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Abstract: Recent experimental results have shown a violation of Bell’s inequalities, which are 

a mathematical formulation of Einstein-Podolsky-Rosen (EPR) paradox. The violation leads 

to the conclusion that there are no local hidden variable theories that underlie quantum 

mechanics. However, the Bell’s inequalities do not rule out the possibility to construct non-

local hidden variable theories that comply with quantum mechanics, in particular, a theory of 

special and general relativity that permits an instantaneous transmission of interaction. In this 

work we show that a special relativity with a Euclidean metric that allows not only local 

interactions but also interactions that can be transmitted instantaneously can be constructed 

and, furthermore, such special relativity can also be generalised to formulate a general theory 

of relativity that leads to the same experimental results as Einstein theory of general 

relativity. We also show that it is possible to formulate Dirac-like relativistic wave equations 

in this Euclidean relativity with either real mass or imaginary mass, which suggests that the 

proper mass of a quantum particle may be defined in terms of a differential operator that is 

associated with a spacetime substructure of the particle. 

 

 

Even though Einstein general relativity and quantum mechanics are considered as two 

fundamental theories of modern physics they are formulated within different frameworks that 

have radically different formalisms for the description of physical reality. Perhaps, the most 

profound difference between the two theories is the conceptual difficulty that arises from 

Einstein locality that states that no physical interaction between physical systems can 

propagate faster than the universal speed, which is assumed to be the speed of light in 

vacuum. In short, Einstein theory of relativity is a local theory and quantum mechanics is a 

non-local theory. Einstein theory of relativity is viewed as a local theory because it is 

formulated on manifolds that are endowed with pseudo-metrics that impose an upper limit on 

the speed of propagation of interaction [1]. On the other hand, the non-locality of quantum 

mechanics is due to the principles that underlie its mathematical formalism [2]. Therefore, in 

order to reconcile the general theory of relativity with the principles of quantum mechanics, 

and hence to resolve the conceptual difficulties, either local hidden variable theories for 

quantum mechanics or a theory of relativity that permits an instantaneous transmission of 

interaction are needed to be devised.  

Local hidden variable theories assume that quantum mechanics is an incomplete theory in the 

sense that there are other variables that may determine a physical system but are not directly 
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observable. These theories postulate that the indeterministic characteristics of quantum 

mechanics are due to our incomplete knowledge of the hidden substructure of the physical 

system under investigation. One of the most famous hidden variable theories is de Broglie’s 

interpretation of wave mechanics where the wave functions are considered as pilot waves 

which are real physical waves that are coupled to associated particles that behave in a 

classical deterministic manner [3]. Modelling on de Broglie’s theory, David Bohm 

formulated a more complete hidden variable theory to interpret quantum mechanics [4]. 

However, in order to conform to experimental results, Bohm’s theory requires one of the 

most unacceptable features of local realistic classical physics, the requirement of an action at 

a distance. Therefore, unlike Bohm’s theory, any hidden variable theory that is considered to 

be a genuine local realistic theory of nature must be constructed so that both determinism and 

locality are retained. Historically, the question of the existence of a local hidden variable 

theory emerged from the Einstein-Podolsky-Rosen (EPR) paradox which argued against the 

completeness of the quantum theory [5]. According to their arguments, a physical theory is 

complete only when it satisfies the criteria that require that a certainly predicted value of the 

theory must be corresponded to an element of physical reality and the theory must also satisfy 

the locality requirement. However, recent results from experiments that are performed to test 

the Bell’s inequalities seem to support the Bell’s theorem which rules out local hidden 

variable theories with the conclusion that a theory that complies with quantum mechanics 

could not be Lorentz invariant [6,7]. It is worth noting that Bell’s conclusion in itself does not 

provide the ultimate answer to resolve the conceptual difficulties but instead raises the 

question of whether Lorentz invariance is in fact the cause of the conceptual conflict between 

classical and quantum mechanics. Our focus in this work will be on the Lorentz invariance 

and we will show that a special relativity with a Euclidean metric that allows not only local 

interactions but also instantaneous interactions can be constructed and, furthermore, such 

special relativity can also be generalised to formulate a general theory of relativity that leads 

to the same experimental results as Einstein theory of general relativity.   

