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Annotation
It is noted that the known solution for a spherical 

electromagnetic wave in the far zone does not satisfy the law of 
conservation of energy (it is retained only on the average), the 
electric and magnetic intensities of the same name (in coordinate) 
are in phase, only one of Maxwell's equations is satisfied. A 
solution is offered that is free from these shortcomings.

1. Introduction
In [1], a cylindrical electromagnetic wave is considered. Below we 

consider a spherical electromagnetic wave far from the vibrator - in the 
so-called the far zone, where the longitudinal (radial-directed) electric and 
magnetic intensities can be neglected. The main drawbacks of the known 
solution (see Appendix 1) are that

1. the law of conservation of energy is fulfilled only on the average 
(in time),

2. the magnetic and electrical components are in phase,
3. in the Maxwell equations system, in the known solution, only 

one equation of eight is satisfied.
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Fig. 1.

2. Solution of the Maxwell’s equations
Fig. 1 shows the spherical coordinate system (  ,, ). Expressions 

for the rotor and the divergence of vector Е in these coordinates are 
given in Table 1 [2]. The following notation is used:

E - electrical intensities, 
H - magnetic intensities, 
  - absolute magnetic permeability,
  - absolute dielectric constant. 

The Maxwell’s equations in spherical coordinates in the absence of 
charges and currents have the form given in Table. 2. Next, we will seek a 
solution for 0,0   HE  and in the form of the functions 

HE, presented in Table 3, where the function  g  and functions of 
the species  E  are to be calculated. We assume that the intensities 

HE,  do not depend on the argument  . Under these conditions, we 
transform Table 1 in Table 3a. Further we substitute functions from 
Table 3 in Table 3a. Then we get Table 4.

Substituting the expressions for the rotors and divergences from 
Table 4 into the Maxwell's equations (see Table 2), differentiating with 
respect to time and reducing the common factors, we obtain a new form 
of the Maxwell's equations - see Table 5.

Consider the Table 5. From line 2 it follows:
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where h  is some constant. Likewise, from lines 3, 5, 5 should be 
correspondingly:
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It follows from (5) that
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and from a comparison of (11) and (12) it follows that
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The same formula follows from a comparison of (7) and (9).
It follows from (5, 13) that
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and it follows from (14, 4, 11, 12) that
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Similarly, it follows from (7, 13) that
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and it follows from (16, 6, 8, 12) that
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From a comparison of (15) and (17) it follows that
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Further we notice that lines 1, 4, 7 and 8 coincide, from which it 
follows that the function  g  is a solution of the differential equation
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In Appendix 2 it is shown that the solution of this equation is the 
function

   
sin
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А

g , (20а)

where A is a constant. We note that in the well-known solution 
    sing  - see Appendix 1. It is easy to see that such a function 

does not satisfy equation (20). Consequently,
in the known solution 4 Maxwell's equations with 
expressions  Erot ,  Нrot ,  Ediv ,  Нdiv  are not 
satisfied.

Thus, the solution of the Maxwell's equations for a spherical wave 
in the far zone has the form of the intensities presented in Table 3, where
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and the constants  eehh ,,,
 
satisfy conditions
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From Table. 3 it follows that
the same (with respect to the coordinates   and  ) 
electric and magnetic intensities are shifted in phase by a 
quarter of the period.

This corresponds to experimental electrical engineering. In Fig. 2 shows 
the intensities vectors in a spherical coordinate system.
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Fig. 2.

3. Energy Flows
Also, as in [1], the flow density of electromagnetic energy - the Poynting 

vector is
HES  , (1)

where 
 4c . (2)

In spherical coordinates  ,,  the flow density of 
electromagnetic energy has three components  SSS ,,

 
directed along 
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the radius, along the circumference, along the axis, respectively. They are 
determined by the formula
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From here and from Table 3 it follows that
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It follows from (2.9, 2.11) that
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Further from (6, 7, 2.4, 2.6) it follows that
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From (5, 8, 9) we obtain:
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Further from (9, 2.13, 2.18) it follows that
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where q is a previously undefined constant. If we take
1q , (10a)

then we get
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We also note that the surface area of a sphere with a radius   is equal to 
24 . Then the flow of energy passing through a sphere with a radius   

is

 

 

224 hgS  . (12)

It follows from (12) that
in a spherical electromagnetic wave, the energy flux 
passing through the spheres along the radius remains 
constant with increasing radius and does not change with 
time. 

This strictly corresponds to the law of conservation of energy.
It follows from (12) that the energy flow density varies along the 

meridian in accordance with the law  2g .

4. Conclusion
An exact solution of the Maxwell equations for the far zone, which 

is presented in the table 3 is obtained, where
 H ,   H ,   Е ,   Е  are functions defined 
by (2.21, 2.18, 2.19),

 g  is a function defined by (2.20a),
  is the constant determined by (2.13).

• The electric and magnetic intensities of the same name (with 
respect to the coordinates   and  ) are phase shifted by a 
quarter of a period.

• In a spherical electromagnetic wave, the energy flux passing 
through the spheres along the radius remains constant with 
increasing radius and does NOT change with time and this 
strictly corresponds to the law of conservation of energy.

• The energy density varies along the meridian according to the law 
 2g .

Thus, we obtained a rigorous solution of the Maxwell equations in 
the far zone, free from the drawbacks indicated above. At the same time, 
it should be noted that in the near zone, where radial electric and 
magnetic intensities are present, the known solution has an even greater 
list of disadvantages, in particular [3],

7



1. the energy conservation law is satisfied only on the average,
2. The solution is inhomogeneous and it is practically necessary to 

divide it into separate zones (as a rule, near, middle and far), in 
which the solutions turn out to be completely different,

3. In the near zone there is no flow of energy with the real value
4. The magnetic and electrical components are in phase,
5. In the near zone, the solution is not wave (i.s. the distance is not 

an argument of the trigonometric function),
6. The known solution does not satisfy Maxwell's system of 

equations (a solution that satisfies a single equation of the 
system can not be considered a solution of the system of 
equations).

In practice, these drawbacks of the known solution mean that they 
(mathematical solutions) do not strictly describe the real radiation of 
technical devices. A more rigorous solution, when applied in the design 
systems of such devices, must certainly improve their quality.

The solution of the Maxwell equations for spherical coordinates  in 
the general case obtained and the author seeks for cooperation with 
organization interested in the practical application of this solution.

Appendix 1
The known solution has the form [3]:
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It should be noted that these tensions are in phase, which 

contradicts practical electrical engineering.
Let us consider how equations (1, 2) relate to Maxwell's system of 

equations - see Table 2. The intensities (1, 2) enter only in equation (6) 
from Table 2, which has the form
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We substitute (1, 2) into (5) and obtain:
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From a comparison of (3) and (7) it follows that the intensities (1, 2) 
satisfy equation (4). The remaining 7 Maxwell equations are violated. In 
the equations (2, 3, 5) from Table 2 one of the terms differs from zero, 
and the other is equal to zero. The violation of equations (1, 4, 7, 8) from 
Table. 2 is shown above in Section 2. So,

the known solution does not satisfy Maxwell's 
system of equations.

Appendix 1
We consider (2.20):
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It is known that
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where А  is a constant. From (4, 5) we obtain:
      sinlnln  Аg  (6)
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Tables
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