either on the position or
on the momentum.

That is
5(p'=p)=|4 | dxexp[@j (15)

Now, we’ll use one of the integral representations of the delta function, and
particularly the relation

§(v)=i j duexp(iuv),

where v is a real parameter.
For v=p'— p, we obtain

§(p'—p):ijduexp(iu(p'—p)) (16)

Comparing (15) and (16), we obtain
17 . 2 ¢ i(p-p')x
E.[Oduexp(zu(p —p))=|A| J;)dxexp{Tj (17)

To bring both integrals in the same form, we change the integration variable x, i.e.
the position, to y = % .

Then, we have

x =hy = dx =hdy

and

since x:—o0 —> 00, then y:—0 —

Thus, the integral on the right hand side of (17) becomes
0 i p _ pl x 0 ) ,

.[ dxexp(%j = J. hdyexp(ly(p—P ))

Then, (17) is written as

i j du exp(iu(p'—p)):|A|2h.[ dyexp(iy(p—P'))



The integration variables are dummy variables and we change y to u or u to y to

show that the two integrals are equal. Then, the last equation gives

1
i=|A|2h:>|A|:—
2

N27h

Omitting the physically unimportant phase of 4, we end up to
1

N27h (1%)

By means of (18), (11) is written as

1 ipxj
x)= exp| — | (19
PU)= e o ( i)
This is the momentum eigenfunction with eigenvalue (momentum) p , in the position

space or in the position representation.
Also, since p(x)=(x|p), (19) is also written as

—
() = 2 o0

1.4 An example: the time-independent Schrodinger equation (TISE)

A=

Consider a particle of mass m moving in a time-independent potential V(x). Its

Hamiltonian is
)
~ p n
H=—+V{(x) (21
2m ( )( )

If |E> is an arbitrary energy eigenstate of the particle, with eigenvalue £, then the

particle’s energy eigenvalue equation is written as

H|E)=E|E)

Projecting both sides of the previous equation on an arbitrary position eigenstate |x> ,
we obtain

(x|H|E)=(x|E|E) = E(x| E)

That is
(x|H|E)=E{x|E) (22)
Using the assumption we made in 1.1, we have

(x

where H (x) is the Hamiltonian (21) in the position representation.
Comparing (22) and (23) yields

H(x){x|E)=E(x|E) (24)

A

H|E)=H(x)(x|E) (23)




To write the Hamiltonian in the position representation, we replace the position and
momentum operators with their expressions in the position representation, i.e. with x

and —ihi, respectively.
dx

Thus

2m 2m dx*
That is
A n d?
H(x)=———+V
(W)= (x)

Also, <x|E> =y, (x) is the energy eigenfunction with eigenvalue, i.e. with energy,
E.
Substituting into (24) yields

2

(0 o 0) = B ) = o ()7 (s () B ()=

hz 14 " 2
=y ()= (B 1 () (9202 1" ()4 22 (B -7 (x)) s (1)=0
That is, the energy eigenvalue equation in the position representation, for a particle
with mass m moving in a time-independent potential V' (x), is

i (3)+ S5 (E=V () () =0

This is the well-known time-independent Schrédinger equation (TISE).

Therefore, the time-independent Schrodinger equation is the energy eigenvalue
equation in the position space.



2. The momentum representation — The momentum space

As in the case of the position, the momentum is also an observable quantity, and thus
the respective operator, i.e. the momentum operator, is Hermitian and its eigenstates —
the momentum eigenstates — form an orthogonal basis in the state space (Hilbert
space) of the examined particle (or system).

We can use this basis to represent the states and operators of the state space.

This representation is called the momentum representation.

In other words, the momentum representation is the representation of the states and
operators of the state space of the particle (system) in the basis of the momentum
eigenstates.

More abstractly, we can think of the momentum representation as the representation
of the whole state space in the basis of the momentum eigenstates. In this sense, we’ll
refer to the momentum representation as the momentum space.