As mentioned above, the local realism in classical physics is a consequence of Einstein 

theory of special relativity which assumes that, based on the postulates of the principle of 

relativity and the existence of a universal speed  , the pseudo-Euclidean metric of space and 

time is invariant under the Lorentz coordinate transformation. In order to associate with 

Einstein theory of special relativity, Minkowski formulated a unified mathematical spacetime 

also with a pseudo-Euclidean metric with the assumption that the spacetime interval       

         is invariant. Consider the coordinate transformation between the inertial frame 

  with spacetime coordinates            and the inertial frame    with coordinates 

               that takes the form of the Lorentz transformation [1,8,9] 

                                                                                                                                                    

                                                                                                                                                               

                                                                                                                                                                

                                                                                                                                                 



where   is the relative translational velocity between the two inertial frames and       . 

From the requirement of the invariance of the spacetime interval                

                  , we obtain 

  
 

     
                                                                                                                                               

It is seen from Equation (5) that if we impose that condition        then    . 

Therefore Einstein theory of relativity does not allow interactions at a distance. However, in 

order to interpret quantum phenomena, such as the quantum entanglement, the transmission 

of interaction must be assumed to be instantaneous. We now show that it is possible to 

construct a special relativistic transformation that will endow spacetime with a Euclidean 

metric rather than a pseudo-Euclidean metric as in the case of the Lorentz transformation and, 

as a consequence, interaction at a distance is allowed.  Consider the following modified 

Lorentz transformation [10,11] 

                                                                                                                                                   

                                                                                                                                                                

                                                                                                                                                                

                                                                                                                                                   

where       and    will be determined from the principle of relativity and the postulate of 

a universal speed. Instead of assuming the invariance of the Minkowski spacetime interval, if 

we now assume the invariance of the Euclidean interval               then from the 

modified Lorentz transformation given in Equations (6-9), we obtain the following 

expression for     

   
 

     
                                                                                                                                           

It is seen from the expression of    given in Equation (10) that there is no upper limit in the 

relative speed   between inertial frames. The value of    at the universal speed     is 

       . For the values of    , the modified Lorentz transformation given in Equations 

(6-9) also reduces to the Galilean transformation. However, it is interesting to observe that 

when     we have      and      , and in this case from Equations (6) and (9), we 

obtain        and      , respectively. This result shows that there is a conversion 

between space and time when    , therefore in the Euclidean special relativity, not only 

the concept of motion but the concepts of space and time themselves are also relative. It is 

also worth mentioning here that the Euclidean relativity of space and time also provides a 

profound foundation for the temporal dynamics that we have discussed in our other works 

[12]. In the present situation, if in the inertial frame   with spacetime coordinates            

the dynamics of a particle is described by Newton’s second law           , then since 

       and       it is seen that the spatial Newton’s second law in the inertial frame   is 



converted to a temporal law of dynamics            as viewed from the inertial frame    

with spacetime coordinates               . As in the case of the Lorentz transformation given 

in Equations (1-4), we can also derive the relativistic kinematics and dynamics from the 

modified Lorentz transformation given in Equations (6-9), such as the transformation of a 

length, the transformation of a time interval, the transformation of velocities, and the 

transformation of accelerations. Let    be the proper length then the length transformation 

can be found as 

                                                                                                                                                  

It is observed from the length transformation given in Equation (11) that the length of a 

moving object is expanding rather than contracting as in Einstein theory of special relativity. 

Now if     is the proper time interval then the time interval transformation can also be found 

to be given by the relation 

   
 

     
                                                                                                                                       

It is also observed from the time interval transformation given in Equation (12) that the 

proper time interval is longer than the same time interval measured by a moving observer. 

With the modified Lorentz transformation given in Equations (6-9), the transformation of 

velocities can be found as follows 

  
  

   

   
 
     

  
   
 

                                                                                                                                

  
  

   

   
 

  

     
   
  

                                                                                                                      

  
  

   

   
 

  

     
   
  

                                                                                                                      

Form Equation (13), if we let      then we obtain   
      

   
  . Therefore in this case 

  
    only when the relative speed   between two inertial frames vanishes,    . In other 

words, the universal speed   is not the common speed of any moving physical object or 

physical field in inertial reference frames. It should be mentioned here that the universal 

speed   in Einstein theory of special relativity is assumed to be the speed of light in vacuum. 

