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Abstract 

In this article, we first classify A, B and C according to their respective 

odevity, and thereby get rid of two kinds which belong not to AX+BY=CZ. 

Then, affirm AX+BY=CZ in which case A, B and C have at least a 

common prime factor by several concrete equalities. After that, prove 

AX+BY≠CZ in which case A, B and C have not any common prime factor 

by mathematical induction with the aid of the symmetric law of odd 

numbers whereby even number 2W-1HZ as symmetric center after divide 

the inequality in four. Finally, reach a conclusion that the Beal’s 

conjecture holds water via the comparison between AX+BY=CZ and 

AX+BY≠CZ under the given requirements.  

AMS subject classification: 11D41, 11D85 and 11D61  

Keywords: Beal’s conjecture; indefinite equation; inequality; odevity; 

mathematical induction, the symmetric law of odd numbers  

Introduction 

The Beal’s Conjecture was discovered by Andrew Beal in 1993. Later the 

conjecture was announced in December 1997 issue of the Notices of the 

American Mathematical Society. Yet it is still both unproved and 

un-negated a conjecture hitherto.   
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The Proof 

The Beal’s conjecture states that if AX+BY=CZ, where A, B, C, X, Y and 

Z are positive integers, and X, Y and Z are all greater than 2, then A, B 

and C must have a common prime factor.    

Let us regard limits of values of aforesaid A, B, C, X, Y and Z as given 

requirements for hinder indefinite equations or inequalities concerned.   

First we classify A, B and C according to their respective odevity, and 

thereby remove following two kinds which belong not to AX+BY=CZ.  

1. A, B and C, all are positive odd numbers.  

2. A, B and C are two positive even numbers and a positive odd number.   

After that, we merely continue to have following two kinds of AX+BY=CZ 

under the given requirements.  

1. A, B and C, all are positive even numbers.   

2. A, B and C are two positive odd numbers and a positive even number.   

For the indefinite equation AX+BY=CZ which satisfies aforesaid either set 

of qualifications, in fact, it has many sets of the solution with A, B and C 

as positive integers. Let us illustrate with examples as follows.  

When A, B and C all are positive even numbers, if let A=B=C=2 and 

X=Y≥3, then AX+BY=CZ is changed into 2X+2X=2X+1, where z=x+1. 

Obviously the indefinite equation AX+BY =CZ at here has a set of the 

solution with A, B and C as positive integers 2, 2 and 2, and that A, B and 

C have common prime factor 2.  
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In addition, if let A=B=162, C=54, X=Y=3 and Z=4, then AX+BY=CZ is 

changed into 1623+1623=544. So the indefinite equation AX+BY=CZ at 

here has a set of the solution with A, B and C as positive integers 162, 

162 and 54, and that A, B and C have common prime factors 2 and 3.    

When A, B and C are two positive odd numbers and a positive even 

number, if let A=C=3, B=6, X=Y=3 and Z=5, then AX+BY=CZ is changed 

into 33+63=35. So the indefinite equation AX+BY=CZ at here has a set of 

the solution with A, B and C as positive integers 3, 6 and 3, and that A, B 

and C have common prime factor 3.  

In addition, if let A=B=7, C=98, X=6, Y=7 and Z=3, then AX+BY=CZ is 

changed into 76+77=983. So the indefinite equation AX+BY=CZ at here has 

a set of the solution with A, B and C as positive integers 7, 7 and 98, and 

that A, B and C have common prime factor 7.  

Therefore the indefinite equation AX+BY=CZ under the given 

requirements plus aforementioned either set of qualifications is able to 

hold water, but A, B and C must have at least a common prime factor.   

By this token, if we can prove that there is only AX+BY≠CZ under the 

given requirements plus the qualification that A, B and C have not any 

common prime factor, then the conjecture is tenable definitely.   

Since A, B and C have the common prime factor 2 when A, B and C all 

are positive even numbers, so these circumstances that A, B and C have 

not a common prime factor can only occur in which case A, B and C are 
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two positive odd numbers and a positive even number.  

If A, B and C have not a common prime factor, then any two of them 

have not a common prime factor either, because in case any two have a 

common prime factor, yet another has not it, then it will lead up to AX+BY 

≠CZ according to the unique factorization theorem of natural number.   

Unquestionably, following two inequalities add together, then it is able to 

replace fully AX+BY≠CZ under the given requirements and A, B and C are 

two positive odd numbers and a positive even number without a common 

prime factor.   