2.1 The position and momentum operators in the momentum
representation

As in the case of the position representation, we’ll examine the one-dimensional case,
as the three-dimensional case follows easily.
Similarly to what we did to find the position operator in the position representation,

we’ll calculate the inner product < p| f7|y/> and from this we’ll derive the momentum

operator (in the momentum representation).
Using the completeness relation of the momentum eigenstates, i.e. the relation

[ | p)p]=1,
the previous inner product is written as

['e]

(p|plw)=(p|p zdp’lp'ﬂp’l Iv'>=[odp<p|ﬁ|p'><p’IV/>

We remind that the spectrum of the momentum operator is continuous, as it
happens with the spectrum of the position operator too. Thus, the completeness
relation of the momentum eigenstates is expressed by an integral.

Thus

['e]

v)= [ dp(p|p|p') (') (1)

—0

(p|p

Since the state | p’> is a momentum eigenstate with eigenvalue, i.e. with momentum,
p', then

plp)=p'P)

Thus



(p|plp")=(pl PP} = p'{p|P)
The eigenstates | p> and | p’> are orthogonal, and thus

(p|p)=5(p-p')
Therefore
(p|p|P)=pP'S(P-P) Q)

By means of (2), (1) becomes
(p|plw)= [ dpr's(p-p)(p'|w)=p{p|v)

That is
(p|p|lw)=p{rlv) 3

Reading the inner product < p| [7|y/> as the projection of the state [7|1//> on the

momentum space, and using the assumption we made in 1.1, we write it as
(p|plw)=p(pP)(pl¥) @

where f?( p) is the expression — the “projection” — of the momentum operator in the

momentum space, i.e. it is the momentum representation of the momentum operator.
Comparing (3) and (4) yields

p(p){ply)=r(prlv)

Since the state |l//> is arbitrary, and so is the momentum eigenstate | p>, the last

equation gives
p(p)=p (5

This is the expression of the momentum operator in the momentum space, i.e. it is the
momentum operator in the momentum representation.
We see that, in the momentum space, the momentum operator is the momentum
coordinate, or else, it is equal to its eigenvalues, which is expected, since in the basis
of its eigenstates, the momentum operator is diagonal.

Besides, the inner product < p|l//>, which is the projection of the state |1//> on the
momentum space, is a complex function of the real variable p .

We identify this function as the wave function in the momentum space — or in the
momentum representation — and we denote it by y?( p) , 1.e.

v (p)=(p|vw) (6)

We put a tilde on the wave function in the momentum representation to distinguish
it from the wave function of the same state in the position representation and,

mainly, to indicate that the two wave functions, i.e. the functions l//(x) and



v ( p) , are, generally, different. That is, the function ¥ ( p) is NOT the function

/4 (x) with the momentum p in place of the position X .

Having calculated the momentum operator in the momentum representation, we’ll use
the commutator [fc, f?] =ih, which holds in every representation, to derive the position

operator in the momentum representation.
Similarly to what we did to find the momentum operator in the position

representation, choosing an arbitrary wave function ¢( p) in the momentum

representation, we have
[2(p).p]o(p)=ing(p)

where fc( p) is the position operator in the momentum representation.

The previous equation is written as

#(p)(pe(p))-p(p)¢(p)=ing(p) ()
We observe that

d d d d

E(W(p)) =#(p)+p 4(p) SE(W(P))—P%ﬂP) =¢(p)
Multiplying both sides of the previous equation by i, we obtain
ihj—p(W(p))—p(ih%y(p)=ih¢(p) (8)
Comparing (7) and (8) yields

x@):mj—p ©)

This is the expression of the position operator in the momentum space, i.e. it is the
position operator in the momentum representation.

2.2 Momentum representation of states

As in the case of the position representation, the states of the state space are
represented by wave functions derived by projecting the states on the basis states, i.e.
on the momentum eigenstates.

