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Abstract

Finding whether a boolean formula is a tautology or not in a feasible time is an important problem of computer science.
Many algorithms have been developed to solve this problem but none of them is a polynomial time algorithm. Our aim is
to develop an algorithm that achieve this in polynomial time.

In this article, we convert boolean functions to some graph forms in polynomial time. They are called two dimensional
formulas and similar to AND-OR graphs except arches on them are bidirectional. Then these graphs are investigated to
find properties which can be used to differentiate tautological formulas from non tautological ones.
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1 Statement formulas and tautology problem

1.1 Statement formulas

Boolean functions( or any functions in general) can be represented in various ways. In this section, we consider only the
boolean functions given as a string consist of AND, OR, NOT signs, variable signs, constants 0 and 1 and parenthesis written
as usual. We will use ·(point), ∧ and˜for the AND, OR, NOT signs and use the letters similar to x,y,z alone or with indices
to represent variables.

Suppose the variables in a statement formula be (x1, .., xn). If we assign either 0 or 1 value to each of the variables,
then we get an interpretation of these variables. For example (0, 0, 0) is an interpretation of the variables (x1, x2, x3). Let
represent a function as f(x1, .., xn). If (x1, x2, x3) is the list of the variables in a function, then the value of the function
f(x1, x2, x3) becomes f(0, 0, 0) for the interpretation (0, 0, 0). If two functions have the same variables and gives the same
results for every interpretation of their variables, then these are equal functions. Otherwise they are different functions. For
example the functions f1(x, y) = x · y and f2(x, y) = x ∨ y are different because f1(0, 1) = 0 and f2(0, 1) = 1 true for the
interpretation (0, 1). The number of different functions for the n variables would be 22

n

.
A boolean function is said a tautology if it gives the value 1 for every interpretation of its variables. For example 1 or

x ∨ x̃ gives 1 for all the interpretation of a variable list. Therefore 1 and x ∨ x̃ functions are tautologies.
There are infinite number of different formulas representing the same function. For example x∨y is equal to x∨y∨x∨y..x∨y

where x ∨ y is duplicated as many times as desired. Then, the tautology checking problem may be expressed as ”is a given
formula a different writing of the function 1”.

The most straightforward way of checking whether a formula is tautology or not is to evaluate the formula for each
interpretations of the variables. The number of interpretation for n different variables is 2n. The number of different
variables in a formula is at most s/2 where s is the length of the formula. So the function must be evaluated 2s/2 times.
That is the complexity is O(s2s/2). This is not polynomial. So we will investigate various ways to achieve this in polynomial
time.

1.2 Variable reduction

Proposition 1 f(x1, .., xi, .., xn) is a tautology if and only if f(x1, .., 0, .., xn) · f(x1, .., 1, .., xn) is a tautology.

Proof 1 Trivial.

According to this proposition, from a formula, we can obtain another one which has one less variable and still preserves
the tautological property of the original one. This is a variable reduction operation and can be illustrated as

f(x1, .., xi, .., xn)
xi→ f(x1, .., 0, .., xn) · f(x1..1..xn)

Let call this v-reduction.
All the variables of a boolean formula can be eliminated by a series of v-reductions. After simplification, what would be

in hand at last, is either a 1 or 0. Since each v-reduction preserves the tautological property of the original formula, a 1 at
hand means the original formula is a tautology an 0 means it is not a tautology.

The obvious way of doing reduction is to get two formulas r1 and r2 as follows; replace xi with 0 in the initial formula
to obtain r1 and replace xi with 1 in the initial formula to obtain r2, parenthesise them if necessary and put an AND sign
between them. Also all the 1’s and 0’s are removed from the formula by applying the identities

0 · x = 0, 1 · x = x, 0 · x = x, 1 · x = 1, 0̃ = 1, 1̃ = 0.
All of these process takes polynomial time. However the length of (r1) · (r2) which is the resulting formula would be 2s

approximately in the worst case. Doing this for s/2 variables would give us a complexity of O(s · 2s/2, so it seems that this
process could not be achieved in polynomial time.