1. AX+BY≠2ZGZ under the given requirements, and A and B are two 

positive odd numbers, and G is a positive integer, and that they have not a 

common prime factor.   

2. AX+2YDY≠CZ under the given requirements, and A and C are two 

positive odd numbers, and D is a positive integer, and that they have not a 

common prime factor.   

For AX+BY≠2ZGZ, it can be divided into two inequalities as follows.  

(1) AX+BY≠2W, where A and B are positive odd numbers without a 

common prime factor, and that X, Y and W are integers ≥3.  

(2) AX+BY≠2WHZ, where A, B and H are positive odd numbers without a 

common prime factor, and H ≥3, and that X, Y, Z and W are integers ≥3.   

For AX+2YDY≠CZ, it can be divided into two inequalities as follows.  
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(3) AX+2W≠CZ, where A and C are positive odd numbers without a 

common prime factor, and that X, W and Z are integers ≥3.  

(4) AX+2WRY≠CZ, where A, R and C are positive odd numbers without a 

common prime factor, and R ≥3, and that X, Y, Z and W are integers ≥3.  

We regard limits of values of A, B, C, H, R, X, Y, Z and W in listed above 

four inequalities plus their co-prime relation in each inequality as known 

requirements for hinder inequalities or indefinite equations concerned.    

 Thus it can be seen, the proof of AX+BY≠CZ under the given requirements 

plus the qualification that A, B and C have not any common prime factor 

is changed to prove listed above four inequalities under the known 

requirements. For this purpose, we are necessary to expound beforehand 

some circumstances relating to these proofs, ut infra.     

First let us classify all positive odd numbers into two kinds, i.e. Φ and Ω. 

Namely the form of Φ is 1+4n, and the form of Ω is 3+4n, where n ≥ 0.  

As thus, positive odd numbers from small to large form infinitely many 

cycles of Φ plus Ω, to wit Φ, Ω; Φ, Ω; Φ, Ω; Φ, Ω; Φ, Ω; Φ, Ω; …  

After that, add even numbers 2W-1HZ among the sequence of positive odd 

numbers, where H is an odd number ≥1, and W, Z ≥ 3.  

Let us regard each of 2W-1HZ as a symmetric center of positive odd 

numbers concerned, then positive odd numbers on the left side of the 

symmetric center and positive odd numbers near the symmetric center on 
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the right side of the symmetric center are one-to-one bilateral symmetries 

at the number axis or in the sequence of natural numbers.  

Such symmetric relations of positive odd numbers indicate that for any of 

2W-1HZ as a center of symmetry, it can only symmetrize one of Φ and one 

of Ω, yet symmetrize not two of either kind, and that start from any 

symmetric center, there are both finitely many cycles of Ω plus Φ 

leftwards until Φ=1, and infinitely many cycles of Φ plus Ω rightwards.  

Clearly two distances from a symmetric center to bilateral symmetric Φ 

and Ω on two sides of the symmetric center are either two equilong 

segments at the number axis, or two identical differences in the sequence 

of natural numbers.   

Thus the sum of two bilateral symmetric odd numbers is equal to the 

double of even number as the symmetric center. Yet over the left, a sum 

of two non-symmetric odd numbers is unequal to the double of even 

number as the symmetric center.  

We term the symmetry between two kind’s odd numbers plus the relation 

proper to the sum of two symmetric odd numbers = the double of even 

number as the symmetric center “the symmetric law of odd numbers”.   

In addition, for a positive odd number, it is able to be expressed as one of 

OV where V≥3, or V=1 and 2, and V expresses the greatest common 

divisor of exponents of distinct prime factors of the positive odd number, 

and O is a positive odd number. For OV with V=1 and 2, write it to O1~2.  
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By now, we set to prove aforesaid 4 inequalities orderly by mathematical 

inductions with the aid of the symmetric law of odd numbers.   

Firstly, Let us regard 2W-1 as a center of symmetry of positive odd 

numbers concerned to prove AX+BY≠2W under the known requirements 

by the mathematical induction, thereinafter.     

(1) When W-1=2, 3, 4, 5 and 6, bilateral symmetric odd numbers on two 

sides of symmetric centers 2W-1 are listed below successively.    