Thus, a state |y) is represented by the wave function 7 (p)={p|y), which is the
projection of the state |l//> on the momentum space.

The wave function y?( p) is the wave function in the momentum representation or in

the momentum space.
Consider now the state f(%,p)

l//> , 1.e. the state resulting from the action of an

operator f(%, p) on a state |y
In the momentum space, this state is represented by its projection on the momentum
eigenstates, i.c. it is represented by the inner product {p| f (%, p)|w), for every (real)

value of the momentum p .



Using the assumption we made in 1.1, the inner product < p| f ()%, f?)

(p|f(2.0)lw) = f(3(p). 2 (P)){Pl¥)

By means of (5), (6), and (9), the last equation is written as
d -
ih—,
)= f( - pjw(p)

Therefore, the momentum representation of the state f ()%, [7) | l//> is the wave function

l//> is written as

(p|f(%,p)

f(ihdi,pjt/?(p), or, in other words, the wave function f(ihdi,p}/?(p) is the
/4 /4

projection of the state f (%, p)

l//> on the momentum space.

2.3 Position and momentum eigenfunctions in the momentum
representation

In the momentum representation, the position and momentum eigenstates are also
represented by wave functions, as it happens in the position representation too. These
wave functions are called, respectively, position and momentum eigenfunctions in the
momentum representation, and they are, respectively, the projection of the position
and momentum eigenstates on the momentum space.

The wave function representing the arbitrary momentum eigenstate | p’> is derived by
projecting the eigenstate | p’> on the momentum eigenstates | p>, for every (real)

value of the momentum p, i.e. it is the wave function < p| p’> .

Since the momentum eigenstates are orthogonal and the spectrum of the momentum
operator is continuous, then

(plp)=5(p=P)
Therefore, the delta function o ( p—p’) is the momentum eigenfunction with

eigenvalue p'. It represents, in the momentum representation or in the momentum

space, the state | p’>.
Likewise, the wave function representing the arbitrary position eigenstate |x> in the
momentum space is derived by projecting the state |x> on the momentum eigenstates

| p> , for every (real) value of the momentum p, i.e. it is the wave function < p|x> .
In 1.3, we showed that

=gz

Thus, since < p|x> = <x| p>* , we obtain

(0}s) = <25 )

27h




This is the wave function representing the position eigenstate |x> in the momentum

space, i.e. it is the position eigenfunction with eigenvalue x in the momentum space,
and it describes, in the momentum space, a particle being at x. It is a function of the
momentum p and we denote it by x(p).

Then, (10) is also written as

K(p) == exp(—%’“j ()

In 1.3, we showed that, in the position space, the momentum eigenfunction with
eigenvalue p is

27h h

Note

.
From the relation < p|x> = <x| p> , we see that the position eigenfunctions in the

momentum space are the complex conjugates of the momentum eigenfunctions in
the position space.

Although, in the position space, the position is a variable and the momentum is a
parameter, while, in the momentum space, the momentum is a variable and the
position is a parameter.

Thus, the position eigenfunction < p|x> in the momentum space, i.e. the function
x( p), is a function of the momentum p, while the momentum eigenfunction

<x| p> in the position space, i.e. the function p(x) , 1s a function of the position
X.



3. The relation between the wave functions in the one-dimensional
position and momentum spaces — The Fourier transform of the
wave function

Let |l//> be an arbitrary state.
Then, l// < |l//> and y/( < p|l//> are, respectively, the wave functions of the

state > in the position and momentum spaces.

Using the completeness relation of the position eigenstates, i.e. the relation
'[ dx| x> <x =
the wave function 7( p) is written as

['e]

7o) =(plw)= (o] st )= as{ob) o)

—0
\_ﬁ,—z
1

That is

['e]

7 (p)= | de(p|x){xlv) (D

—0

But

(xlv) =y (%)

and

_ 1 _ipx
(pl)= e -2
Thus, (1) is written as
- 17 _ipx
w(p)—%jwdxexp( : jw(x) )

We see that the wave function in the momentum space is the Fourier transform of the
wave function in the position space. That is, 1 (p) is the Fourier transform of i (x).

