
On the Attempt to use a Stochastic Interpretation 
 to compute the Trace of a Regular Representation U on X = AK/K 

* !
Matanari Shimoinuda !

!
    Let X = AK/K 

*, which is proposed by A. Connes, and think of the trace  of  a  regular  representa-
tion U on X of the idele class CK.  It is interesting for number theory whether the trace is computable 
or not.  However, because of the non-compactness of X, it is hard to compute the trace of U.  In  this 
article, we try to show that the trace is computable.  In order to show this, we  will  use  a  stochastic 
interpretation.  We will ignore various subtle problems which the  adele  ring  has  and  consider  the 
adele ring as the Riemannian variety discussing on this problem.	!
!
!

!
0. !!!

    Let K be a global field, Ko be a local field that is the completion of K at  the  place 
o of K and AK be the adele ring of K.  Set 
!

X = AK/K 

*. 
!
The L2(X, dx) is an interesting space for the number theory. 

!
(A)    For p(x)!L2(X, dx), let  (Tp)(a) =uau

1/2
p(a); 6a!CK  be the restriction of  p(x)  

to the idele class group CK = AK
*/K  

*.  Since dx = , we will understand that 

!
(Tp)(a)!L2(CK, d*x). 

!
(B)    The idele class group CK naturally acts on p(x) as follows; 
!

 (U(g)p)(x) = p(g-1x)     6g!CK, x!X, 

!
since X = AK/K 

*.  Thus the restriction of L2(X): 
     

T(U(g)p)(a) = the restriction of p(g-1x) 

                                                  = ugu
1/2

(V(g)Tp)(a)           6a, g!CK, 

  
gives a regular representation (V, T(L2(X))) of CK which is unitary.  Here, T(L2(X)) 

= {(Tp)(a) | p(x)!L2(X)}. 

!

 x  d  *x
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!
    The space L2(X) gives a representation of CK, which isn’t always unitary.  Howev-
er if L2(X) is decomposed in  irreducible  representations  then  T(L2(X))  which  is  a  
subspace of L2(CK, d*x) is also decomposed in irreducible representations of CK.  Es-
pecially, it is important whether U is a trace-class operator or not.  In this article, we 

try to consider this problem.  We will think of the case K = Q. 

!!!
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1. !!!
    Set 

D = !  

!
which is a differential operator on X.  Let 
!

 Gp, hH = ! . 

!
We can show that !

� = � . 

!
Since �  = �  and � = � , 

!
 �  = !   = ! . 

!
We see that !

GDp, hH = Gp, DhH. 

!
Namely, D is Hermitian.  Thus its eigenvalues {m} are discrete.  We shall think of  the 
eigenvalue problems on the analogy of Sturm-Liouville  problem: !

                Dp(x) - mp(x) = 0;    p(x) = 0 on 2X. 

!
We can show that m # 0.��Counting multiplicity, we will denote {m}  by !

-3 # #  …  # m2 # m1 # 0. 
!
Let the eigen-space be !

E(m) = {zi(x) | Dzi(x) - mzi(x) = 0}. 

!
It must be a subtle problem what L2(X) is.  We shall start  with  the  following  state-
ment. !!
Thesis 1.1. 

L2(X) = . 

!!

 x  

2 d  2

dx2

ph dx
X∫

d2
dx2 p ⋅h dxX∫ p ⋅ d2dx2 h dxX∫

d
dx h

d
dx h  x   x  

 x  

2 d2

dx2 p ⋅h dx
X∫ p ⋅  x  

2 d2
dx2 h dxX∫ p ⋅  x  

2 d2
dx2 hX∫  dx

⊕
m
E(m)
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!
2. !!!

    The action of CQ = AQ
*
 / Q* on the functions on X is 

!
 (U(g)z)(x) = z(g-1x)     6g!CQ, x!X. 

!
Now, one computes !

(U(g) z)(x) = (U(g) z’’)(x) = z’’(g-1x). 

!
It holds that dgx = ugudx, so 
!

(U(g)z)(x) = z(g-1x) =  z(g-1x) 

                                           = z’’(g-1x). 

!
It turns out that U(g) and D are commutative.  Hence they shares  the  same  eigen-

space.  We have set the eigen-space: !
E(m) = {zi(x) | Dzi(x) - mzi(x) = 0}. 

