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Abstract—Sorting is one of the most researched topics of Computer Science and it is one of the 

essential operations across computing devices. Given the ubiquitous presence of computers, 

sorting algorithms utilize significant percentage of computation times across the globe. In this 

paper we present a non-comparison based sorting algorithm with average case time complexity of 

O(n)  without any assumptions on the nature of the input data.   
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I. INTRODUCTION  

Sorting is not only the most researched and analyzed topic among researchers but also the most 
prevalent and ever present algorithm for every introductory computer science classes . As a result of its 
ubiquitous nature the audience it has attracted in solving it is humongous. The best worst case complexity 
achieved by any comparison based sorting algorithm so far is O(nlogn), like quicksort, merge sort, heap 
sort etc, and non-comparison based sorting algorithm is O(dn), for radix sort where d is the key size. In 
this paper I have developed a novel , stable, non-comparison  sorting algorithm of average case time 
complexity O(n) using Combinatorics and the divide and conquer paradigm. For the ease of 
understanding and analysis, the whole algorithm, called Just Sort , is presented in its naive form, having 
separate sub routines for each of the base cases. The core subroutine of this algorithm is based on 
Combinatorics, a branch of Mathematics, and uses the Hash Table data structure .Hence it is termed as 
the Combinatorial Hash Sort sub routine. 

II. MATHEMATICAL BACKGROUND 

Given n unique elements, the problem of sorting can be restated mathematically as finding the only 
permutation ,where the n elements are arranged in ascending order, out of n! permutations which contains 
all n elements in various orders. Thus for a sorting problem we have n!-1 incorrect outputs and only one 
correct output in which the elements are in sorted order. Unlike permutations, there is only one 
combination which consists of all these n elements. For a set of n unique numbers whose range is k, the 
sorting problem can be solved partially by identifying a combination out of 2

k+1
 combinations, which 

contains all n unique numbers. We are deriving and exploiting a constraint relationship between the set of 
n unique elements and 2

k+1
 combinations in our approach. 

As mentioned before, the heart of this algorithm is based on the knowledge derived from 
Combinatorics. According to Combinatorics the total number of possible combinations of n distinct items 
is given by 2

n
. Let there be, for instance, 5 numbers from 0 to 4. The total number of possible 

combinations of these 5 numbers is 32 and it is listed in Table I where the presence or absence of a 
number in a combination is represented in binary digit and the numbers in column headers are in sorted 
order. 1 denotes its presence and 0 denotes its absence in that particular combination. The decimal 
equivalents of these binary numbers represented by these combinations are given under the Sum column 
of Table I.  It is easy to note that these binary numbers represented in decimal number system are 
continuous in nature and it is unique for each sequence. In other words, the presence or absence of a 
number in a sequence is reflected in its decimal sum S. Let b0, b1, b2, b3 and b4 be the bits of these binary 
numbers from least to most significant bit, its decimal sum is given by 

S = b0×2
0 
+ b1×2

1 
+ b2×2

2 
+ b3×2

3 
+ b4×2

4 

In general the Sum of j
th

 row is given by  

      ∑   
    

                                              (1) 



Where n is the number of elements in our collection and   
 
 is the i

th
 bit of the binary number 

corresponding to the j
th

 row of Table I. 

We are storing the numbers in an array which are present in each combination from Least Significant 
Bit to Most Significant Bit, i.e. from b0 to b4, only if they are present i.e. if bi=1 or its face value in binary 
sequence is 1, while maintaining its order from LSB to MSB. For instance the first combination has no 
elements and the tenth combination has 1 and 4, which is stored in an array in the exact order. We are 
storing this knowledge in the form of a two dimensional array  and we are denoting it as Sort 
Table(sorttable) ,where the outer array is indexed by the respective decimal sum    of the j

th
 combination 

calculated by  (1). For instance, the 10
th

 row and 32
nd

  row of the sort table are denoted as 

    sorttable [9]  = {1,4} 

       sorttable [31] = {1,2,3,4,5} 

 

Where the term within square brackets denote the Sum column of Table I and its corresponding elements 
present are represented as an array within curly braces. 

 

Equation (1) can be restated as 

                ∑   
    

                                  (2) 

Where         is the weight or place value of that element in the binary sequence of the j
th

 
combination or the contribution of i

th
 bit towards the sum Sj. For the scenario considered above, the value 

of n would be 5, as there are 5 elements  the weight values wi are stored in an array CW of size 5. 