16, 3, (22), 5, 7, (23), 9, 11, 13, 15, (24), 17, 19, 21, 23, 25, 33, 29, 31, (25), 

33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, (26), 65, 67, 

69, 71, 73, 75, 77, 79, 34, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 

107, 109, 111, 113, 115, 117, 119, 121, 123, 53, 127  

By this token, there are not two of OV with V≥3 on two places of every 

pair of bilateral symmetric odd numbers whereby 2W-1 as a symmetric 

center, where W-1=2, 3, 4, 5 and 6. Namely there are AX+BY≠23, AX+BY≠ 

24, AX+BY≠25, AX+BY≠26 and AX+BY≠27 under the known requirements.  

(2) When W-1=K with K≥6, suppose that there are not two of OV with 

V≥3 on two places of every pair of bilateral symmetric odd numbers 

whereby 2K as a symmetric center. Namely suppose AX+BY≠2K+1 under 

the known requirements.   

(3) When W-1=K+1, prove that there are not two of OV with V≥3 on two 

places of every pair of bilateral symmetric odd numbers whereby 2K+1 as a 

symmetric center, i.e. prove AX+BY≠2K+2 under the known requirements.  
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Proof* Since odd numbers whereby 2W-1 including 2K plus 2K+1 as a 

symmetric center are possess of one-to-one symmetric relations, then 

positive odd numbers whereby 2K as a symmetric center are exactly 

positive odd numbers on the left side of symmetric center 2K+1.  

Thus, for positive odd numbers whereby 2K+1 as a center of symmetry, their 

a half retains still on original places after move the symmetric center to 

2K+1 from 2K, and the half lies on the left side of 2K+1. While, another half is 

formed from 2K+1 plus each of positive odd numbers whereby 2K as a 

symmetric center, and that the half lies on the right side of 2K+1.   

Suppose that AX and BY are a pair of bilateral symmetric positive odd 

numbers whereby 2K as a symmetric center, then there is AX+BY=2K+1 

according to the symmetric law of odd numbers.   

Since there are not two of OV with V≥3 on two places of every pair of 

bilateral symmetric odd numbers whereby 2K as a symmetric center 

according to second step of the mathematical induction, so tentatively let 

AX as one of OV with V≥3, and BY as one of O1~2, i.e. let X ≥3, Y =1 and 2.  

By now, let BY plus 2K+1 to make BY+2K+1. Please, see also a simple 

illustration at the number axis as follows.   
                                        AX+2K+1              BY+2K+1           
1, 3...    AX      2K      BY      2K+1      2K+2-BY      3ⅹ2K        2K+2-AX       2K+2  

Since there is only AX+BY≠2K+1 under the known requirements according 

to second step of the mathematical induction, therefore there is inevitably 

AX+BY=2K+1 under the known requirements except for Y, and Y=1 and 2.  
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As thus, we deduce BY+2K+1=AX+2BY=2K+2-AX from AX+BY=2K+1.  

Also AX and 2K+2-AX are bilateral symmetric odd numbers whereby 2K+1 as 

a symmetric center due to AX+(2K+2-AX)=2K+2 according to the symmetric 

law of odd numbers.  

So AX and AX+2BY are two bilateral symmetric odd numbers whereby 2K+1 

as a symmetric center, and there are AX+(2K+2-AX)=AX+(AX+2BY)=2K+2 

under the known requirements except for Y, and Y=1 and 2.  

Of course, AX and AX+2BY in the case are still a pair of bilateral symmetric 

Φ and Ω whereby 2K+1 as a symmetric center.    

But then, there is only AX+BY≠2K+1 under the known requirements, thus it 

has AX+ [AX+2BY] =2[AX+BY] ≠2K+2 in that case.    

In any case, AX+2BY are only a positive odd number. So let AX+2BY=DE, 

where E expresses the greatest common divisor of exponents of distinct 

prime factors of the positive odd number, and D is a positive odd number, 

then we get AX+ [AX+2BY] =AX+DE≠2K+2 under the known requirements.  

That is to say, no matter what positive integer which E equals and no 

matter what positive odd number which D equals from AX+2BY=DE, there 

is AX+[AX+2BY]=AX+DE≠2K+2 under the known requirements invariably. 

Namely AX and DE under the known requirements are not two bilateral 

symmetric odd numbers whereby 2K+1 as a symmetric center.    

Whereas AX and AX+2BY, i.e. AX and DE under the known requirements 

except for Y, and Y=1 and 2, two are indeed a pair of bilateral symmetric 
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odd numbers whereby 2K+1 as a symmetric center due to AX+[AX+2BY]= 

AX+DE=2K+2 according to the symmetric law odd numbers.  