!
Then we may think that (U, E(m)) gives an irreducible representation.  We will have 
!

     U = ;  (U, V ) = . 

!
From the above Thesis 1.1, we will obtain 

!
U = ;  (U, L2(X)) = .  

!
Our main problem is whether !

trUm(g) =  

!
exists or not. !
    Think of a certain function h on X, which satisfies that 
!

       h(x) = ;    ai = . 

!

 x  

2 d  2

dx2  ⋅  

2
 g−1x  

2

 x  

2 d  2

dx2  x  

2 d  2

dx2
  x  

2 d  2g−1x
dx2

d  2

d g−1x( )2

 g−1x  

2

⊕
m
Um

⊕
m

 (U,  E(m))

⊕
m
Um

⊕
m

 (U,  E(m))

 〈(U(g)zi )(x),  zi (x)〉
i=1

∞

∑

 ai  zi (x)
i=1

∞

∑ h(y)zi (y)dyX∫
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Put mi(g) = GU(g)zi(x), zi(x)H and t![0, 3).  Here mi(g)!C.  Set 

!
h(t; x) =! . 

!
We can compute as follows; !

  h(t; x) = ! . 

!
We may say that U(g)zi(x) = zi(g

-1x) = mi(g)zi(x).  Thus, we can define the following 
operator 
  

(etUm(g)h)(x) = h(t; x). 

!
    Let !

pm(t; x, y) = . 

!
So, etUm(g) has the integral expression: 

!
(etUm(g)h)(x) = . 

!
When t $ 0+ then 

h(t; x) = h(x) = ! . 

!
Thus !
(1)    = d(x-y) = dx(y). 

!
This implies that !

d(x-y) = ! . 

!
We will see that !
(2)    the symmetry 

pm(t; x, y) = pm(t; y, x). 

!
Put !

pm(t; x, y) = ;    ai = . 

!

et mi(g) ⋅aizi (x)
i=1

∞

∑

et mi(g) ⋅zi (x)zi (y)
i=1

∞
∑{ }h(y)dy

X∫

et mi(g) ⋅zi (x)zi (y)
i=1

∞

∑

 pm(t;  x,  y)h(y)dy
X∫

 lim
t→0+X∫  pm(t;  x,  y)h(y)dy

lim
t→0+

pm(t;  x,  y)

zi (x)zi (y)
i=1

∞

∑

aizi (y)
i=1

∞

∑  pm(t;  x,  z)zi (z)dzX∫
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We compute as follows; !
 pm(t+s; x, y) =  =  

                                        = !   

                                        = !  

                                        = ! . 

!
So, !
(3)     for all t, s![0, 3) 

pm(t+s; x, y) = . 

!!
    From the theory of semi-group, we see that !

�  = ! . 

!!
[Remark]	!

�  = ! . 

!On the other hand,	!
!  = � .	

!!!
Then !

 =  q
t = 0

 

!
Therefore, !

trUm(g) exists if and only if exists. 

!!!

es mi(g) ⋅et mi(g)zi (x)zi (y)
i=1

∞

∑ es mi(g) ⋅aizi (y)
i=1

∞

∑
es mi(g) ⋅zi (y) pm(t;  x,  z)zi (z)dzX∫

i=1

∞

∑
es mi(g) ⋅zi (y)zi (z)

i=1

∞
∑{ } pm(t;  x,  z)dz

X∫
 pm(s;  y,  z)pm(t;  x,  z)dz

X∫

pm(t;  x,  z)pm(s;  z,  y)dz
X∫

et m
 i (g)

i=1

∞
∑

 pm(t;  x,  x)dx
X∫

 pm(t;  x,  y)dy
X∫ etmi(g) ⋅zi (x)zi (y)dy

i=1

∞
∑

X∫

 pm(t;  x,  x)dx
X∫ etmi(g) ⋅zi (x)zi (x)dx

i=1

∞
∑

X∫

m i (g)
i=1

∞

∑ d
dt e

t m
 i (g)

i=1

∞
∑

d
dt

 pm(t;  x,  x)dx
X∫  

t = 0

�6



3. !!
    We will think of  where  pm(t; x, y) = .   This  inte-

gral is given formally.  Especially, it is important whether this  integral,  as  the  func-
tion of t, converges or not.  Now, we have seen that 
!

d(x-y) = ! . 