  CW = { 1 , 2 , 4 , 8 , 16 } 

TABLE I    Combination sequences of 5 elements and its   decimal sum. 

Four(b4) Three(b3) Two(b2) One(b1) Zero(b0) Sum 

0 0 0 0 0 0 

0 0 0 0 1 1 

0 0 0 1 0 2 

0 0 0 1 1 3 

0 0 1 0 0 4 

0 0 1 0 1 5 

0 0 1 1 0 6 

0 0 1 1 1 7 

0 1 0 0 0 8 

0 1 0 0 1 9 

0 1 0 1 0 10 

0 1 0 1 1 11 

0 1 1 0 0 12 

0 1 1 0 1 13 

0 1 1 1 0 14 

0 1 1 1 1 15 

1 0 0 0 0 16 

1 0 0 0 1 17 



1 0 0 1 0 18 

1 0 0 1 1 19 

1 0 1 0 0 20 

1 0 1 0 1 21 

1 0 1 1 0 22 

1 0 1 1 1 23 

1 1 0 0 0 24 

1 1 0 0 1 25 

1 1 0 1 0 26 

1 1 0 1 1 27 

1 1 1 0 0 28 

1 1 1 0 1 29 

1 1 1 1 0 30 

1 1 1 1 1 31 

 

 

 

TABLE II   SORT TABLE 

Index Array Elements 

0 {} 

1 { 0 } 

2 { 1 } 

3 { 0 , 1 } 

4 { 2 } 

5 { 0 , 2 } 

6 { 1 , 2 } 

7 { 0 , 1 , 2 } 

8 { 3 } 

9 { 0 , 3 } 

10 {  1 , 3 } 

11 { 0 , 1 , 3 } 

12 { 2 , 3 } 

13 { 0 , 2 , 3 } 

14 { 1 , 2 , 3 } 

15 { 0 , 1 , 2 , 3 } 

16 { 4 } 

17 { 0 , 4 } 

18 { 1 , 4 } 

19 { 0 , 1 , 4 } 

20 { 2 , 4 } 

21 { 0 , 2 , 4 } 

22 { 1 , 2 , 4 } 

23 { 0 , 1 , 2 , 4 } 

24 { 3 , 4 } 

25 { 0 , 3 , 4 } 



26 { 1 , 3 , 4 } 

27 { 0 , 1 , 3 , 4 } 

28 { 2 , 3 , 4 } 

29 { 0 , 2 , 3 , 4 } 

30 { 1 , 2 , 3 , 4 } 

31 { 0 , 1 , 2 , 3 , 4 } 

 

 

This knowledge can be used for sorting in the following way. For instance if we are to sort an array     
{ 4 , 3 , 2 } we can traverse the array and add the corresponding weights wi to compute S  cumulatively 
which will be equal to 28 at the end of our traversal and we can get the corresponding sequence of 
numbers from the sorttable whose index  S is equal to 28 i.e. S[28] which has the elements { 2 , 3, 4 } 
which is sorted. Thus we just need to traverse these elements in order to sort it. 

If the numbers to be sorted are not within the interval of      [ 0 , 4 ], for instance 14, 13 and 12, but its 
range lies in the interval [ 0 , 4 ], we could consider the modulo 5 operation of the numbers( as the order 
of sortable α  used is 5) and use the result as  indices to store the numbers in an array  B of size 5 (which 
equals α ), which holds a constraint that the value of an index is directly proportional to the value of the 
number stored in that index and hence the number stored in lesser value of index is always lesser than the 
number stored in greater value of index .Consequently, in the above scenario 14 will be stored in index 
B[4] , 13 in B[3] and 12 in B[2].We  calculate  S  from the value of indices by fetching the corresponding 
values from the array CW (i.e. CW [2],CW[3] and CW[4])  and then we could retrieve the sorted indices from 
the sorttable whose index is S(equals to 28 in the above scenario) , from which we could retrieve the 
numbers in sorted order, i.e. from the indices {2 , 3 , 4 } of array B, which corresponds to S=28 in the 
sorttable. 

 Thus we could partition the numbers to be sorted such that the range of each partition is less than the 
range of the sortable and then we could sort the elements using sortable by using the method elucidated 
above. 