Such being the case, provided you slightly change a bit of valuation of any 

letter of AX+2BY, then it at once is not original that AX+2BY under the 

known requirements except for Y, and Y=1 and 2.  

Naturally, now it lies not on the place of the symmetry with AX either. 

Namely AX and AX+2BY under the known requirements are not two 

bilateral symmetric odd numbers whereby 2K+1 as a symmetric center, 

because the value of Y is changed into Y≥3 from Y=1 and 2.   

Thus there is AX+[AX+2BY]=AX+DE≠2K+2 under the known requirements 

according to the symmetric law of odd numbers.  

Moreover, AX has been supposed as one of OV with V≥3 on the left side of 

symmetric center 2K+1. Also there is AX+BY=2K+1 under the known 

requirements except for Y, and Y=1 and 2. So it has AX+2BY=2K+1+BY.  

As thus, AX+2BY i.e. DE lies on the right side of symmetric center 2K+1.  

For inequality AX+DE≠2K+2 under the known requirements, let us substitute 

D by B, since B and D can express any positive odd number; additionally 

substitute Y for E where E ≥3, since Y≥3.  

Consequently, we obtain AX+BY≠2K+2 under the known requirements.   

In this proof, if BY is one of OV with V≥3, then AX is surely one of O1~2, 

yet a conclusion concluded on the premise is really one and the same with 

AX+BY≠2K+2 under the known requirements.    
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If AX and BY are bilateral symmetric two of O1~2 whereby 2K as a 

symmetric center, then whether AX and AX+2BY, or BY and BY+2AX, they 

are uniformly a pair of bilateral symmetric odd numbers whereby 2K+1 as a 

symmetric center. But, no matter what positive odd number which AX+2BY 

or BY+2AX equal, it can not change the pair of bilateral symmetric odd 

numbers into two of OV with V≥3, because AX or BY in the pair is not one 

of OV with V≥3 originally.  

Overall, we have proven that when W-1=K+1 with K ≥6, there is only 

AX+BY≠2K+2 under the known requirements. In other words, there are not 

two of OV with V≥3 on two places of every pair of bilateral symmetric odd 

numbers whereby 2K+1 as a symmetric center.   

Apply the preceding way of doing, we can continue to prove that when 

W-1=K+2, K+3…up to every integer ≥3, there are merely AX+BY≠2K+3, 

AX+BY≠2K+4 … up to AX+BY≠2W under the known requirements.    

Secondly, Let us prove AX+BY≠2WHZ under the known requirements by 

the mathematical induction successively, and point out H≥3 emphatically.  

(1) When H=1, 2W-1HZ i.e. 2W-1, we have proven AX+BY≠2W under the 

known requirements in the preceding section. Namely there are not two of 

OV with V≥3 on two places of every pair of bilateral symmetric odd 

numbers whereby 2W-1 as a symmetric center.  

(2) When H=J and J is an odd number ≥1, 2W-1HZ i.e. 2W-1JZ, suppose 

AX+BY≠2WJZ under the known requirements. Namely suppose that there 
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are not two of OV with V≥3 on two places of every pair of bilateral 

symmetric odd numbers whereby 2W-1JZ as a symmetric center.   

(3) When H=K with K=J+2, 2W-1HZ i.e. 2W-1KZ, prove AX+BY≠2WKZ under 

the known requirements. Namely prove that there are not two of OV with 

V≥3 on two places of every pair of bilateral symmetric odd numbers 

whereby 2W-1KZ as a symmetric center.   

Proof* Since after regard 2W-1HZ as a symmetric center, the sum of every 

pair of bilateral symmetric odd numbers is equal to 2WHZ, while a sum of 

two odd numbers of no symmetry is unequal to 2WHZ .  

In addition, there are not two of OV with V≥3 on two places of every pair 

of bilateral symmetric odd numbers whereby 2W-1JZ as a symmetric center. 

Namely there is AX+BY≠2WJZ under the known requirements according to 

second step of the mathematical induction.   

Such being the case, thus we suppose that AX and BY are a pair of bilateral 

symmetric odd numbers whereby 2W-1JZ as a symmetric center, also 

tentatively let Y ≥3 and X=1 and 2. So there is AX+BY=2WJZ undoubtedly.  