!
So, in the neighborhood t = 0, we may hope that pm(t; x, y) has a nice property.  We 

must be allowed to think that �  is meaningful.  By stating  its  useful-

ness and effectiveness, we shall think that whether the integral converges or not  is 
solved. !
    We have seen that !

pm(t+s; x, y) = .  

!
It satisfies Chapman-Kolmogorov equation.��It turns out that !

pm(t; x, y) = pm(t+s; x, y) = . 

!
Here, pm(t; x, z)dz = pm(t; x, dz).  So we can say that 

!
pm(t; x, y) = . 

!!
    We will rewrite the above formula from a stochastic  view.   If  pm(t; x, dz)  gives  a 

stochastic measure then !
pm(t; x, y) = E [ pm(s; y, z)]. 

!
We hope to be given a stochastic model of pm(t; x, y ).   To  be  brief,  there  exists  a 

stochastic measure vm(t; x, dy), which satisfies that 

!
pm(t; x, dy) = a(t; x, y)vm(t; x, dy) !

for a certain function a(t; x, y).  The  stochastic  measure  vm(t; x, dy)  determines  a 

stochastic process on X: 
!

 Bm
t = {xmt | t![0, 3)}. 

 pm(t;  x,  y)dy
X∫ et mi(g) ⋅zi (x)zi (y)

i=1

∞

∑

zi (x)zi (y)
i=1

∞

∑

 pm(t;  x,  y)dy
X∫

pm(t;  x,  z)pm(s;  z,  y)dz
X∫

lim
s→0+

pm(t;  x,  dz) lim
s→0+

pm(s;  y,  z)
X∫

δ (y − z)pm(t;  x,  dz)
X∫

lim
s→0+
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!
Set x = xm

0.  The probability of the event where xm
t is contained in Y 3 X is given as 

!
Px( xm

t!Y ) = . 

!!!
[Remark]        Suppose that {st} satisfies the stochastic differential equation:	! dst = a(t, st)dt + b(t, st)dxm

t.	!It turns out that	! E(st+D - st) = a(t, st)D + o(D), 
 V(st+D - st) = b2(t, st)D + o(D).	!Then,	!

a(t, st) =  and  b2(t, st) = .	! !We may be allowed to consider that a stochastic process {st} is given.  Thus, we may think that  the 
stochastic process Bm

t  is given as the solution of 
dst = 0dt + 1dxm

t.	!!!!
We will rewrite a(t; x, y) as a(xm

t).  Then 
!

pm(t; x, y) = E [a(xm
t) pm(s; y, xm

t)] 

                                         = ! . 

!
We shall call it “a stochastic interpretation”. !
    Especially, we can say that !

pm(t; x, x) = E [a(xm
t) pm(s; x, xm

t)] 

                                         = � . 

Then !
pm(t; x, x) = . 

!
We have shown that pm(t; x, y) = d(x-y).  So 

!
pm(s; x, xm

t) = 
.
 

Thus 

vm(t;  x,  xm
t)dxm

t
Y∫

dE(st )
dt

dV (st )
dt

lim
s→0+

a(xm
t) lim

s→0+
pm(s;  y,  xm

t){ }vm(t;  x,  dxm
t)

X∫

lim
s→0+

a(xm
t) lim

s→0+
pm(s;  x,  xm

t){ }X∫  vm(t;  x,  dxm
t)

lim
t→0+

lim
t→0+

a(xm
t) lim

s→0+
pm(s;  x,  xm

t){ }X∫  vm(t;  x,  dxm
t)

lim
t→0+

lim
s→0+

∞  !  xm
t = x

0   !  xm
t ≠ x

⎧
⎨
⎪

⎩⎪
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!
a(xm

t) pm(s; x, xm
t) = 

. 

!
It must be allowed to think that !  is almost  iden-

tified with � .  Thus, 

!
E [a(xm

t) pm(s; x, xm
t)] =  < 3 

!
and it must be satisfied independently of t.  So we may say that pm(t; x, x) < 3. 

!!
[Remark]         We have � = d(x-y).  Therefore,	

! p
m
(t; x, x) = d(0) = 3.	

!The above stochastic view is to consider p
m
(t; x, x) as an expected value i.e.  an  average.   We  shall 

say that to think of the average avoids being p
m
(t; x, x) = d(0) = 3. 

!!
Therefore, !