1.3 Simple form and reduction

A variable, the inverse of a variable and the constants 0,1 are called atomic terms.
If a formula is in the form a1 ∨ a2 ∨ .. ∨ an then it is a disjunction. Each ai is an element of it. If all the elements of a

disjunction is an atomic term then this is a simple sum. For example x1 ∨ x̃1 is a simple sum.
If a formula is in the form a1 · a2 · .. · an then it is a conjunction. Each ai is an element of it. If all the elements of a

conjunction is an atomic term then this is a simple product. For example x1 · x̃1 is a simple product.
If all the elements of a disjunction are simple products, then the formula is said to be in the disjunctive normal form.

Each boolean formula has a disjunctive normal form or DNF. In this form, each element of the form is called an elementary
product or e-product and either contain xi or x̃i or neither contain xi nor x̃i as follows.

xi · α1 ∨ .. ∨ xi · αn ∨ x̃i · β1 ∨ .. ∨ x̃i · βm ∨ δ1 ∨ .. ∨ δl
Here δk is the elementary product including neither xi nor x̃i. The elementary products which include both xi and x̃i

are either xi · αi or x̃i.βj .
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This formula can be written simply as

xi · α ∨ x̃i · β ∨ δ

where α = α1 ∨ .. ∨ αn, β = β1 ∨ .. ∨ βm and δ = δ1 ∨ .. ∨ δl
If α includes xi and/or x̃i, then they can be eliminated by the following equivalences.

xi · α(xi) = xi · α(1)
xi · α(x̃i) = xi · α(0)

Similarly if any βj includes xi or x̃i, they are eliminated by

x̃i · β(xi) = x̃i · β(0)
x̃i · β(x̃i) = x̃i · β(1)

Thus, the terms α, β, δ do not include xi or x̃i. This is called as ”simple form”. Now let see the reduction in this form.

xi · α ∨ x̃i · β ∨ δ
xi→ (β ∨ δ) · (α ∨ δ)

= β · α ∨ δ

After this point on, we will assume the NOT operator is applied to the variable symbols only. If a formula is not in this
form, then an equivalent formula in this form can be obtained in polynomial time.[2]

The DNF form of a given formula can be produced by applying the rule x · (y∨ z) = x ·y∨x · z to the formula recursively.
Then the right hand side of the v-reduction could be obtained by examining each elementary product to mark them as αi,βj

or δk and by doing the necessary operations to get α · β ∨ δ. However, the number of elementary products is not polynomial
w rt n which is the number of different variables. Therefore, obtaining all the elementary products in this way dos not take
polynomial time.

So let investigate the other ways of reducing the formula. It can easily be seen that, if a formula does not have xi but
includes x̃i, then the simple form would be x̃i · β ∨ δ and the reduction becomes as

x̃i · β ∨ δ
xi→ (β ∨ δ) · δ

= δ

But this can be achieved simply by putting 0 instead of x̃i and eliminating 0’s from the formula.

x̃i · β ∨ δ
xi→ 0 · β ∨ δ = δ

⇒ f(x̃i)
xi→ f(0)

This process can be applied to the original formula in polynomial time. Similarly for the formulas which does not include
x̃i but having xi, reducing is achieved as

xi · α ∨ δ
xi→ (α ∨ δ) · δ = δ

⇒ f(xi)
xi→ f(0)

Again the reduced form can be obtained from the original one by replacing xi with 0 and eliminating all 0s
Thus any variable which occurs either only alone or only with negation can be eliminated by just replacing them with 0.

This takes polynomial time. As a result, a formula is obtained in which all the variables occur at least twice; one as alone
and the other with negation. Now if we evaluate the formula by examining every interpretations of them, the complexity
would be O(s.2s/2) since the number of different variables is s/4 at most in such a formula.