 For a sortable of order α = 10, the table has 1024 entries and the values of CW array is as follows 

CW = { 1 , 2 , 4 , 8 , 16 , 32 , 64 , 128 , 256 , 512 } 
 

We are defining the Order of a Sort Table α as the number of unique elements present in it and 
TABLE I is of the order 5 as it has 5 unique elements. We are using this combinatorial knowledge in the 
form of two dimensional array denoted as sorttable , as a pre-computed constant in our sorting algorithm. 
The computation time of this Sort Table of order 5 is infinitesimal, obviously, and we need not even 
bother computing it and it can be integrated into the libraries of programming languages. For the ease of 
analysis, going forward we use a Sort Table of order (α) 10 in our algorithm, which has elements from 0 
to 9, inclusive, and it takes 1024 computations which is executed under 6 milliseconds in Java Standard 
Edition 8. 

III. JUST SORT OVERVIEW 

We use the knowledge derived above in our sorting algorithm using divide and conquer paradigm by 
partitioning the numbers into buckets whose size is equal to the Order of Sort Table α. Let A[n] denote an 
array of n elements and R be the range of the numbers in it. The primary data structure used by this 
sorting algorithm is Hash table. The size of the Hash table β is determined by the range R of the numbers 
to be sorted and the Order of the Sort Table α .Each entry of the Hash table represents a bucket .Therefore 
the size of the Hash table β is  equal to the number of buckets. We divide the Range R into k buckets of 
size α. Thus each entry of the Hash Table H corresponds to a bucket. We define a suitable hash function 
involving α and place each element of the array in its corresponding bucket. 

    Size of Hash Table = Range/Order of the Sort Table 



     ⁄  

    The hash function  (    ) is given by   

            (    )       α                               (4)                    

         where the operator ‘/ ‘ in (4) denotes integer division and A[i] is the i
th

 element of array A and the 
above division is integer division and it just gives the quotient excluding the remainder. 

      It is obvious that the space complexity of this algorithm is dependent on the range of the numbers to 
be sorted. In order to minimize the space complexity we first separate the numbers into groups, where 
every number in a group has same number of digits. If necessary we further divide the groups as per our 
space constraints. We then sort each group separately and then combine them in the end. 

 
Algorithm 1. Range Reduction 

 
 
Input    :   A [ 1 … n ] 

Output : Array of arrays(or list of lists) B 

 

1: i = 0 

2: k = 0 

3: While i ≠ n 

4:       k = A [i] / 10 

5:      Add A [i] to B based on k value 

6:      i++ 

7: end while 
8: return B 
 

 
  

While we are traversing each element of the array , we identify the corresponding bucket using the 
hash function given by (4) and we calculate the sum   (    ) for that bucket simultaneously by adding the 

respective weight   ( ) to that bucket’s sum   (    ) , where  ( ) is given by the number  modulo α in (5) .  

          ( ) = A[i] mod α                       (5) 

 We use this sum   (    ) to retrieve the corresponding array from the sorttable whose values denotes 

the sorted indices of the elements present in that particular bucket. We define the term Active Buckets as 
those entries or indices of the Hashtable which contains at least one element in it. While traversing the 
numbers, we insert the active buckets, i.e. the bucket which contains at least one element in it, into a list 
denoted as keys. We then sort keys using the algorithm keyssort. It is evident that the total number of 
active buckets is always lesser than or equal to the total number of element in the array A[n] and as a 
result the time complexity of sorting the keys, which is a list of active buckets, is always lesser than or 
equal to the time complexity of sorting A[n].  Thus we are placing the numbers to be sorted into its 
corresponding buckets while computing the sum   (    ) for every active bucket simultaneously during 

the traversal and we are sorting keys, which is the list of active buckets, using keyssort algorithm 
recursively, which internally calls the algorithm Combinatorial hashsort.  We traverse the list keys whose 
elements are now sorted, i.e. it contains active buckets in sorted order, and with the help of the sum 
  (    ) calculated for each active bucket, we retrieve the sorted indices for each active bucket present in 

keys using the algorithm Combinatorial hashsort_d, and from those indices we are retrieving the numbers 
present in that active bucket in sorted order and storing it in a list. We then merge these lists which 
contains the elements in sorted order. 

This algorithm comprises of three subroutines which are called internally by the main algorithm JUST 
SORT. 