It seems that such an assumption was supported by Michelson-Morley experiment [13]. 

However, as shown in Appendix 1, by using a relativistic transformation, the Michelson-

Morley experiment can be used to identify the universal speed as the speed of light only when 

the shift of the fringe pattern is absolute zero [14]. In order to specify the nature of the 

assumed universal speed we observe that in Einstein theory of special relativity it is assumed 

that the spatial space of an inertial frame remains static and this assumption is contradicted to 



Einstein theory of general relativity that shows that the spatial space is actually expanding. 

Therefore it seems reasonable to suggest that the universal speed   in the modified Lorentz 

transformation given in Equations (6-9) is the universal speed of expansion of the spatial 

spaces of all inertial frames. The transformations of accelerations can be derived from the 

modified Lorentz transformation and the transformations of velocities given in Equations 

(13-15). The transformation of the accelerations can be found as 

   
 

   
 

 

      
   
  

 

   
  

                                                                                                                    

   
 

   
 

 

      
   
 
 
 

   

  
 

   

       
   
 
 
 

   
  

                                                                       

   
 

   
 

 

  
    

   
  

 

   
  

 
   

   
    

   
  

 

   
  

                                                                       

By carrying out the thought experiment of the collision of two identical masses in two inertial 

frames that are moving relative to each other, we can derive the following relationship 

between the rest mass    observed in the rest frame and the mass   observed from other 

frame as [8,9] 

  
  

     
                                                                                                                                            

It is seen from Equation (19) that     when    . However, when     we also have 

the conversion between space and time       , therefore we may speculate that there may 

also be a conversion between the spatial mass   and the temporal mass   of a particle when 

    [12]. Form Equation (19) we obtain  

            
                                                                                                                               

Since both   and   are variables, we obtain the following relation by differentiation 

                                                                                                                                     

On the other hand, from Newton’s second law           , we have 

   
  

  
  

  

  
                                                                                                                                    

Using Equations (22), the change of kinetic energy               can be obtained as  

                                                                                                                                          

From Equations (21) and (23) we arrive at 



                                                                                                                                                     

Since     , therefore      . By integrating both sides of Equation (24) 

   
 

   

       
 

  

                                                                                                                             

we obtain the following expression for the kinetic energy 

         
           

                                                                                                       

For    , we have       
    and Equation (26) reduces to      

   . However, we 

have      
  when    . The relativistic momentum   of a particle of mass   with 

velocity   can also be defined by the following relation   

                                                                                                                                               

In magnitudes,               , where the total energy   is defined by the relation 

         
   . From this definition, we obtain     when    . Using the 

relations       and      , we also obtain the following Euclidean relativistic energy-

momentum relationship 

       
                                                                                                                                    

The energy-momentum relation given in Equation (28) is different from that in the pseudo-

Euclidean Minkowski spacetime by the negative sign of the momentum term. However, we 

now show that it is still possible to formulate relativistic wave equations by using Dirac’s 

mathematical method [15]. By applying the canonical method of quantisation in quantum 

mechanics, we replace the energy  , the momentum   and the mass    by operators as 

follows 

   
 

  
            

 

  
            

 

  
             

 

  
                                            

For simplicity, we use the mathematical units in which      . The Dirac’s first order 

relativistic partial differential equation is written in the form 

                                                                                                                      

where the unknown operators    and   are assumed to be independent of the momentum   

and the mass   . From Equation (30), we obtain 

                        
 
                                                                                           

By expanding Equation (31), and due the fact that all linear momentum operators commute 

mutually, in order to reduce to the form of the relationship given in Equation (28), the 

operators    and   must satisfy the following relations 



                                                                                                                                          

                                                                                                                                                    

  
                                                                                                                                                          

                                                                                                                                                             

As shown in Appendix 2, to satisfy the conditions given in Equations (32-35), the operators 

   and   can be represented as 

    
   
    

                                                                                                                                         

   
  
   

                                                                                                                                             

where    are Pauli matrices given by     
  
  