With the same reasoning, using the completeness relation of the momentum
eigenstates, i.e. the relation

[ dp|p)(p|=1,
the wave function y(x) is written as

['e]

w(x)=(x|y)= Idplp (p||lw)= L p(x|p)(p|v)

;_\/—J
1



That is

[°e]

v (x)= [ do(x|p)(plw) 3

—00

But

(ply)=v(pr)

and

(x| p)=——exp (ﬂj
N27h h
Thus, (3) is written as

zdp exp( j (p) @

As should have been expected, the wave function in the position space is the inverse
Fourier transform of the wave function in the momentum space, i.e. t//(x) is the

inverse Fourier transform of 7( p).

Using (2), we derive the wave function in the momentum space from the wave
function in the position space and, using (4), we derive the wave function in the
position space from the wave function in the momentum space.

3.1 Two useful properties
i) We’ll show that l//|l// .[ dx‘t// = T dp‘l/?(p)‘z .

Proof
Using the completeness relation of the position eigenstates, the inner product <l//|l//>

1s written as

['e]

(Wlw)=(v Idxl [[lw) = [ ax(w]x)(x|v)=

—0
\_ﬁ,—z
1

['e] ['e]

= [[ax(xl) (xly)= [ dxl(xlwr)f

—0 —0

Using that (x|y) =y (x), we end up to

(w|w)= jdX\V/ RS

In the same way, using the completeness relation of the momentum eigenstates, we
write the inner product <l//|l//> as



['e]

(lv)= I@M7IIM=I@WWMMM=

—00

;.\1,_/
2
= [ dp{plv) {plv)=[ dp|(p|v) = [ dpli(p)
- - ¥(p) -
That is
(wlw)= I dp|i(p) (6)
Combining (5) and (6) yields
(w|w)= I dely (x)[ = [ dplir(p)
Notes
1. Since <l//| = H| 174 Hz , the previous property is also written as

-t o = Tkt

Observe that only if the state |l//> is bound, i.e. if its norm is finite, the wave

functions (x) and ¥/ ( p) are square integrable.
2. You should also keep in mind the useful relation (Parseval-Plancherel formula)

zdx‘y/ ()c)‘2 = zdp ‘1/7 (p)‘2

if) We’ll show that if y(x) is even/odd, then and only then 47 ( p) is even/odd too.

Proof
In (2), we change the integration variable to —x and the integral is written as

idxexp(—%)w(ﬂ = fd(—x)exp {—@jw(_x) _

0

_ _fdxexp[—mjy/(—x) = idxeXp{—@jV/(—ﬂ

h

That is

idxexp(—%x)w(XFidxexp(—@jv/(—x) (7)

If y(—x) =%y (x), (7) is written as



or
15 ipx 3 1 7 i(-p)x
\/ﬁidxexp(—ij/(x)—im.[deexp{—ij/(x)
o) )
That is
v(p)=2y(-p)

or, multiplying both sides by +1, we obtain

v (-p)=2y(p)

Thus, we showed that if y/(—x)=+w(x), then 7 (-p) == (p). In other words, if
w(x) is even/odd, then 7 ( p) is even/odd too.

In the same way, changing the integration variable in (4) to —p , the integral is written
as

oo o1 ot e 2 -
_—Idpexp[p(h )jv?( p)=7dpeXp(lp(;)jv7(—P)
|

That is

idp ool 5010~ poexp(ip(_x) 7(-p)

or

v(x) y(-x)

That is

v (x) =2y (=x)

or, multiplying both sides by +1, we obtain

v (=x) =2y (x)

Thus, if 7 (p) is even/odd, then (x) is even/odd too.