A. Keysort 

This subroutine sorts the active buckets recursively and its output consist of a list which consists 

of the active buckets in sorted order. The input of this sub routine consists of unique elements as it is 

evident that the buckets are unique and it calls the Combinatorial Hash Sort sub routine internally. 

 

B. Combinatorial Hash Sort 

The input of this subroutine consists of unique numbers whose range is always lesser than or 

equal to the order of the sorttable α and it is invoked by Keysort subroutine.  Thus the maximum 

number of elements passed as its input never exceeds the order of the sorttable α. This is the key 

subroutine of this algorithm and its input elements are traversed and its sum S is computed and then 

the sorted indices are retrieved from the sortable. This algorithm exploits the key idea discussed in 

section II. 

 

C. Combinatorial Hash Sort_d 

This subroutine is similar to the above sub routine but it handles duplicate elements in its input. 

This is invoked by the main algorithm to sort the elements in each active bucket. 

 

 Each entry of the hash table is associated with a list whose head and tail pointers are maintained 

so as to merge two list in O(1) time. Other list operations like Insert are also completed in O(1) time. 

The order of the sortable used in the following sections is 10. 
 

IV. CORRECTNESS 

     The line by line explanation of this algorithm is as follows 

A. Just Sort         

In lines 1 to 3, the size of the hash table H is determined. We are maintaining an array, C0, of size k 

whose purpose is to track the presence of active buckets followed by its insertion into the list of active 

buckets L and by default all its entries are initialized to 0. Once an element is insert into L at line 7, the 

entry of C0 corresponding to that particular active bucket is assigned a value of 1 in line 8. The input 

array A[1…n] is traversed in lines 4 to 11. The variable key in line 5 denotes  

 
Algorithm 2. Just Sort 

 
 
Input : A [ 1 … n ] , Hashtable  H [ 0 … k ] , C0 [ 0 … k ] ,  

       List L , max , min 

Output : List result 
 
1: k = max-min 

2: start = min/10 

3: k = k/10 +1 

4: for i = 1 to A.length 

5:   key = (A[i]/10) – start //we are shifting index range of H 

6:   if  C0[key] = 0 

7:       LIST-INSERT (L , key ) 

8:       C0[key] = 1 

9:   end if 

10:   INSERT (H, key ,A[i] ) 

11: end for 



12: if  n>= k/10 

13: traverse H and call combinatorialhashsort_d( H[temp.value] ) for all keys 

14: else 

15:    keys = keysort (L, k ) // keys are  sorted  

16:   temp =  keys.head 

17:   while  temp ≠ null  

18:      templist = combinatorialhashsort_d( H[temp.value] ) 

19:      result = LIST-MERGE (result, templist) 

20:      temp = temp.next 

21:   end while  

22: End if else 

 
 

the hash function given by equation (4) and it denotes a bucket. The range is shifted by subtracting the 

variable start  from key so as to shift the range towards zero. In line 6 the value of C0[key] is checked 

and if it is equal to 0, which indicates the absence of a bucket for that key value in list L, that particular 

key value is inserted into list L which contains all active buckets. In line 8 the value of C0[key] is set to 1 

and it indicates that the bucket denoted by its index (key value) is added to List L. The element A[i]  is 

inserted into the hash table H in line 8, at the entry denoted by key. In line 15 the Keysort  algorithm is 

called internally and its output is assigned to the variable keys which is a sorted list of active buckets, i.e. 

the active indices of the hash table H in sorted order. In lines 17 to 21, for each node of list L, the 

Combinatorialhashsort_d sub routine is called internally and the output list is merged with the result list 

which gives the sorted elements of A[1…n]. 

B. Keysort 

This algorithm sorts the list of active buckets L using Combinatorialhashsort  sub routine by 

portioning the list L into buckets of size α similar to Just Sort and it recursively calls itself until the 

range is lesser than 10, which is the order of the sortable α and then the recursive calls stop. Its input 

consists of list L and its range k. If the value of k is lesser than or 

 
Algorithm 3. Key Sort 

  
Input :  Hashtable  H [ 0 … k ] , C [ 0 … k ] ,  

       List L , Ls , k ,  

Output : List result 
 
1: if  k  >  9 

2:     k = k/10 +1 

3:    temp = L.head 

4:    while temp ≠ null 

5:          key = temp.value  / 10 

6:          if C[key] = 0 

7:             LIST-INSERT ( Ls , key) 