In the rest of this section we will assume all the variables are not alone. If they are not in this form, they can be changed
to this form in polynomial time as mentioned above.
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1.4 AND terms

Consider the v-reduction again.
f(xi, x̃i) = xi · α ∨ x̃i.β ∨ δ

xi→ β · α ∨ δ
Here the question is that ”are there alternate ways of obtaining the right hand side of the reduction from the left hand

side”.
The answer is yes and as shown below, the formula can be reduced by replacing xi with βi and x̃i with 0.

xi · α ∨ x̃i.β ∨ δ
xi→ xi/

β

· α ∨ x̃i/
0
.β ∨ δ

= β · α ∨ δ

The same result can be obtained by replacing xi with 0 and x̃i with α,

xi · α ∨ x̃i.β ∨ δ
xi→ xi/

0
· α ∨ x̃i/

α
.β ∨ δ

= β · α ∨ δ

or by replacing xi with β and x̃i with α.

xi · α ∨ x̃i.β ∨ δ
xi→ xi/

β

· α ∨ x̃i/
α
.β ∨ δ

= β · α ∨ δ

α and β are just the terms conjuncted with xi and x̃i respectively. So, this idea can be applied to any formula even it is
not in DNF form.

f(xi, x̃i)
xi→ f(β, 0)

f(xi, x̃i)
xi→ f(0, α)

f(xi, x̃i)
xi→ f(β, α)

Definition 1 If two terms t1 and t2 are conjuncted then t2 is an A-term of t1 and vice versa

For example in (x ∨ y) · z, (x ∨ y) is an A-term of z and z is an A-term of (x ∨ y).
Then the idea ”replace xi with β” becomes ”replace each occurrence of xi with the A-term of x̃i”. Similarly, the idea

”replace x̃i with α” becomes ”replace each occurrence of x̃i with the A-term of xi”

1.5 AND links and reachability

Let try to find the and-terms of xi without changing the formula.
In any formula, each occurrence of xi in a formula is in the following form.
..lm · (uk ∨ .. ∨ l2 · (ui ∨ l1 · xi · r1 ∨ ui−1) · r2 ∨ .. ∨ u1) · rn ∨ ..
The term which is directly conjuncted with xi is l1 · r1. If the parenthesis are opened then the A-term of xi for this

occurrence would be lm..l2 · l1 · r1 · r2..rn. Let this be αk where k represents the k’th occurrence of xi. If αk contains xi

or x̃i, then they can be eliminated by replacing them with 1 and 0 respectively, since αk is an A-term of xi . That is the
equivalences α(xi) = α(1) and α(x̃i) = α(0) are applied. The entire A-term of xi then becomes α = α1 ∨ .. ∨ αn where n is
the number of occurrences of xi in the formula.

One algorithm to do this is the following.

Algorithm 1 Find an occurrence of xi. Do the followings for this occurrence.

1. Let T be an empty set and xi is the last A-term.
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2. Do the following steps toward right until the end of the formula

(a) If t1 is the last A-term and the formula is in the form ..t1 · t2.. then make t2 the last A-term and put it into T.

(b) If the formula is in the form ..(.. ∨ t · ti ∨ .. ∨ tn) · r.. and ti is the last A-term, then make r the last A-term and
put it into T.

3. Starting from xi, do the following steps toward left until the end of the formula.

(a) If t2 is the last A-term and the formula is in the form ..t1 · t2.. then make t1 the last A-term and put it into T.

(b) If t is the last A-term and the formula is in the form ..l · (t1 ∨ .. ∨ t · ti ∨ .. ∨ tn).., then make l is the last A-term
and put it into T.