4. The three-dimensional position and momentum spaces
The generalization to three dimensions is straightforward. In three dimensions, the
arbitrary position eigenstate is the state |17> , where the position vector 7 defines a

possible position of the particle, and, likewise, the arbitrary momentum eigenstate is
the state | [7>, where the momentum vector p defines a possible momentum of the

particle. That is, the position eigenstate |17> describes a particle being at 7, while the

momentum eigenstate | [7> describes a particle with momentum p .

The completeness relation of the position eigenstates is written as
[ @F|7)(F|=1,

where, in Cartesian position coordinates, the integration limits are from —oo to o on
each axis x,y,z.
Similarly, the completeness relation of the momentum eigenstates is written as

[ @p|B)(p|=1,

where, in Cartesian momentum coordinates, the integration limits are from —oo to oo
oneachaxis p.,p,,p..

As in one-dimension, the position and momentum eigenstates are non-degenerate and
thus, since the respective operators, i.e. the position and momentum operators, are
Hermitian, the position and momentum eigenstates are orthogonal.

The orthogonality of the position eigenstates is written as

(FlF)=8(F-7)
and, similarly, the orthogonality of the momentum eigenstates is written as
(P'|p)=5(p'~P)

Since the spectra of both operators are continuous, the orthogonality relations are
expressed by delta functions.

In Cartesian coordinates, the three-dimensional delta function & (17’ -7 ) is
S(F'-F)=6(x"-x)6(y' -y)d(z'-2)

and, similarly,

5(p'-p)=8(p.-p.)o(p, - p,)o(p - p.)

In the position space, the position operator is the position vector, i.e.
F(F)=F,

while the momentum operator is

p(¥) =iV,



. . " . = . 0. 0.
where, in Cartesian position coordinates, V=—e +-—e +—e¢,.
ox oy 0z

In the momentum space, the momentum operator is the momentum vector, i.e.

A

p(p)=b.
while the position operator is
F(p)=inv ,,

: : : = 0 . 0 . 0 .

where, in Cartesian momentum coordinates, V = + ot p e
:

P

e
p Py
op, ~ 0p,
In three dimensions, the commutation relation between position and momentum is
written as

[l@,f)_/_]=ih§y_, i,j=1,2,3,

p:”

where 1 stands for x, 2 for y, and 3 for z.

The previous commutators hold in every representation, i.e. they hold in both the
position and momentum spaces.

As in one dimension, the projection of a state on the position eigenstates gives the
wave function of the state in the position space, while the projection of the state on
the momentum eigenstates gives the wave function of the state in the momentum
space.

Thus, for a state |l//> , the wave function in the position space is

v (F)=(Flw)
and the wave function in the momentum space is
7 (P)=(blv)
4.1 Position and momentum eigenfunctions in the three-dimensional
position space
The position eigenfunction with eigenvalue 7 is the function <17|17’> , which is the

delta function & (17 —17’), as the position eigenstates |17> and |17’> are orthogonal and

the spectrum of the position operator is continuous.

Therefore, as in the one-dimensional position space, the position eigenfunctions in the
three-dimensional position space are delta functions.

The momentum eigenfunction with eigenvalue p is derived by solving the

momentum eigenvalue equation

317)=715)

in the position space.

Projecting both sides of the previous equation on an arbitrary position eigenstate |17> ,

we obtain
(F| | )= (7| 5| B)

Using the assumption we made in 1.1, the previous relation is written as



p(7)(F| )= p{7|B) (1)
where <F| [7> is the momentum eigenfunction with eigenvalue p, in the position

space.
For each 7 and p, the inner product <F | [7> is a complex number.

In the position space, the position vector 7 is variable, while the momentum vector
p 1s fixed — it is a parameter.

Thus, the momentum eigenfunction <F| [7> is a scalar complex function of 7, or, in

Cartesian coordinates, it is a scalar complex function of the three real variables
X, V,Z.