On the other, after regard 2W-1KZ as a symmetric center, BY and 2WKZ-BY 

are a pair of bilateral symmetric odd numbers due to BY+(2WKZ-BY)=2WKZ 

according to the symmetric law of odd numbers.  

By now, let AX plus 2W(KZ-JZ) to make AX+2W(KZ-JZ). Due to AX+BY=2WJZ, 

then there are AX+2W(KZ-JZ)=AX+2WKZ-2WJZ=2WKZ-(2WJZ-AX)=2WKZ-BY 

under the known requirements except for X, and X=1 and 2.  
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Now that there is AX+2W(KZ-JZ)=2WKZ-BY under the known requirements 

except for X, and X=1 and 2; additionally BY and 2WKZ-BY are a pair of 

bilateral symmetric odd numbers whereby 2W-1KZ as a symmetric center, 

therefore BY and AX+2W(KZ-JZ) are a pair of bilateral symmetric odd 

numbers whereby 2W-1KZ as a symmetric center.  

Thus we get BY+[AX+2W(KZ-JZ)]=2WKZ under the known requirements 

except for X, and X=1 and 2.   

Of course, BY and AX+2W (KZ-JZ) in the case are still a pair of bilateral 

symmetric Φ and Ω whereby 2W-1KZ as a symmetric center.  

From BY+[AX+2W(KZ-JZ)]=[AX+BY]+2W(KZ-JZ) and beforehand supposed 

AX+BY≠2WJZ under the known requirements, we get BY+[AX+2W(KZ-JZ)]= 

[AX+BY]+2WKZ-2WJZ ≠2WKZ under the known requirements.  

Thus it can be seen, BY and AX+2W (KZ-JZ) under the known requirements 

are not two bilateral symmetric odd numbers whereby 2W-1KZ as a 

symmetric center due to BY+[AX+2W (KZ-JZ)] ≠ 2WKZ according to the 

symmetric law of odd numbers.   

It is obvious that AX+2W(KZ-JZ) in aforesaid two cases expresses two 

disparate odd numbers due to X ≥3 in one, and X=1 and 2 in another.  

From AX+2W (KZ-JZ)=2WKZ-(2WJZ-AX) and 2WJZ-AX≠BY under the known 

requirements, we get AX+2W (KZ-JZ) ≠2WKZ-BY.  

In any case, AX+2W(KZ-JZ) are only a positive odd number, thus we let 

AX+2W(KZ-JZ)=FV, where V expresses the greatest common divisor of 
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exponents of distinct prime factors of the positive odd number, and F is a 

positive odd number. Thus there is FV≠2WKZ-BY due to AX+2W(KZ-JZ)≠ 

2WKZ-BY under the known requirements.  

Namely there is BY+FV≠2WKZ under the known requirements.  

Since BY and AX+2W (KZ-JZ) are a pair of bilateral symmetric odd numbers 

whereby 2W-1KZ as a symmetric center due to BY+[AX+2W (KZ-JZ)]=2WKZ 

under the known requirements except for X, and X=1 and 2 at here, 

according to the symmetric law of odd numbers.  

Such being the case, provided you slightly change a bit of valuation of any 

letter of AX+2W (KZ-JZ), then it at once is not original that AX+2W (KZ-JZ) 

under the known requirements except for X, and X=1 and 2. Naturally, 

now it lies not on the place of the symmetry with BY either.  

Namely BY and AX+2W (KZ-JZ) under the known requirements are not two 

bilateral symmetric odd numbers whereby 2W-1KZ as a symmetric center 

because the value of X is changed into X ≥3 from X=1 and 2.  

Thereby there is BY+[AX+2W(KZ-JZ)]≠2WKZ under the known requirements 

according to the symmetry law of odd numbers. Namely there is only 

BY+FV≠2WKZ under the known requirements due to AX+2W (KZ-JZ) =FV.   

For inequality BY+FV≠2WKZ, let us substitute F by A, since A and F express 

any positive odd number, and substitute X for V where V≥ 3, since X ≥ 3.   

Consequently we obtain AX+BY≠2WKZ under the known requirements.   

In this proof, if AX is one of OV with V≥3, then BY is surely one of O1~2, 
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yet a conclusion concluded on the premise is really one and the same with 

AX+BY≠ 2WKZ under the known requirements.     