 ,  
   
  

  and  
  
   

 . If we multiply 

Equation (30) by the operator  , then it can be rewritten in a covariant form as 

                                                                                                                                                    

where                 ,  
      and     . As in the case of the Dirac equation in the 

pseud-Euclidean Minkowski spacetime, the solutions to particles at rest can be found as 

    

 
 
 
 

                

 
 
 
 

                

 
 
 
 

               

 
 
 
 

                                

Now, it is observed that the canonical quantisation given in Equation (29) treats the proper 

mass    differently from the energy   and the momentum  . If the energy   and the 

momentum   are replaced by operators then, due to the equivalence between mass and 

energy, the proper mass    should also replaced by a differential operator, which may be 

related to the substructure of a quantum particle. Therefore, instead of the quantisation given 

in Equation (29), we assume the following alternative quantisation in which the proper mass 

   is replaced by     

   
 

  
            

 

  
            

 

  
             

 

  
                                           

With        and using the units      , Equation (28) can be rewritten in the form 

           
                                                                                                                                     

The Dirac equation now becomes 

                                                                                                                      



From Equation (42), we also obtain 

                           
 
                                                                                      

By expanding Equation (43), and also due the fact that all linear momentum operators 

commute mutually, in order to reduce to the form of the relationship given in Equation (41), 

the operators    and   now must satisfy the following relations 

                                                                                                                                          

                                                                                                                                                    

  
                                                                                                                                                            

                                                                                                                                                             

As shown in Appendix 2, to satisfy the conditions given in Equations (44-47), the operators 

   and   can be represented as follows 

    
   
   

                                                                                                                                            

   
  
   

                                                                                                                                             

where    are Pauli matrices given as     
  
  

 ,  
   
  

  and  
  
   

 . If we multiply 

Equation (42) by the operator  , then it can also be rewritten in a covariant form as 

                                                                                                                                                    

where                 ,  
      and      . However, the solutions to particles at rest 

in this case are real and can be found as 

    

 
 
 
 

               

 
 
 
 

               

 
 
 
 

              

 
 
 
 

                                   

In the following we will extend our presentation of the Euclidean relativity and show that the 

special Euclidean relativity can also be generalised to formulate a general theory of Euclidean 

relativity that also leads to the same experimental results as Einstein theory of general 

relativity. We assume that Einstein field equations of general relativity can also be applied to 

Riemannian spacetime manifolds which are endowed with positive definite metrics. In the 

original Einstein theory of general relativity, the field equations of the gravitational field are 

proposed to take the form [1] 

    
 

 
                                                                                                                                      



where     is the covariant form of the energy-momentum tensor,     is the Ricci tensor 

defined by the relation 

    
    

 

   
 
    

 

   
    

    
     

    
                                                                                            

and the metric connection    
  is defined in terms of the metric tensor     as 

   
  

 

 
    

    
   

 
    

   
 
    

   
                                                                                                  

and          is the Ricci scalar curvature. As shown in Appendix 3, the Schwarzschild 

vacuum solution can be obtained with a Riemannian positive definite metric for a centrally 

symmetric field given in the form 

                                                                                                         

The Schwarzschild vacuum solution is found as 

       
 

 
          

 

 
 
  

                                                                    

where   is a constant of integration that can be identified with the mass of the source of a 

physical field. In order to investigate the nature of the constant   we examine in this 

spacetime the motion that is described by the geodesic equation 

    

   
    

    

  

   

  
                                                                                                                         

With       and       , the geodesic equation for     can be found to satisfy the 

relation [16] 

   
 

 
 
  

  
                                                                                                                                          

where    is a constant of integration. For         we obtain following the relations 

   

   
 

 

   
   

 

 
  
  

  
 
 

 
 

   
   

 

 
 
  

 
  

  
 
 

     
 

 
  
  

  
 
 

        
  

  
 
 

     

   

   
 
 

 

  

  

  

  
          

  

  
 
 

                                                                                                 

   

   
 
 

 

  

  

  

  
      

  

  

  

  
                                                                                                       

On the other hand, if we divide the line element given in Equation (56) by          , we 

obtain the equation 



     
 

 
  
  

  
 