We emphasize that, in both the one- and three-dimensional position spaces, the
momentum eigenfunctions are scalar functions. But, in one-dimension, they are scalar
functions of x only, while in three dimensions, they are scalar functions of x, y,z.

Denoting the momentum eigenfunction (7| ) by p(7), i.e.
p(7)=(715) @)

and using that p(7)=—ifV, (1) is written as
—-inVp(7)=pp(7) (3)

This is the momentum eigenvalue equation in the three-dimensional position space.
In Cartesian coordinates, (3) is written as

_l.,,.{ap(f)é L), @),

X a e y

. . ~ j=(pxéx +p,8,+p.8)p(F) @)

or, since p(7)#0, otherwise p(7) wouldn’t be an eigenfunction,

() @) ()

ox 5 W s 5 _ P, P, i,
e +——e +———e =—reé +—e +—=e. =
p(F) = p(F) © p(F) T R Rk
6lnp(r)é +61np(r)é +6lnp(r)é :&é +lp_yé'+ipié N

ox Oy g oz -~ h " mn 7T n°~

:(amp(f)_ip_xjéx{@ln_p(f)_w_yjéy{aln_f?(f)_i&jé _0

oy h 0z h)-

Thus, since the unit vectors éx,éy,éz are linearly independent, from the last equation

we obtain

6lnp(17)_ipi:0 )
ox hi

alnp(F) _ip_yZO ©)

oy h



6lnp(17)_ipi:0 o
0z h

From (5) we obtain

1np(f):lp7;’“ (1,2)

or

p(7)=exp| 254 1(3.2) | =enp( 1 (2) o 2

That is
j (8)

p(?) =exp(f1(y,z))exp(

Similarly, from (6) and (7) we obtain, respectively,

p(7) :exp(fz(z,x))exp( >

ip,y
5 j(9)

p(f)=exp(ﬁ(x,y))exp[ j(m)

Comparing (8), (9), and (10), we derive that
pr p}y p
A
Pl7)= exp( h jep( h jep( hj

p(7)= Aexp[ j (a1

where A is a complex constant.
We could have well arrived at the equation (11) by separating the variables in (4), i.e.

by setting p(7)=X(x)Y(y)Z(z), and converting the solution to the product of

three one-dimensional solutions. Then, using the result of the one-dimensional case,
the momentum eigenfunction p(7) is written as

p(F)=4 exp(p?; jA exp[p;lyjAzexp(i%Zj (12)

Setting A=A A A, weendupto (11).

x Ty Tz

Using (11), we see that ‘p(?)‘=|A,

i.e. the magnitude of the momentum

eigenfunction is a positive constant, and thus, as in the one-dimensional position
space, the momentum eigenfunctions in the three-dimensional position space are not
normalizable.

As in the one-dimensional position space, the constant 4 in (11) is calculated using
the orthogonality of the momentum eigenstates, i.e. using the relation



5(p'-p)=(p'|p)

Inserting into the inner product (p'|p) the unity, in the form of the integral
Td3F|F><F ,
equation is written as

5(p'-p)= [Idr| j Td37<ﬁ’F><Fﬁ>=

—00

= I d'F )= [ @ (7) p(7)

—00

That is

0

[ &" (7)p(7F)=06(p'-p) (13)

This is the orthogonality relation of the momentum eigenfunctions in the three-
dimensional position space.
By means of (12), the integral in (13) is written, in Cartesian coordinates, as

.[d317p’*(17)p(17): .[ dxdydz| A

X

- T dx|4,[ exp [sz dy‘Ay‘z exp {w}i dz|AZ|2 exp [—i(pz ;ZPZ)ZJ

—00

Then, using that, in Cartesian coordinates, the three-dimensional delta function
5(p'-p)is

s(p'-p)=6(p.-p.)8(P,-p,)5(P.~p.),

(13) is written as

j dx|4[" exp (Tp)xﬁ dy|4,[ exp {wﬁ dz|A.[ exp [%j =
=5(p.-p.)3(p.-p,)3(P.-p.)