The A-term of the this occurrence would be a1 · .. · an where ai ∈ T

In this case, the A-term of xi, i.e. α, is the disjunction of the A-terms of all the occurrences of xi. If the number of
occurrences of xi is n and the length of the formula is s, this operation takes ns times. If there are xi or x̃i terms in α, then
they are eliminated by the equations α(xi, x̃i) = α(1, 0). β is found similarly. The term δ can be found by replacing xi and
x̃i with 0. All of these jobs take polynomial time. So the reduced formula α ·β∨δ can be found in polynomial time. However,
the length of the formula found may be larger than the original one. If the length of the formula found is 2s in average then
the length seems to increase exponential in each reduction. On the other hand, the number of different variables would be
reduced by one and thus the length can not increase so much. From here, one may prove that the length can not increase
exponentially. However, we will assume that this process can not be realized in polynomial time.

The algorithm above replaces the concept of finding an A-term with the concept of going from one term to another. To
visualise this concept, we will use − symbol instead of ·. By this notation, a statement formula would look like

..lm − (uk ∨ .. ∨ l2 − (ui ∨ l1 − xi − r1 ∨ ui−1)− r2 ∨ .. ∨ u1)− rn ∨ ..
Thus − represents both reachability and A-links. So, two terms are conjuncted to each other if they are reachable to

each other by the following rules.

1. In t1 − t2, from t1 one can reach to t2 and vice versa.

2. In (t1 ∨ t2)− t3, t3 is reached from t1 or from t2 and from t3, t1 or t2 can be reached.

3. If t2 is reachable from t1 and t3 is reachable from t2, then t3 is reachable from t1.

So, if t2 is reachable from t1 then t2 is an A-term of t1.

1.6 Reachability and reduction

Now consider the v-reduction again.

xi − α ∨ x̃i − β ∨ δ
xi→ (β ∨ δ)− (α ∨ δ)

= β − α ∨ δ

Note that after replacement α becomes conjuncted to β and vice versa. To make two term conjuncted, it is sufficient to
made them reachable from each other. So the idea can be realized by putting an A-link between α and β as shown below.

| |
xi − α ∨ x̃i − β ∨ δ

xi→ 1− α ∨ 1− β ∨ δ

This path make α and β reachable to each other and thus they become A-terms of each other. A better realization of
this is as follows

| |
xi − α ∨ x̃i − β ∨ δ

xi→ 1− α ∨ 1− β ∨ δ

α and β become A-term of each other via 1’s linked to them.
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2 Two Dimensional Formulas

2.1 Two dimensional formulas

Once we escape from the restrictions of one dimension and feel free to draw links in two dimensions, then the amount of
choices to express a function will be increased. Consider the following examples.

a− b =

b

a

a− (b− c ∨ d) =

(bV1)

ca d

x− α1 ∨ x− α2 = x(1V1)

(α1Vα2)

Two dimensional formulas can easily be obtained from statement formulas as shown in the figure.

x1 · x2 · x̃3 ∨ x3 · (x̃1 · x̃2 ∨ x3 · x̃2) ∨ x2 ∨ x̃3 · x4

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

(1-1-1V1-(1-1V1-1)V1V1-1)

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

1-11-1

1-1-1 1-1

(1V1V1V1)

1-(1V1)

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

1

11

1(1V1)

(1V1V1V1)

1

Figure 1: Two dimensional equivalences of a statement formula

The third form is a tree structure composed of arches, the nodes −1−, (1V..V 1) and atomic terms . The first node is an
AND-node and the second one is an OR-node. The OR-node has a main arc and several base arches. Every formula has a
root arc.

To show that the above equivalences are true, it is enough to show that the statement formula and the corresponding
two dimensional forms takes the same value at every interpretation of the variables.

In the following example, an interpretation of the formula and the value of each arc for this interpretation is shown.
Naturally the arches has directions. The value of each arc is evaluated as follows: If an arc is connected to a variable then
the value of arc becomes the value of that variable. For an OR-node, if one of the base arches is 1 then the main arc becomes
1. Otherwise it becomes 0. For an AND-node if one of the outgoing arches is 0, then the incoming arc becomes 0. Otherwise
it becomes 1. For this interpretation the root arc takes the value 0, so this means that the value of this formula is 0 for this
interpretation.