 

 
 

  
   

 

 
 
  

 
  

  
 
 

 
 

  
    

  

  
 
 

       
  

  
 
 

                           

For a planar motion with      , Equation (60) reduces to 

  
  

  
                                                                                                                                                    

where    is a constant of integration. Using Equations (58) and (63), Equation (62) is reduced 

to the equation 

     
 

 
 
  

  
  

  
 

  
   

 

 
 
   

  
 
  

  
 
 

 
  
 

    
                                                                    

Using the identity 
 

  
 
  

  
 
 

  
 

  
 
 

 
  

 

, Equation (64) is simplified to 

 
 

  
 
 

 
  

 

 
 

  
 
  

  
 
     

   
   

   
  

 

  
                                                                                    

By differentiating Equation (65) with respect to  , we have 

 

  
 
 

 
  

  

   
 
 

 
  

 

 
  

 

  
 
 

 
  
   

   
  

  

   
                                                                              

From Equation (66), we obtain the following two equations 

 

  
 
 

 
                                                                                                                                                   

  

   
 
 

 
  

 

 
 
   

   
  

  

   
                                                                                                                    

It is seen that as in the case of Schwarzschild solution with the Minkowski pseudo-

Riemannian metric, Equation (67) describes a circle and Equation (68) can be used to 

describe the precession of planetary orbits around a gravitational mass if the constant   is 

identified with the gravitational mass   as           and the constant    is defined in 

terms of the semi-latus rectum   of an ellipse as   
     . 

It is noted that if the field endowed with the Riemannian metric given in Equation (45) is still 

spherically symmetric but now time-dependent then the metric can be shown to be written in 

the form [16] 

                                                                                                         



Similar to the case of time-independent spherically symmetric metric as shown in Appendix 

3, the time-dependent metric given in Equation (69) can be reduced to the time-independent 

Schwarzschild metric given in Equation (55) if the following condition is assumed 

       
 

 
                                                                                                                                            

where   can be shown to be time-independent from the condition                  . 

For the case of a gravitational field, the constant of integration   can be identified as 

         . Therefore, if   is time-independent then the mass   of a gravitational source 

must be constant. This is the content of Birkhoff’s theorem which states that any spherically 

symmetric vacuum solution of the field equations of general relativity is necessary static. It 

can be observed that even though Birkhoff’s theorem is a perfect mathematical theorem, it 

cannot practically be applied to physical reality because there is no physical object which has 

a constant mass can be a physical star. We would like to give a further remark here on the 

formulation of Robertson-Walker metric to describe the dynamical structure of the 

observable universe in modern cosmology. The Robertson-Walker pseudo-metric can be 

written in the following form 

                                                                                                         

In the cosmological line element given in Equation (71), the time   is a universal time and the 

factor       is an expansion factor. However, since the metric is conformally flat in order for 

the spatial section of spacetime to be described as a curved space it must be embedded into a 

four-dimensional Euclidean space   . Since a flat space    does not exist in Einstein general 

relativity, a fictitious flat space    must be introduced so that a three-dimensional 

hypersurface can be embedded. However, as has been discussed above, within the framework 

of the Euclidean relativity, the flat space    exists naturally and in this case the Robertson-

Walker pseudo-metric is modified to take the following form 

                                                                                                           

Similar to the case when the polar coordinates                     are introduced to 

describe a circle in the three-dimensional Euclidean space   , the three-dimensional spatial 

section can be described by introducing the spherical coordinates [8,16] 

                                                                                                                                               

                                                                                                                                                

                                                                                                                                                   

                                                                                                                                                        

With the spherical coordinates given in Equations (73-76), the line element given in Equation 

(72) can be expressed in the form 



                
 

     
                                                                        

where the Gaussian curvature   can take values               .  