 = c   =  c . the volume of X. 

!
Suppose that the volume of X is finite.  Then � !  is finite.  Thus, 

!
if the volume of X is finite then !  is defined at t = 0. 

!!
Next, we will think of !

� . 

!
We can compute !!
        �  =  �  

                                                                   = ! . 

!!

lim
s→0+

∞  !  xm
t = x

0   !  xm
t ≠ x

⎧
⎨
⎪

⎩⎪

a(xm
t) lim

s→0+
pm(s;  x,  xm

t){ }X∫  vm(t;  x,  dxm
t)

d(x − y)dy
X∫

lim
s→0+

a(xm
t) lim

s→0+
pm(s;  x,  xm

t){ }X∫  vm(t;  x,  dxm
t)

lim
t→0+

lim
t→0+

pm(t;  x,  y)

lim
t→0+

lim
t→0+

lim
t→0+

 pm(t;  x,  x)dx
X∫ dx

X∫
lim
t→0+

 pm(t;  x,  x)dx
X∫

 pm(t;  x,  x)dx
X∫

lim
Δ→0+

pm(t + Δ;  x,  x)dx
X∫ − pm(t;  x,  x)dx

X∫
Δ

lim
Δ→0+

pm(t + Δ;  x,  x)dx
X∫ − pm(t;  x,  x)dx

X∫
Δ

lim
Δ→0+

pm(t + Δ;  x,  x)− pm(t;  x,  x)dx
X∫

Δ

lim
Δ→0+

pm(t;  x,  z)pm(Δ;  x,  z)dz
X∫{ }− pm(t;  x,  x)dx

X∫
Δ
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Here = = d(x-z).  Taking 

!
�=  = mi(g) 

!
into account, it turns out that when t approaches 0 then  etmi(g) rapidly approaches 1. 

So we may say that !
(a)         when D $ 0+ then pm(D; x, z) =  rapidly approaches 

        = d(x-z). 

!
Thus, !
(b)        when D $ 0+ then  rapidly  

        approaches zero. !!!
Therefore, !

!  is a differential function at t = 0. 

!!!!
Thesis 3.1. 

If the volume of X is finite then � exists. 

!!!
    We know that !

AQ /Q  , # [0, 1]  and  AQ
*/ Q* , # R*

>0 . 

!
For r!Qp, r = pt  ( pAm,  pAn).  Just imagine as follows; 

!
(i)     Zp* corresponds to a unite circle, 

(ii)    Zp corresponds to a unite disk. 

!
From this imagination, we can say that 

lim
Δ→0+

pm(Δ;  x,  z) zi (x)zi (z)
i=1

∞

∑

lim
t→0

et mi(g) −1
t

d
dt
et mi(g)

t =  0

eΔmi(g)zi (x)zi (z)
i=1

∞

∑
zi (x)zi (z)

i=1

∞

∑

pm(t;  x,  z)pm(Δ;  x,  z)dz
X∫{ }X∫ − pm(t;  x,  x) dx

 pm(t;  x,  x)dx
X∫

d
dt

 pm(t;  x,  x)dx
X∫  

t = 0

Z p
p  < ∞
∏ Z p

*

p  < ∞
∏

m
n
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!
is a set of countable unite disks Zp, namely a cylinder. 

!
Then we can also say that !

is the surface of the cylinder except two inner disks. 

!
Now, the thickness of a unite disk Zp is zero.  Thus the thickness  of  the  cylinder  is 

0.3 = c, namely the thickness of the cylinder must be finite.  We shall consider that 

!
AQ /Q  =  the cylinder #  [0, 1] 

and 
AQ

*/ Q*  =  the surface of the cylinder except two inner disks  #  R*
>0 . 

!
    Intuitively thinking, we may say that X exists in the  middle  of  AQ /Q  and  AQ

*/ Q* .  

Since we may say that both AQ /Q and AQ
*/ Q*  have a finite volume, the volume  of  X  

must be finite. !!
Thesis 3.2. 

The volume of X is finite. 
!!
With Thesis 3.1, we can say that exists.  Therefore, we can  con-

firm that Um is trace-class.  This fact ensures considering U  as  a  trace-class  opera-

tor.  !!!!

Z p
p  < ∞
∏

Z p
*

p  < ∞
∏

d
dt

 pm(t;  x,  x)dx
X∫  

t = 0
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