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This article proves π2 is irrational with annotations that show the steps
used yield a proof of the general πn case and, in turn, π’s transcendence.

This article may be viewed as part of continuum of ever evolving proofs
of the transcendence of e followed by π. e was proven to be transcendental in
1882 by Hermite [6]. Ten years later, using a key idea from Hermite’s proof,
Lindemann proved π is transcendental [13]. Hilbert and others shortened
both proofs in 1893 [3]. Niven [14] in his 1936 proof of the transcendence of
π credits Hurwitz’s treatment of e’s transcendence [8] for his use of e−zF (z)
to shorten π’s transcendence proof.

At some point these transcendence proofs yielded sufficiently short and
simple proofs that their techniques could reasonably be used for irrationality
proofs. Niven’s famously short π is irrational proof [15] is an example. Its
perverse terseness was arguably improved by Jones some years later [9]. Two
recent articles also use transcendence techniques more directly to prove en

and π are irrational [1, 10]. In these last two articles the mean value theorem
is used for e and complex integration for π to give equivalents to Lemma 2
below; both use Hurwitz’s e−zF (z) idea. As Lemma 2 drops the necessity of
separate real and complex cases, as well as Hurwitz’s innovation, some slight
gain of simplicity and efficiency is achieved. In addition, the natural number
powers of π and e can be proven irrational with the transcendence of these
constants an easy generalization.

This article is designed to parallel [11] which gives a proof that en is
irrational and e transcendental. This article uses the same lemmas. The
only essential modification is the real x for the e case is changed to the
complex z for the π. The lemmas given here could be used, intact, for the e
article, the real case needed for e being a special case of the complex needed
for π. But we think simplest is best and, given a chance to repeat the e to π
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connections and evolution, two articles seems, though a little redundant, an
interesting idea.

In what follows, z is complex number, all polynomials are integer poly-
nomials, and p is a prime.

Definition 1. Given a polynomial f(z), lowercase, the sum of all its deriva-
tives is designated with F (z), uppercase.

Definition 2. For non-negative integers n, let εn(z) denote the infinite series

z

n + 1
+

z2

(n + 1)(n + 2)
+ · · · +

zj

(n + 1)(n + 2) . . . (n + j)
+ . . . .

Lemma 1. If f(z) = czn, then

F (0)ez = F (z) + ε, (1)

where ε has polynomial growth in n.

Proof. As F (x) = c(xn + nxn−1 + · · · + n!), F (0) = cn!. Thus,

F (0)ex = cn!(1 + x/1 + x2/2! + · · · + xn/n! + . . . )

= cxn + cnx(n−1) + · · · + cn! + cxn+1/(n + 1)! + . . .

= F (x) + cxn(x/(n + 1) + x2/(n + 1)(n + 2) + . . . )

= F (x) + f(x)εn(x).

Now f(x) has polynomial growth in n and εn(x) ≤ ex, so the product has
polynomial growth in n.

Lemma 2. If F is the sum of the derivatives of the polynomial f(z) =
c0 + c1z + · · · + cnz

n of degree n, then

ezF (0) = F (z) + ε, (2)

where ε has polynomial growth in the degree of f .

Proof. Let fj(x) = cjx
j, for 0 ≤ j ≤ n. Using the derivative of the sum is

the sum of the derivatives,

F =
n∑

k=0

(f0 + f1 + · · · + fn)
(k) = F0 + F1 + · · · + Fn,
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where Fj is the sum of the derivatives of fj. Using Lemma 1,

exFk(0) = Fk(x) + ε (3)

and summing (3) from k = 0 to n, gives

exF (0) = F (x) + nε.

As the finite sum of functions with polynomial growth in n also has polyno-
mial growth in n, we arrive at (2).

Lemma 3. If f(z) = (z − r)m(cn−mzn−m + · · · + c0), then f (q)(r) = 0 for

0 ≤ q ≤ m− 1, f (m+j)(r) = (m + j)!cj for 0 ≤ j ≤ n −m.

Proof. If r = 0, the term with the least power of z is c0z
m. Its 0 through

m− 1 derivatives are 0 at 0. At the mth derivative this term is m!c0 and all
other terms are 0. Similarly the m + j derivative j > m yields constants of
the form (m + j)!cj.

If r 6= 0, then f(z) = (z− r)mQ(z), where Q(z) is a polynomial of degree
n − m. Define g(z) = f(z + r) = zmQ(z + r). Then g(k)(0) = f (k)(r) for all
k ≥ 0, where k superscripts give derivatives. As Q(z + r) is of degree n−m,
the same argument used for the r = 0 case applies.