 

Appendix 1 

The postulate of the invariance of the speed of light has been re-examined recently by many 

authors, and it has been shown that the special theory of relativity can be developed using 

only the principle of relativity, which postulates the invariance of physical laws in any 

inertial frame of reference [17-19]. Even though relativistic transformations can be derived 

from the principle of relativity alone, these formulations do not specify or determine the 

universal speed that must be accompanied the special relativity for any further development 

or application of the theory. Furthermore, it should be mentioned here that even within 

Einstein’s theory of general relativity, whether the constancy of the speed of light has a 

global character is a question that has also been discussed [20,21]. In this work, we will use 

the relativistic transformations that are derived only from the principle of relativity to show 

that the Michelson-Morley experiment can be used to verify the fact that the speed of light is 

not universal as postulated in Einstein’s theory of special relativity. For the clarity for our 

discussions in the following, first we recapture the necessary procedure to calculate a possible 

shift of the interference pattern in the Michelson-Morley experiment. In the Michelson-

Morley experiment, light rays are made to travel along two optical paths    and    which are 

perpendicular to each other. In this work we assume the length of all optical paths to be kept 

constant. If the whole apparatus is moving in the direction of    at speed   then by using the 

Galilean law of composition of velocities the times    and    taken for light to travel along    

and    can be calculated, respectively, as follows [22] 

   
  

   
 

  
   

 
     

       
                                                                                                   

   
     

            
                                                                                                                         

where   is the velocity of the earth in its orbit. From Equations (1) and (2), a time difference 

         is obtained  

   
     

       
 

     

            
                                                                                                 

If     then, using the relation            , where   is a real number, the time 

difference    is approximated 

   
        

 
 
    

 

  
 
   

 

  
                                                                                                      



Now, when the whole apparatus is turned so that its direction of motion is parallel to    then a 

new time difference          is obtained  

   
     

            
 

     

       
                                                                                                

If     then the time difference    is approximated  

   
        

 
 
   

 

  
 
    

 

  
                                                                                                      

From the time differences given in Equations (3) and (5), the interference pattern would shift 

by an amount              as follows 

  
 

 
 

     

       
 

     

            
 

     

            
 

     

       
                               

From Equation (7), an approximate amount of the shift of the interference pattern for the case 

    is found as  

  
        

 
 
        

 

   
                                                                                                        

And when         , then 

  
    

   
                                                                                                                                               

With            ,            and        , the relation (9) gives        fringe. 

Michelson and Morley reported to observe only a small shift of the fringe pattern of at most 

0.005 fringe [23]. This has been considered as a null result. The null result obtained from the 

Michelson-Morley experiment has been considered to be consistent with Einstein’s postulate 

of the invariance of the speed of light in empty space, which results in the following 

transformation of velocities 

   
  

   

         
                                                                                                                              

   
  

           

        
                                                                                                                     

It should be emphasized here that the shift of the interference pattern given by the relation (9) 

is derived from the Galilean transformation. However, the use of the Galilean transformation 

in the Michelson-Morley experiment is probably not appropriate to determine whether the 

speed of light in vacuum is universal. In fact, as will be argued in the following, when only 

the principle of relativity is used to formulate the special relativity then even the smallest 

fringe shift obtained from the Michelson-Morley experiment can be used to verify that the 

speed of light in vacuum is not universal. 



As shown in the above-mentioned references [17-19], without postulating the constancy of 

the velocity of light in vacuum, the principle of relativity alone can be used to derive the 

relativistic addition law for parallel velocities as follows 

   
  

   

       
                                                                                                                                 

where K is a universal constant. If the optical path    is along the direction of    and if 

  
    then the time    for light to travel along    is given by 

   
  

   
     

 
  

   
     

 
   
 
 
     

       
                                                                          

To calculate the time    for light to travel along    in the direction perpendicular to the 

direction of  , we note that in order to be consistent with the transformation of the 

perpendicular component in Einstein’s theory of special relativity given in Equation (11), the 

perpendicular component of velocity in the special relativity that is derived only from the 

principle of relativity should be transformed as 

   
  

         

      
                                                                                                                        

In the case when      and   
           , then we obtain 

   
         

      
                                                                                                                          

The time           for light to travel along    is calculated as 

   
   
 
 
     

       
 

   

                                                                                                               

Using the relativistic transformations given in Equations (13) and (16), the interference 

pattern would shift by an amount              given by 
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For the case when        , Equation (17) is reduced to 

  
  

 
  

     

       
   

     

       
 

   

                                                                               

From Equation (18), an approximate amount of the shift of the interference pattern for the 

case     is found as  



  
        

 
 
    

 
 
 

  
                                                                                                   

This result show that if an absolute null result is obtained from the Michelson-Morley 

experiment,    , then        . In this case light rays would move at the same speed in 

all reference frames as postulated in Einstein’s theory of special relativity. However, even 

with the so-called null result of         fringe, as obtained from Michelson-Morley 

experiment, the speed of light in vacuum is not universal. If we let         then it is seen 

from Equation (19) that     . The speed    is a universal speed.  