If AX and BY are bilateral symmetric two of O1~2 whereby 2W-1JZ as a 

symmetric center, then whether BY and AX+2W (KZ-JZ), or AX and 

BY+2W(KZ-JZ), they are uniformly a pair of bilateral symmetric odd 

numbers whereby 2W-1KZ as a symmetric center. But, no matter what 

positive odd number which AX+2W(KZ-JZ) or BY+2W(KZ-JZ) equal, it can 

not change the pair of bilateral symmetric odd numbers into two of OV 

with V≥3, since BY or AX in the pair is not one of OV with V≥3 originally.  

On balance, we have proven AX+BY≠2WKZ with K=J+2 under the known 

requirements. Namely when H=J+2, there are not two of OV with V≥3 on 

two places of every pair of bilateral symmetric odd numbers whereby 

2W-1(J+2)Z as a symmetric center.    

Apply the above-mentioned way of doing, we can continue to prove that 

when H=J+4, J+6… up to every positive odd number, there are merely 

AX+BY≠2W(J+4)Z, AX+BY≠2W(J+6)Z… up to AX+BY≠2WHZ under the 

known requirements.   

Thirdly, On the basis of the anterior conclusion got, we continue to prove 

AX+2W≠CZ under the known requirements by the mathematical induction.  

(1) When W=3, 4, 5, 6 and 7, bilateral symmetric odd numbers on two 

sides of symmetric centers 23, 24, 25, 26 and 27 are listed below successively.  

17, 3, 5, 7, (23), 9, 11, 13, 15, (24), 17, 19, 21, 23, 25, 33, 29, 31, (25), 33, 35, 
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37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, (26), 65, 67, 69, 71, 73, 

75, 77, 79, 34, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 

111, 113, 115, 117, 119, 121, 123, 53, 127, (27), 129, 131, 133, 135, 137, 

139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 

169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 

199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225,227, 

229, 231, 233, 235, 237, 239, 241, 35, 245, 247, 249, 251, 253, 255.  

Ut supra, there is only higher power’s 17 on the left side of the symmetric 

center 23;  

There is only higher power’s 17 on the left side of the symmetric center 24;  

There are higher power’s 17 and 33 on the left side of the symmetric center 

25 altogether;  

There are higher power’s 17and 33 on the left side of the symmetric center 

26 altogether;  

There are higher power’s 17, 33, 34 and 53 on the left side of symmetric 

center 27 altogether.   

We observe that they only have 17+23≠CZ; 17+24≠CZ; 17+25≠CZ, 33+25≠CZ; 

17+26≠CZ, 33+26≠CZ; 17+27≠CZ, 33+27≠CZ, 34+27≠CZ and 53+27≠CZ.  

Therefore there are AX+23≠CZ, AX+24≠CZ, AX+25≠CZ, AX+26≠CZ and 

AX+27≠CZ under the known requirements.    

(2) When W=N with N≥7, suppose that there is AX+2N≠CZ under the 

known requirements, where AX < 2N < CZ.   
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(3) When W=N+1, prove that there is AX+2N+1≠CZ under the known 

requirements, where AX < 2N+1 < CZ.    

Proof* Since it has (2N+1+AX)+(2N+1-AX)=2N+2, so 2N+1+AX and 2N+1-AX 

are a pair of bilateral symmetric odd numbers whereby 2N+1 as a symmetric 

center according to the symmetric law of odd numbers.    

Also there is the inequality 2N+1-AX≠OV i.e. AX+OV≠2N+1 where V≥3 

according to proven AX+BY≠2W under the known requirements, so 2N+1-AX 

can only be one of O1~2.  

Now that 2N+1-AX is one of O1~2, then 2N+1-A1~2 contain both some of O1~2 

and all of OV with V≥3 under even number 2N+1.    

In addition, 2N+1+A1~2 and 2N+1-A1~2 are two bilateral symmetric odd 

numbers whereby 2N+1 as a symmetric center, since (2N+1+A1~2)+(2N+1-A1~2) 

=2K+2 according to the symmetric law of odd numbers.  

Therefore 2N+1+A1~2 contain both some of O1~2 and all of OV with V≥3 

under even number 2N+2.     

Since 2N+1-AX within (2N+1+AX)+(2N+1-AX)=2N+2 is one of O1~2, then 

2N+1+AX is either one of O1~2 or one of OV with V≥3 under even number 

2N+2, since there are not two of OV with V≥3 on two places of every pair of 

bilateral symmetric odd numbers whereby 2W-1 as a symmetric center.    