Lemma 4. Let polynomial f(z) have root r = 0 of multiplicity p − 1 then,

for large enough p, p - |F (0)|.

Proof. We can write f(x) = xp−1(bjx
j + · · · + b0). The p − 1 derivative is

(p − 1)!b0 and all subsequent derivatives have p! in all their terms. Now if
p > b0, then p - F (0).

Lemma 5. If a and b are Gaussian integers and p is a prime, p > |a|, then

|a(p − 1)! + bp!| is a non-zero integer divisible by (p − 1)!.

Proof. As a(p − 1)! + bp! is of the form A − B + (C − D)i with A − B 6= 0
or C − D 6= 0 the result follows.

Theorem 1. π2 is irrational.

Proof. Suppose π2 = a/b, with a and b natural numbers, a > b. Let a2(z) =
z2 − (πi)2, then a2 has two roots: r1 = πi and r2 = −πi, one of which is
πi. 1© As one root is πi, we have

0 = (1 + er1)(1 + er2) = 1 + er1 + er2 + er1+r2 = 2 + er1 + er2. 2© (4)
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Form a polynomial for roots 0 with multiplicity p − 1 and the non-zero
exponents in (4) with multiplicity p. Multiply it by a power of b that makes
it an integer polynomial:

f2(z) = b2p−1zp−1[(z − πi)(z + πi)]p = (bz)p−1(bz + a)p. 3© (5)

We then have, using (4) with (5),

0 = F (0)(1 + er1)(1 + er2) = 2F (0) + F (r1) + F (r2) + ε.

Using 4, for p > max{2, b}, p - 2F (0) and (p − 1)!|2F (0). Now, per Lemma
3, the coefficients of F (r1) and F (r2) will be of the form (p + j)!cj. We can
observe the sum of the powers of the non-zero roots involved in F (r1)+F (r2)
will be integers as well: odd powers cancel to zero and even powers are under
the rationality assumption of π2. For example,

(bπi)2n + (−bπi)2n = (bi)2n(a/b)n + (bi)2n(a/b)n = 2(i)2nanbn,

a power of i times an integer. 4©
Finally,

0 =
2F (0) + F (r1) + F (r2) + ε

(p − 1)!

gives a contradiction for large enough p.

1© In general, an(z) = zn − (πi)n will have n roots, rj, one of which is πi.
2© In general, the exponents will consist of sums of rj roots taken one through
n at a time, with some adding to 0 and being absorbed in the A value.
3© In general, the fundamental theorem of symmetric functions insures that
the sum of roots polynomial will have coefficients that are integer polynomials
of the by assumption polynomial, an(z); that is the sum of the roots, as
they are symmetric, generate a polynomial with coefficients that are integer
polynomials of the coefficients of an(z). Consequently, as the only coefficient
of an(z) is a/b, a power of b will work. Making the power of b the maximum
exponent of z works for this purpose.
4© In general, Newton’s identities show that the sum of the powers of the roots
are symmetric functions and as such can be expressed as integer polynomials
of the coefficients of the polynomial they are roots of. So, the pattern is
coefficients of an(z) form the coefficients of fn(z) and thus the sums of the
powers of the roots of fn(z) are, in turn, integer polynomials of a/b, the only
coefficient in an(z).
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The annotations of the square case of the irrationality of π shows the
general πn case. With a slight adjustment of this πn case, π is proven tran-
scendental.

Theorem 2. π is transcendental.

Proof. A number is transcendental if it doesn’t solve an integer polynomial.
Suppose πi solves an nth degree integer polynomial at(z) with roots rj, then
the roots in the proof of the irrationality of πn are replaced with these roots:
all the steps are the same and lead, as in the irrationality case, to a contra-
diction.

Readers might be a little miffed at the brevity of the main results in this
article. We are seeking clarity of concepts over precision of details. For the
latter see [5, 7]. In that regard, the terseness and style of Lemmas 3, 4, and 5
may show inconsistency with this goal of clarity. These results are covered in
other articles more leisurely; [10] gives a tutorial on Leibniz tables that can
visually quickly give the ideas hidden in these lemmas; [2] also presents a more
leisurely, meaning longer, development of the ideas, including the real version
of Lemma 2 used for e. Finally, [12] provides case studies for the first, second,
third, and fourth powers of π. Interestingly regular polygons, via complex
roots of an(z) for these values, appear and suggest the validity of both the
fundamental theorem of symmetric functions and Newton’s identities. For
elementary treatments of these results see [4].
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