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Abstract

This paper critically reflects on quantum gravity and argues how quan-
tum gravity might be done from the point of view of generally covariant
quaantum theory.

1 Introduction

The search for a theory of quantum gravity is one of new principles of
nature and involves the question if and how the superposition principle
should be applied to space time itself. Quantum theory as developed so
far requires a classical space time metric and therefore, a quantum theory
of the space time metric appears to call for a “super metric”: a metric
on the space of all geometries (I leave it open here whether one should
“quantize space” or spacetime - the standard canonical first quantization
procedure calls for a quantization of space whereas some other people
might suggest that you have to quantize spacetime). Moreover, it is of-
ten suggested that in the standard approach that you need to perform a
path integral in the standard Lagrangian formulation. I am not sure of
this, the proof of the equivalence between the operational formalism and
the standard path integral relies heavily upon the canonical form of the
kinetic term; that is momenta should be decoupled from canonical field
variables in order to get the original Lagrangian. This is not the case
in gravity and to get to a path integral formulation you would need to
order the constraints with all momenta to the right and spatial metrics to
the left. But hermiticity of those quantum operators would then require
additional, lower order terms to arise so that it appears that the new La-
grangian does not coincide with the original one. This problem does not
occur in tahe standard model given that there, the kinetic terms are all
uncoupled from the “position field” operators. So, I am not sure about the
soundness of, for example, the causal dynamical triangulations approach
where you take a sum over “gauge fixed” histories and the origin of the
covariant definition of the measure is entirely a mystery. Indeed, it is well
known that the path integral measure is not covariant but heavily depends
upon your choice of foliation of spacetime. This is not the only worry one
has regarding such discrete constructions: one has also to show that the
limiting kinematical configurations are arbitrarily close to any classical
space time in a suitable sense implying that the action principle at hand
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converges too. There is a very important distinction here between gravity
and all other action principles in field theory, which is that the latter all
depend upon first derivatives of the fields only whereas the former depends
upon second derivatives of the metric field. There exists a discretization
procedure invented by Regge, which can account for the second deriva-
tives in a distributional sense but it requires flexibility in the degrees of
freedom of the discrete structure (a simplicial manifold) so that, locally,
on the n−2 simplices, where n is the dimension of the simplicial manifold,
the deficiency angles go to zero sufficiently fast. The “curvature” of the
approximating simplicial manifolds then converges to the Ricci scalar in
a weak distributional sense. I am unaware of any suitable substitute for
the Ricci tensor and Riemann curvature in this kinematical framework.
I am also unaware of any approach to quantum gravity which manages
to offer a suitable answer to these elementary matters of principle: the
measure in the causal dynamical triangulations approach heavily depends
upon the kinematical restrictions which, moreover, do not approximate
any classical space time in the above sense. Indeed, not only is it clear
that Regge’s scheme does not apply, the “local” curvature is a diverging
quantity in the distributional sense when the continuum limit is taken.

What I have described above can be called “quantum gravity type one”
where there is no classical metric background on which computations are
performed. One can of course maintain that the universe consists also
out of classical degrees of freedom providing one with a dynamical classi-
cal background on which it is possible to regard the quantization of the
gravitational force as the quantum theory of the graviton. So in that
sense is a first, background dependent, quantization of the gravitational
field a second quantization of the graviton. This can be called “quantum
gravity type two”; such a theory has long been believed to be impossible
due to the non-renormalizability of the gravitational force on a Minkowski
background. It his here that our novel nonunitary quantum theory offers
a way out since the theory is finite when suitable deviations from the
standard Feynman diagram expansion are taken [1]. In particular, loop
diagrams played no special role at all in our analysis and were treated on
pair with other internal legs which shows that quantum gravity type two
is a perfectly safe theory in our framework.

2 Quantum gravity type one.

Personally, I have never made a choice between both types of approach
since both reflect different world views, which in my opinion were equally
valid. The fact that type two did not seem to work out technically has
always been regarded by me with the necessary amount of scepticism since
in my opinion, QFT did not work for QED nor the standard model ei-
ther. Only sloppy and overprotective field theorists could take something
like that seriously, but I was rigorous and not even protective regarding
my deepest beliefs. So I have always felt that on the level of relativistic
particle theory, we were lacking a few crucial insights. What I knew al-
ready for a long time was that ultimately type one was going to be the
most difficult to realize. These notes are about obstacles one will meet
regarding the formation of a type one theory, but a real theory, not just
something we can all pull out of our hats within five minutes but which
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lacks canonical beauty and predictive power.