1

11

1(1V1)1

(1V1V1V1)

0 0 1 0 1 1 0 1 0 1 0

0

0
1 0

1 1

1

0
1

0

1
00

0

0
0

1
0

Figure 2: The values of the arches for the interpretation x1 = 0, x2 = 0, x3 = 0, x4 = 0

Arches, nodes and formulas Consider the formula given in the figure. In it, all the arches are labelled to differentiate
them.

The arches are denoted by small letters. A label near an arc normally represents the arc in the downward direction. If
an arc is in the left-right direction, then the label near it denotes the arc directed to right. The reverse of an arc is shown
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x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

1

11

1(1V1)1

(1V1V1V1)
y1

y2
y3 y4 y5

y6

y7

y8
y9

y10

y12y13 y14

y15 y16
y17

y18
y11

Figure 3: Labelling arches

by putting an ′ sign above the label of it. For example the reverse of the arc y is written as y′. The reverse of the reverse of
an arc is the arc itself.

Each arc is either tied to an atomic or an AND-node or an OR-node. If an arc p is connected to an atomic term, show
this as px where x is the atomic term, if it is connected to an AND-node, p− (r1, .., rn) where r1, .., rn are outgoing arches,
if it is tied to an OR-node, show this as p− (p1 ∨ .. ∨ pn) where r1, .., rn are the outgoing arches.

x

p

(a) px

r s

p

1

(b) p− (r, s)

r s
(1V1)

p

(c) p− (r ∨ s)

Figure 4: Connection types

For any arc p, let |p| be represent the value of the arc in any interpretation. In this case, the relationship among the
values of the arches be as the following.

1. For px |p| = |x|

2. For pr |p| = |r|

3. For p− (r1, .., rn), |p| = |r1| · .. · |rn| is true.

4. For p− (r1 ∨ .. ∨ rn), |p| = |r1| ∨ .. ∨ |rn| is true.

Formula of an arc Each arc represents a formula and this is the formula which affects the value of this arc only. If an
atomic term can affect the value of an arc, then this means that there is a path from the arc to that atomic term. I.e. the
formula of an arc is the subformula which is found by following the links beginning from that arc.

To find the formula of an arc the following rules are applied.

Algorithm 2 This algorithm finds the formula for the arc p.

1. push the arc p to the stack.

2. Pop an element from the stack. Let this be p.

(a) If p and beyond is in the form p− (p1, .., pn), then push the arches p1, .., pn to the stack.

(b) If p and beyond is in the form p− (p1 ∨ .. ∨ pn), then push the arches p1, .., pn to the stack.

(c) If p and beyond is in the form px, then do nothing.

3. The scanned subgraph is the formula of the arc p.

For example in the figure, the subformula beginning from the arc y10 and y′9 is shown. However, as seen, there are some
problems here. For example, in the subformula of y′9, the values of the arches y′1 and y′3 are undetermined and therefore the
value of the arc y′9 is unknown.

8



x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

1

11

1(1V1)1

(1V1V1V1)
y1

y2
y3 y4 y5

y6

y7

y8
y9

y10

y12y13 y14

y15 y16
y17

y18
y11

(a) the formula of y10

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

1

11

1(1V1)1

(1V1V1V1)
y1

y2
y3 y4 y5

y6

y7

y8
y9

y10

y12y13 y14

y15 y16
y17

y18
y11

(b) the formula of y′9

Figure 5: Each arc represents a formula

2.2 And terms

To find the A-term of a variable, we can adapt the rules used in statement formulas. Suppose (p1 ∨ .. ∨ pn) − r represents
an OR-node where p1, .., pn are incoming and r is outgoing arches. That is p − (p1, .., pn) and (p′1, .., p

′
n) − p′ represent the

same OR-node. However, in the first, the direction is from the main arc to the base arches while in the second the direction
is from base arches to the main arc. The following algorithm finds the A-term of xi.

Algorithm 3 1. Let T is an empty set and xi is the last a-term.