From the last equation, we derive that

i(p.—p.)x
zeXp(—(p" hp") j=5(p;—px)

X

0

.[dx

—00

Jalaf exp{—i(pyp;)y}—ﬁ(pipy)

A

X

h

zexp[i(pxhx j\A\ {(pyhpy)y}|Az|zexp{i(pz :



z

f&' WPQ4&%£)—j—5Ué—pJ

We see that the magnitudes of 4,4 .4, satisfy the same condition as the condition

satisfied by the constant of the momentum eigenfunctions in the one-dimensional
position space.
Thus, omitting the physically unimportant phases of the three constants 4,4 ,4., we

end up to
1

N27h

Using (14), (12) becomes

- 1 ipx) 1 p,y) 1 (ipzz)
F)= exp| — ex ex
P(7) 27h p( h j 27h p[ h j 27h P

p(F):(z;h) con( 5] 19

A=A4,=4 =

(14)

This is the momentum eigenfunction with eigenvalue, i.e. with momentum, p, in the

three-dimensional position space.
We see that the constant of the momentum eigenfunctions in the position space is

1
multiplied by —= for each spatial dimension.
N27h

Therefore, in an nth-dimensional position space, the momentum eigenfunctions are

p(f)=(27:h) exp( L j (16)

where 7 =(7,...,7,) and p=(p,,...p,).
By means of (2), (15) becomes

Pl p) = — T €X

4.2 Position and momentum eigenfunctions in the three-dimensional
momentum space

In the three-dimensional momentum space, the position eigenfunction with
eigenvalue, i.e. with position, 7 is the function < [7|17> , which is a scalar function of

j (17)

the momentum p , with the position 7 now being a parameter.

Using (17), the relation <13|17> = <17| ]3>* gives

<ﬁ|f>=(2ﬁ#h)§exp[ K fj (18)



This is the position eigenfunction with eigenvalue 7 in the three-dimensional
momentum space, which we’ll denote by »(p), i.e.

r(ﬁ)=%exp(—’f’;j (19)
(27zh)?

Note

As in the one-dimensional case, the position eigenfunctions in the three-
dimensional momentum space are the complex conjugates of the momentum
eigenfunctions in the three-dimensional position space.

Besides, the momentum eigenfunction with eigenvalue, i.e. with momentum, p' is the
function < [7| [7’> , which, since the momentum eigenstates | [7> and | [7’> are orthogonal
and the spectrum of the momentum operator is continuous, is equal to the delta
function &§(p-p').

Therefore, as in the one-dimensional momentum space, the momentum
eigenfunctions in the three-dimensional momentum space are delta functions.



5. The relation between the wave functions in the three-
dimensional position and momentum spaces
The relations between the wave functions y (7) and 7(p) in the three-dimensional

position and momentum spaces are easily derived using the completeness relations of
the position and momentum eigenstates, i.e. the relations

['e]

[ @F|7)(F|=1and [d’p|p){p|=1,

—00

and the relations (17) and (18) of section 4, i.e. the relations

(7|p) = - exp(iﬁ;j and (p|F)= (27;)3 exp(_zﬁ;j.

Thus, the wave function in the three-dimensional momentum space is written as

[°e]

(7)o} = ol ] 1711 o) = ol o)

- w(7)
-— Jffexp(—lp'rjw(f)

=t
S
I

(27zh)2 = h
That is
(7 =—— [ d7esn 2L o 7) ()

(2zh)2 =

We see that 17 (p) is the three-dimensional Fourier transform of y (7).

Similarly, the wave function in the three-dimensional position space is written as

v (F)=(rly)= [Idplp pljlw L B{F| B){(Bly) =

l//p)

| DT -,
— [ a'pess| 2 )i ()

(2zh)2 =
That is
v(7)=—— [ apen ZZ)w(5) @)

We see that w(7) is the three-dimensional inverse Fourier transform of (p).
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