8:            C[key] = 1 

9:         end if   

10:        INSERT ( H , key , temp.value ) 

11:        temp = temp.next 

12:     end while 

13:     Ls = keysort ( Ls , k ) //Ls is now sorted 

14:  else 

15:     Ls = combinatorialhashsort( Ls )// Ls is now sorted 



16:     return Ls 

17: end if  else 
18: temp = Ls.head 

19: while temp ≠ null 

20:    templist = combinatorialhashsort( H[ temp.value ] ) 

21:    result = LIST-MERGE( result , templist ) 

22:    temp = temp.next 

23: end while// result now has elements of L in sorted order 

24: return result 

    

 
 

equal to 9, then lines 2 to 13 are skipped and Combinatorialhashsort  sub routine is called directly as in 

line 15, else  the value of k is updated in line 2 and List L is traversed in lines 4 to 12. Similar to Just 

Sort  a variable  C [ 0 … k ] is maintained to keep track of active buckets and the the active buckets are 

inserted into the list Ls. The value of A[i] is inserted into the hash table H [ 0 … k ]. Ls at lines 13 and 15 

has elements in sorted order. In lines 18 to 23 the list Ls is traversed and for each entry the 

Combinatorialhashsort  sub routine is called and the resulting list is merged with the list result. At line 

24 the result  list is returned which consists of the active buckets in sorted order. 

C. Combinatorial HashSort 

This subroutine traverses its input elements in lines 2 to 7. The range of the input elements is always 

less than 10, as α is equal to 10. The key  value is computed using equation (5) in line 4 and it is inserted 

accordingly in Hashtable  H [ 0 … 10 ]  which is an array of size 10 in this sub routine. The sum value is 

calculated by the variable C  cumulatively. The sorted active indices of  Hashtable  H [ 0 … 10 ] are 

retrieved in line 8  from sortable and assigned to the variable ind and the elements of H [ 0 … 10 ] are 

populated into the list result in sorted order in lines 9 to 11. This result list is returned in line 12. Thus 

the elements are traversed, its decimal sum is computed for the  combination of input list L and the 

elements are populated in sorted order using the index array returned by the sortable[C]. 

 
Algorithm 4. Combinatorial HashSort 

 
 
Input : Hashtable  H [ 0 … 10 ] , Cw [10] ,  List L  

Output : List result 

 

1: C = 0 

2: temp = L.head 

3: While temp ≠ null 

4:       key = temp.value mod 10 

5:      C = C + Cw[ key ] 

6:      H [ key ] = temp.value 

7:      temp=temp.next 

8: end while 
9: ind = sorttable [ C ] // ind array contains sorted indices 

10: for i = 0 to ind.length 

11:       LIST-INSERT ( result , H[ind[i]] ) 

12: end for // result contains elements of L in sorted order 

13: return result 
 

 



D. Combinatorial HashSort_d 

This subroutine is similar to the above sub routine except that it handles duplicate elements. This is 

called by the main algorithm and each entry of the hash table H [ 0 … 10 ] contains a list with its head 

and tail pointers. The array CW is a precomputed constant and it values are given below 

CW = { 1 , 2 , 4 , 8 , 16 , 32 , 64 , 128 , 256 , 512 } 

 

The elements are placed initially in its respective buckets using the hash function given by equation 

(4). The list of active buckets, i.e. L   is populated when an element is inserted into a bucket for the first 

time. The active buckets are sorted by the Keysort sub routine and it returns a list keys which contains 

elements of L in sorted order. The list keys returned by Keysort  is traversed and the elements in those 

active buckets are sorted using Combinatorialhashsort_d  and the results are merged into list result 

which contains the elements of the array A[1…n] in sorted order. 

   

 
Algorithm 5. Combinatorial HashSort_d 

 
 
Input : Hashtable  H [ 0 … 10 ] ,C1 [10] , Cw [10] ,  List L  

Output : List result 

 

1: C = 0 

2: temp = L.head 

3: while temp ≠ null 

4:    key = temp.value mod 10 

5:    if C1[key] = 0 

6:       C = C + Cw[key] 

7:       C1[key] = 1 

8:    end if 

9:    INSERT ( H , key , temp.value ) 

10:    temp=temp.next 

11: end while 

12: ind = sorttable [ C ] // ind array now contains sorted indices of keys 

13: for  i = 1 to ind.length 

14:     if H[ind[i]]  contains floats, discretize it and call Just Sort internally and then retransform it to get 

sorted float values. 