2. Put the reverse of the arc connected to xi to T.

3. Do the followings until stack is empty.

(a) Pop an arc from the stack. Let this be p.

(b) If p and beyond is in the form p− (r1, ..rn) then push r1, .., rn to the stack.

(c) If p and beyond is in the form p− (r1 ∨ .. ∨ rn) then the subformula of p is an a-term. Traverse this subformula.

(d) If p and beyond is in the form (p ∨ p1 ∨ .. ∨ pn)− r then put r into T.

(e) If p and beyond is in the form px, do nothing.

The a-term of this occurrence of xi is the subformula traversed.

In fact, the formula of the reverse arc of the arc tied to a variable is an A-term of that variable. I.e. The subformula of
y′9 which is shown in the figure is in fact the A-term of an occurrence of x3. Thus the problem of whether the value of the
arc p in the connection (p ∨ p1 ∨ .. ∨ pn) − r is resolved: |p| must be equal to |r|. I.e the value of y′3 must be equal to the
value of y′1. On the other hand deciding whether the value of y′1 is can be resolved as follows. We know that the value of the
root arc, i.e. y1, is equal the value of the formula and the arc y′1 is not involved in the formula starting from y1. Therefore
the value of the reverse root arc has no affect on the value of the formula. On the other hand, y′1 is a member of the A-term
of x3 and this A-term is a part of the formula. Any thing that has no affect on the value the formula can not affect the value
of A-term also. Then the reverse root arc must be terminated with a 1.

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

1

11

1(1V1)1

(1V1V1V1)

y9

y1

y3
y10

(a) The subformula of y′9 is an a-term of
an occurrence of x3

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

1

11

1(1V1)

(1V1V1V1)

y9

y1

y3
y10

1

(b) The value of y1 is the value of the for-
mula. y′1 is not a part of the formula tra-
versed starting from the root arc

⇒

1

11

1(1V1)1

(1V1V1V1)

y9

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

y11

(c) To not affect the value of a-term, |y′1| =
1 must be true

Figure 6: The arc y′1 does not affect the value of the formula. Therefore it must not affect the value of any A-term

We will start the root arc with 1 after here on and call it root term. Therefore all the terminals of a formula would
contain a atomic.
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2.3 Reduction

The simple form of a statement formula is in the form α · xi ∨ β · x̃i ∨ δ where α is the A-term of xi, β is the A-term of x̃i

and δ is the rest. In a statement formula, we can get the reduced form without converting it into simple form as follows:
f(xi, x̃i)

xi→ f(β, α)
So the reduction for x3 is simple. replace every occurrence of x3 with the and-term of x̃3 and replace every occurrence of

x̃3 with the and-term of x3.
The A-term of a variable then is the disjunction of all the and-terms of it. In the figure, the A-terms of each occurrences

of x3 and x̃3 are shown.

1

11

1(1V1)1

(1V1V1V1)

y9

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

y11

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

1

11

1(1V1)1

(1V1V1V1)

y17

1

(a) the a-terms of the variable x3

1

11

1(1V1)1

(1V1V1V1)

y8

1

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

1

11

1(1V1)1

(1V1V1V1)1

x1 x2 x3 x3 x2 x4x̃3 x̃1 x̃2 x̃2 x̃3

y11

(b) The a-terms of the variable x̃3

Figure 7: The a-terms of x3 and x̃3

So there are two ways to realise the reduction as shown. Thus in the reduced formula, the value of x3 is replaced by the
value of the A-term of x̃3 and the value of x̃3 is replaced by the value of the A-term of x3.

1

11

1(1V1)1

(1V1V1V1)1

x1 x2 x2 x4x̃1 x̃2 x̃2

(1V1) (1V1) (1V1)(1V1)

y8

y9

y11y17

1

11

1(1V1)1

(1V1V1V1)1

x1 x2 x̃2

x2

x4

x̃1 x̃2

(1V1)(1V1)

y8

y9
y11

y17

Figure 8: Two ways of reduction by x3

The second method of reduction is more simple and it seems that there is no advantage of using the first method. The
second method also lead another way of representing the two dimensional formulas. It is shown in the figure.