 

Appendix 2 

Assume the operators    are represented in terms of the operators    in the forms 

    
   
   

              
   
   

                      
   
    

                                                                 

Then  we obtain 

  
   

  
  

   
                                                                                                                                           

If   
    then   

   . On the other hand, if   
     then   

    . Now, if the operators 

   are given in the forms 

    
   
    

                                                                                                                                          

Then in this case we obtain 

  
   

   
  

    
                                                                                                                                    

If   
    then   

    . On the other hand, if   
     and then   

   . 

If we write the operator    as a two by two matrix in the form 

    
  
  

                                                                                                                                                

then from the requirement   
   , we arrive at the following system of equations for the 

unknown quantities             

                                                                                                                                                        

                                                                                                                                                      

                                                                                                                                                       



                                                                                                                                                        

From Equations (6) and (9) we obtain     . If     then       and the operator    

can take the values     
  
  

  or     
   
   

 . If      and if      , then the 

operator    can be as     
  
   

 . If      but      and    , then the operator    

can be written in the form     
  
  

  or     
   
  

 . These are only a few standard 

representations of the operators   . It is also seen from the representations of the operators    

given in Equations (1) that there are many different combinations that can be chosen for the 

operators    and   to satisfy the following relations 

                                                                                                                                          

                                                                                                                                                    

  
                                                                                                                                                            

                                                                                                                                                             

The most common use of the forms of the operators    is defined in terms of Pauli matrices 
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  as     
   
   

 . In this case the operators    are 

found as follows 

    

    
    
    
    

         

     
    
     
    

              

    
     
    
     

             

In addition, if the operator   is defined in terms of the operators    as    
   
    

  then 

with     
  
  

  the operator   takes the form 

   

    
    
     
     

                                                                                                                         

 

Now, for the operators    and   to satisfy the Euclidean relations 

                                                                                                                                          

                                                                                                                                                    

  
                                                                                                                                                          



                                                                                                                                                             

the operators    can still be defined in terms of Pauli matrices     
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  by using the representation     
   
    

 . In this case the operators    are found 

as follows 

    

    
    
     
     

         

     
    
    
     

              

    
     
     
    

       

However, the operator   is still defined in terms of the operators    as    
   
    

  with 

    
  
  

  as above.  

 

Appendix 3 

With the line element given in Equation (55), the tensor metric     and its inverse are given 

as 

     

      
      
     
          

                                                                                                           

    

 

 
 
 

       
       

  
 

  
 

   
 

        

 
 
 
                                                                                                

The non-zero components of the affine connections are 

   
     

  
  

  
                                                                                                                                             

   
         

  

  
               

  
  

  
              

                      
                                 

   
     

  
 

 
               

                                                                                                             

   
     

  
 

 
                

     
                                                                                                   

The non-zero components of the Ricci curvature tensor are 



            
   

   
  

  

  
 
 

 
  

  

  

  
 
 

 

  

  
                                                                                   

     
   

   
  

  

  
 
 

 
  

  

  

  
 
 

 

  

  
                                                                                                    

         
  

  
  

  

  
                                                                                                               

          
                                                                                                                                            

For the vacuum solution, from       and      , we obtain the identity 

  

  
 
  

  
                                                                                                                                                  

On integration Equation (4) we have 

                                                                                                                                                    

where   is an undetermined constant. However, with the assumption that the metric given in 

Equation (1) will approach the Euclidean metric as    , we have    . Therefore we 

have  

                                                                                                                                                        

With the condition given in Equation (6), the component     can be rewritten as 

       

  
                                                                                                                                                  

From Equation (7) by integration we obtain 

      
 

 
                                                                                                                                                

where   is a constant of integration.  
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