15:     result = LIST-MERGE ( result , H[ind[i]] ) 

16: end for // now result contains elements of L in sorted order 

17: return result 

 
     

 

 

V. ASYMPTOTIC ANALYSIS 

    Let us analyze the algorithm asymptotically starting from smaller subroutines or the internally used 

subroutines. 

 

A. Combinatorial HashSort_d 

    Let the input list L of the subroutine contain n elements. It is evident that lines 1, 2, 4, 5, 6, 7, 8, 9 and 

10 has time complexity of O(1). The while loop in line 3 is executed once for all n elements of list L , 



which contains n elements, and therefore its complexity is O(n). The complexity of lines 12 and 14 are 

also O(1). The length of the array ind is always lesser than or equal to n. For instance let the list L has 

input elements 11, 11, 12, 16, 11, 19, 19, 17 and 14. Then after line 11, the hash table H, has the above 

numbers stored at the indices 1, 2, 6, 9 and 7 which is retrieved in sorted order in line 12. Thus the worst 

case complexity of the for loop at line 13 is O(n) where the list L has no duplicate elements. As a result 

the overall worst case complexity of this sub routine is O(n). 

B. Combinatorial HashSort 

    Similar to the above analysis, let the input list consist of n elements. The time complexity of the lines 1, 
2, 4, 5, 6, 7, 9 and 11 is O(1). The while loop at line 3 is executed n times and hence its complexity is 
O(n).It is evident that  the array ind has n elements always and therefore the complexity of lines 10 to 12 
is O(n). Thus the overall worst case time complexity of this sub routine is O(n). 

C. Key Sort 

    Lines 1, 2, 3, 5, 6, 7, 8, 9, 10 and 11 has time complexity of O(1). At line 13 a recursive call is made. 

Let the input list L consist of n elements and the list Ls consists of ns elements. It is evident that on 

successive recursive calls, the number of elements in list L of the successive recursion will be lesser than 

n as a result of partitioning the elements into buckets and the number of input elements will be lesser 

than or equal to 10 upon termination of the recursion. Hence we can say that the time complexity of this 

recursion will be lesser than or equal to O(nlog k) . The time complexity of line 15 is O(n) . Lines 18, 21 

and 22 has the time complexity of O(1). The List data structure we use here has head and tail pointers 

and as a result the merge operation in line 21 is completed in constant time. The while loop at line 19 

traverses all the active buckets denoted by list Ls and for each bucket it calls Combinatorial Hashsort 

subroutine. Let n  be the number of elements in list Ls and let the n  elements be partitioned into active 

buckets ranging from 0 to k . Let ni be the number of elements in the i
th

 active bucket. Then n is given by 

the following equation. 

 

  ∑   
 
                                      (6) 

 

      For each iteration of the while loop the Combinatorial Hashsort subroutine is called which has time 

complexity of O(ni) and by aggregate analysis the time complexity of the while loop at line 19 is O(n). 

Thus the overall worst case time complexity of this subroutine is O(nlog k). 

 

D. Just Sort 

    Lines 1, 2, 3, 5, 6, 7, 8 and 10 has time complexity of O(1). The list data structure we use in this 

algorithm has head and tail pointers and so the insertion is done in constant time. Let the array A contain 

n elements. The for loop at line 4 has n iterations and hence its time complexity is O(n).Line 12 checks 

for the condition and if n>=k/10 then we traverse Hashtable H of size k/10 and proceed to sort directly 

whose complexity is O(n) as n is greater than or equal to k/10. Line 15 calls keysort subroutine and its 

worst case complexity is O(nlog k). Lines 16, 19 and 20 has time complexity of O(1). Again ,the List 

data structure we use here has head and tail pointers and as a result the merge operation in line 19  is 

completed in constant time. As array A has n elements, these elements are partitioned into the buckets 

represented by the entries of the hash table. The active buckets are inserted into list L at line 7  and this 

list is sorted by the keysort subroutine in line 15.  As a result, he list keys in line 15 contains all the 

active buckets  list L in sorted order. The sum of the elements present in all the active buckets is equal to 

n. The while loop at line 17 iterates over all the active buckets contained by the list keys which are in 

sorted order. Thus by aggregate analysis the time complexity of the while loop at line 17 is O(n) and 

hence the overall worst case time complexity of this subroutine is O(nlog k). 