In such graphs, the ”alone” variables written only once and the others written twice: one for itself and another for its
negation. Then the reduction by xi is simple: If there exist both itself and its negation then the symbols x̃i and xi are erased
and the arches tied to them are connected to each other. If it is an ”alone” variable then it is replaced by 0. In the rest of
this article, we will always use this way for v-reduction.

For the reduction be valid, the reduced two dimensional formula must be equal to its statement counterpart in every
interpretation. The statement counterpart of the sample formula is the statement formula from which it is derived. Let
reduce the statement formula by x3.
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1

1

(1V1V1V1)1

(1V1)

1 (1V1)1

(1V1)

1

x2x1 x̃1 x3

(1V1) (1V1)

x4x̃3x̃2

(a) Another form. Each variable and its negation is
written only once. The a-term of a variable includes all
the a-terms of the variable

1

(1V1V1V1)1

(1V1)

x4x̃3x3

(1V1)(1V1)

x̃2

1(1V1)

1

x̃1

(1V1)

x2 x1

1

1

(b) A more simple drawing

Figure 9: Another form of the sample formula.

1

(1V1V1V1)1

(1V1)

x411

(1V1)(1V1)

x̃2

1(1V1)

1

x̃1

(1V1)

x2 x1

1

1

(a) v-reduction by x3

1

(1V1V1V1)1

(1V1)

0x̃3x3

(1V1)(1V1)

x̃2

1(1V1)

1

x̃1

(1V1)

x2 x1

1

1

(b) v-reduction by x4

Figure 10: v-reduction of ”alone” variables and the others

x1 · x2 · x̃3 ∨ x3 · (x̃1 · x̃2 ∨ x3 · x̃2) ∨ x2 ∨ x̃3 · x4
x3→ (x1 · x2 · 1 ∨ 0 · (x̃1 · x̃2 ∨ 0 · x̃2) ∨ x2 ∨ 1 · x4)

·(x1 · x2 · 0 ∨ 1 · (x̃1 · x̃2 ∨ 1 · x̃2) ∨ x2 ∨ 0 · x4)
= (x1 · x2 ∨ x2 ∨ x4) · (x̃1 · x̃2 ∨ x̃2 ∨ x2)
= (x2 ∨ x4) · 1
= x2 ∨ x4

I.e. the reduced form of the statement formula becomes x2 ∨ x4. So the reduced two dimensional formula must be equal
to this.

In the figure, the values of the reduced two dimensional formula for the interpretations (x2 = 1),(x2 = 0, x4 = 1) and
(x2 = 0, x4 = 0). The reduced two dimensional formula and the reduced statement formula have the same value for every
interpretation, thus the reduction is valid.

The formula obtained directly from the statement formula is called initial formula. The other formulas derived from this
by reduction is called reduced formulas.

Obtaining the two dimensional form of a statement formula as mentioned above takes polynomial time. For each different
variables, one or two OR-nodes are formed. For each atomic, an arc is tied to this nodes. So the total number of arches
becomes the number of parenthesis + the number of atomic terms + 2*number of different variables. It takes O(s) times to
form the graph. The reduction also takes polynomial time.

The last form of the formula after reducing by all variables are shown in the figure.
As seen, what at hand is a pure graph and we should decide whether a formula is a tautology or not by investigating

this graph. The question here is: ”which properties of such a graph differentiate a tautology from a non tautology”. Before
investigating the answer for this question, let change the notation and introduce some definitions.