Here, one immediately faces a couple of problems regarding the fact that
standard formulations of quantum mechanics are not covariant. This is
seldomly highlighted, but the problem is really everywhere: in the path
integral approach, it is in the non-covariance of the measure, in the Heisen-
berg approach, it resides in the non-covariance of the total Hamiltonian
and therefore the vacuum state, and finally in the Schrodinger approach,
it is blatanly visible because the probability density does not transform
as a density under coordinate transformations of space. In field theory
for example, one will obtain that distinct lattice regularizations, in either
different choices of “measure”, will give rise to different continuum limits
and we wish physics to be devoid of such ambiguity. In that respect is our
quantum theory generally covariant: it does not depend upon geometrical
structures or coordinate choices which have to be imported. There is no
choice of vacuum state, no Hamiltonian, no measure, everything has been
poored in a manifest space-time language. This, of course, is a great start-
ing point for some ideas regarding a quantum gravity type one theory to
mature. So, up till now, every approach to quantum gravity suffers from
one of these drawbacks: in the discrete theories based upon the Feynman
path integral, such as causal sets and causal dynamical triangulations,
one remains with the choice of the measure associated to the particular
regularization scheme, amongst others. Some researchers accept this as a
fact they have to live with, most of them are not even aware of the issue.

So, how can we extend our novel line of thought [1] to space time itself?
For example, how to define the momenta of the theory which have to serve
for a gravitational uncertainty principle and what are the constraints upon
the momenta replacing the on-shell mass condition for relativistic parti-
cles? Here, it is appropriate to state that in our framework, we have
disposed of first quantization all together, we immediately went over to
the second quantization by an appropriate derivation of the Wightman
functions. Clearly, in a continuum theory of the universe some infinite di-
mensional integration would have to be performed which again will lose its
appeal through the appearant non-canonical character of the limit of mea-
sures. In a discrete universe, one obviously does abandon local Lorentz
covariance in a well defined sense, albeit this does not need to have dis-
astrous implications upon the physics defined on it. It is an important
kinematical question to ask oneself how close two (discrete) universes are
and I have adressed this question in my PhD work [2] where I have de-
fined and investigated to some extend a Gromov distance on “Lorentz
geometries”, which wa a spacetime approach. Here, it is useful to recall
the canonical variables for classical relativity; those were the spatial met-
ric h and a momentum π obeying four constraints Zi(h, π) = 0 with as
equations of motion the Einstein equations where the lapse and qhift have
been gauge fixed to one and the zero vector respectively. Now, the novel
idea is to regard the Einstein equations as defining the free gravitational
field; just like the geodesic equation was the correct one for a free particle.
I have proposesd a similar avenue for the second quantizatiion of string
theory where the string equation of motion replaces our geodecy and free
momenta, satisfying the usual constraints, are dragged over the string
in a way as to preserve the constraints, see [3] for more explanations. I
have suggested there that the resulting “connection” might correspond to
a super (Finsler type) metric and that therefore some unique dynamical
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conserved quantity could be constructed in the propagator. In that pa-
per, the correct dragging law or “parrallel” transport has been derived
and further investigations must show how promising this idea really is.
Regarding gravity therefore, one should search for a metric on the sace of
all spatial metrics times “time” such that one spatial universe at a given
time corresponds to a point in that space, lets call it the birth universe,
and that the canonical momenta reside in the tangent space of that gen-
eralized manifold. Hence, a “geodesic” is determined by means of (h, π)
and corresponds to a gauge fixed solution of the Einstein equations. Now,
in order to go over to the second quantized theory, we should integrate
along all momenta π′ satisfying Zi(h, π

′) = 0 and dragging these mo-
menta along the Einstein equation as to preserve these constraints. As
such, one could compute the amplitude corresponding to going from h to
h′ in “time” 1 (this is the very definition of the exponential map). As an
aside here, the integration over all momenta can be canonically defined
by using the “birth metric” h as a “background” on which to perform
Fourier decomposition and taking the usual cutoffs in momentum space
and finally considering the thermodynamic limit. Such a scheme could
work out in principle and would provide one with a genuine, well defined,
background independent quantization of space. Such an approach would
be devoid of all ambiguities of the present one and be much more general
as well.
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