 

     While the overall time complexity of this algorithm  varies between  O(n) and O(nlogk) , the space 

complexity of this algorithm is O(k) where k is the range of the numbers to be sorted. Based on the 

optimum and affordable value of memory, which varies greatly based on system configuration, the input 



array A can be partitioned into different segments of same or different range and each segment can be 

sorted independently and the sorted lists could be merged. In this way, the space complexity of this 

algorithm can be reduced to a desired value and also it can be used in distributed environment using 

parallelism and also external sorting can be used. 
 

VI. AVERAGE CASE ANALYSIS 

Let us analyze the average case complexity of this algorithm by considering the distribution of inputs. 

The time complexity of this algorithm is O(n) when n is greater  than k/10. We are calculating the 

average case complexity pessimistically by limiting the range of n(number of inputs elements) from 0 to 

k.  The worst case complexity is O(n log k) if n is lesser than k/10 and it is O(n) if n is greater than or 

equal to k/10. For a given range k , excluding duplicates, there are 2
k
 possible inputs. Thus the sample 

set S for our input for a given range is 2
k
. Let us consider two scenarios X and Y. 

                         X- all possible combinations of S where  n <  k/10 

    Y - all possible combinations of S where n > =  k/10 

 

Let C denote the average computational cost of this algorithm. Then 

 

            ( )  (     )   ( )  ( ) 

 ( )   ∑     

 

  
  

    / 2
k 

 ( )   ∑     
 
       / 2

k 

 

Where kCi is the combinatorial notation. The curve for kCi  is bell shaped curve and it can be easily 

proved by mathematical induction that P(X) is lesser than 0.01. In fact when k is 10 consisting of 

numbers from 0 to 10 , P(X) is 0.0097. And the value of P(X) reduces drastically to 0.017/2
50

 for k=100 

and so on. Hence P(X) is infinitesimal and can be neglected. 

 

 
 

 

The above graph shows graph of all combination values for  the range  k = 10. Its X-axis denotes 

i and       Y-axis denotes kCi.  It is obvious that this is a bell shaped curve and the area under the curve 

pertaining to event X is bounded by the curve, X-axis and the line x = 1 and its value is 11 and it is quite 



negligible when considering the whole area of the curve. This area decreases drastically when the 

sample set k increases and as a result even for k values like 100 it becomes infinitesimal. As a result, this 

area can be neglected. 

 

kCi Curve 

Thus  
   ( )  ( ) 

 

Thus the average case complexity is O(n). In the above scenario all the events are considered to be likely 

and has equal probability. In the above analysis we assumed the order of the sortable α to be 10 and so 

used the limit k/10 in our calculations. If suppose α=20 we would be considering event X for n<k/20. 

 
 

 

 

VII. ADAPTATIONS 

    This algorithm can be easily applied to strings using its ASCII values and if the input consists of 

negative and positive values, values can be separated and then sorted and can be combined finally. 

Reversal of the sort table entries leads to the output being in descending order which can be used for 

sorting negative values. Based on the availability of memory space, the input elements can be partitioned 

range wise , sorted and then combined. In this way, the performance can be tuned as per the 

configuration of the system. 

VIII. PERFORMANCE EVALUATION 

    This algorithm is implemented in java, using sort table of order 10 and evaluated using the dataset 

T40I10D100K [2]. The list and hash table data structures are implemented using arrays. The sorting 

algorithms to be compared with this algorithm are Quick sort, Merge sort and Heap sort. The 

performance is measured in terms of execution time in Milli seconds. 

 

TABLE III  PERFORMANCE EVALUATION 

Algorithm Execution time (ms) 

Just Sort 158 

Quick Sort 250 

Merge Sort 406 

Heap Sort 765 

 

      From the above data it  is clear that Just sort is nearly 37% faster than Quick Sort, which is the 

fastest among the three popular state of the art algorithms. The performance is measured in a system 

with the configuration of Intel i5 2
nd

 generation desktop processor @ 3.00 GHz and 8 GB RAM. 

IX. CONCLUSION 

In this paper we have proposed a novel sorting algorithm and have elucidated and analyzed its 

correctness .Last but not the least, the name of this sorting algorithm points to the adjective form of the 

word ‘Just’. 

X. APPENDIX 

A. Extensive Mathematical Background of Sort Table , Sorting and its input data. 
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