But 2N+1+A1~2 contained all of OV with V≥3 under even number 2N+2, 

therefore 2N+1+AX, i.e. AX+2N+1 can only be one of O1~2.    

In addition to this, CZ is one of OV with V≥3 according to stipulations of 
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values of C and Z within the known requirements.  

Consequently there is AX+2N+1≠CZ under the known requirements.   

Apply the preceding way of doing, we can continue to prove that when 

W=N+2, N+3…up to every integer≥3, there are merely AX+2N+2≠CZ, 

AX+2N+3≠CZ…up to AX+2W≠CZ under the known requirements.    

Fourthly, On the basis of the anterior conclusion got, we prove AX+2WRY 

≠ CZ under the known requirements by the mathematical induction by now.  

(1) When R=1, 2WRY i.e. 2W, we have proven AX+2W≠CZ under the known 

requirements in the preceding section.  

(2) When R=J and J is an odd number ≥1, 2WRY i.e. 2WJY, suppose that 

there is AX+2WJY≠CZ under the known requirements, where AX <2WJY < CZ.   

(3) When R=K with K=J+2, 2WRY i.e. 2WKY, prove that there is AX+2WKY 

≠ CZ under the known requirements, where AX < 2WKY < CZ.   

Proof* Since (2WKY+AX)+(2WKY-AX)=2W+1KY, then 2WKY+AX and 

2WKY-AX are a pair of bilateral symmetric odd numbers whereby 2WKY as 

a symmetric center according to the symmetric law of odd numbers.   

Also there is the inequality 2WKY-AX≠OV i.e. AX+OV≠2WKY where V≥3, 

according to proven AX+BY ≠ 2WHZ under the known requirements, so 

2WKY-AX can only be one of O1~2.   

Now that 2WKY-AX is one of O1~2, then 2WKY-A1~2 contain both some of 

O1~2 and all of OV with V≥3 under even number 2WKY.   

In addition, 2WKY+A1~2 and 2WKY-A1~2 are a pair of bilateral symmetric 
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odd numbers whereby 2WKY as a symmetric center due to (2WKY+A1~2) + 

(2WKY-A1~2) =2W+1KY according to the symmetric law of odd numbers.   

Therefore 2WKY+A1~2 contain both some of O1~2 and all of OV with V≥3 

under even number 2W+1KY.     

Since 2WKY-AX within (2WKY+AX)+(2WKY-AX)=2W+1KY is one of O1~2, 

then 2WKY+AX is either one of O1~2 or one of OV with V≥3 under even 

number 2W+1KY, since there are not two of OV with V≥3 on two places of 

every pair of bilateral symmetric odd numbers whereby 2WHZ as a 

symmetric center.   

Since 2WKY+A1~2 contained all of OV with V≥3 under even number 2W+1KY, 

therefore 2WKY+AX, i.e. AX+2WKY can only be one of O1~2.    

In addition to this, CZ is one of OV with V≥3 according to stipulations of 

values of C and Z within the known requirements.   

Consequently there is AX+2WKY≠CZ, i.e. AX+2W(J+2)Y≠CZ under the 

known requirements.   

Apply the preceding way of doing, we can continue to prove that when 

R=J+4, J+6…up to every positive odd number, there are AX+2W (J+4)Y ≠CZ, 

AX+2W(J+6)Y≠CZ…up to AX+2WRY≠CZ under the known requirements.    

To sum up, we have proven every kind of AX+BY≠CZ under the given 

requirements plus the qualification that A, B and C have not a common 

prime factor.   

In addition, we have proven that AX+BY=CZ under the given requirements 
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plus the qualification that A, B and C have at least a common prime factor 

in the front of this article.  

Such being the case, so long as make a comparison between AX+BY=CZ 

and AX+BY≠CZ under the given requirements, then inevitably will reach 

such a conclusion that an indispensable prerequisite of the existence of 

AX+BY=CZ under the given requirements is that A, B and C must have a 

common prime factor.   

The proof was thus brought to a close. As a consequence, the Beal’s 

conjecture holds water.   

 

PS. If Beal’s conjecture is proved to hold water, then let X=Y=Z, so 

indefinite equation AX+BY=CZ is changed into AX+BX=CX. In addition, 

divide three terms of AX+BX=CX by their greatest common divisor, then get 

a set of the solution of positive integers without a common prime factor. 

Obviously this conclusion is in contradiction with proven Beal’s conjecture, 

so we proved Fermat’s last theorem as easy as the pie extra.  
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