2.4 A notation

Let use instead of (1V..V 1) and instead of −1−.
The formulas given in the figure is redrawn with this notation and shown in the figure.
We want to express a two dimensional formula by means of its arches and nodes. Due to this new notation, we will write

the nodes as follows. p• (p1, .., pn) represents an AND-node where p is the incoming arc and p1, .., pn are the outgoing arches.
p|= (p1, .., pn) represents an OR-node where p is the incoming arc and p1, .., pn are the outgoing arches. Naturally, the node
p • (r, s) can be written as r′ • (p′, s) or s′ • (p′, r). Similarly, the node p|= (p1, .., pn) can be written as (p′1, .., p

′
n) =|p′.
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1

(1V1V1V1)1

(1V1)

x4

(1V1)(1V1)

0

1(1V1)

1

x̃1

(1V1)

1 x1

1

1

k

1

1

1

1 1

(a) For |x2| = 1, |k| = 1

1

(1V1V1V1)

(1V1)

1

(1V1)(1V1)

1

1(1V1)

1

x̃1

(1V1)

0 x1

1

1

1

1

1

1

1

1

1

11

1

11

1

1

k

1 1

(b) For |x2| = 0 and |x4| = 1, |k| = 1

1

(1V1V1V1)1

(1V1)

0

(1V1)(1V1)

1

1(1V1)

1

x̃1

(1V1)

0 x1

1

1

k

0

0

0

00

0

0

0

0

0

0

0

1 1

(c) For |x2| = 0 and |x4| = 0, |k| = 0

Figure 11: The interpretations for the reduced formula. The values of arches which does not affect the result are not shown

1

(1V1V1V1)1

(1V1)

0

(1V1)(1V1)

1(1V1)

1

(1V1)

1

1

Figure 12: The totally reduced form of the example formula

1

x̃2 x3 x2 x4x1 x̃3x̃1

1

0

Figure 13: The sample formula and its last reduced form redrawn with new notation

p

r s

(a) Denoted as p • (r, s)
or r′•(p′, s) or s′•(p′, r)

p

r s

(b) Denoted as p| =
(r, s) or (r′, s′) =|p′

Figure 14: Node illustrations

Formulas of arches . Let the formula of an arc p be represented by p(). Each formula can be thought as composed
of other formulas. Each formula is either a atomic term or an disjunction or an conjunction. An AND-node represents a
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conjunction and an OR-node represents an disjunction. If p is tied to an AND-node then p() is a conjunction, if it is the
main arc of an OR-node then it is a disjunction. For example y3 is tied to an AND-node whose arches directed to outside is
y9 and y10. For this reason y3() is a conjunction and the elements of this conjunction is y9() and y10().

Then we can apply the following rules for the statement equivalences

1. The formula of p be p().

2. If p and beyond is in the form px then p() = px,

3. If p and beyond is in the form pr then p() = pr().

4. p and beyond is in the form p • (p1, .., pn) then p() = p • {p1(), .., pn()}.

5. p and beyond is in the form p|= (p1, .., pn) then p() = p|= {p1(), .., pn()}.

6. p and beyond is in the form p =|r then p() = p =|r().

For example for the subformula given in the figure and begins from y3, some equivalences would be valid.

1

x̃1 x̃2 x3 x2 x4x1 x̃3

y3

y4
y1

y5 y6
y7 y8

y9 y11
y12 y13

y15 y16 y17 y18 y19 y20

y21

k

y10 y14

y2

Figure 15: subformula for y3

From here

y3() = y3 • {y12(), y19(), y13()}
= y3 • {y12 =|y18(), y19x1, y13 =|y20()}
= y3 • {y12 =|y18x2, y19x1, y13 =|y20x̃3}

is found. The reason to choose such a notation is that when the parenthesis are opened, then we get the paths of the
formula. For example the path set of y3 would be found as

y3{} = {y3 • y12 =|y18x2, y3 • y19x1, y3 • y13 =|y20x̃3}

Paths The ways used to go from one element to another one is known as paths. A path is shown by writing arches,nodes
and atomicss in sequence. For example, the path begin with p1 and end with x2 is written as p1|= p2 • y9 =|y17x2. Here |=
represents a head-to-base or-node between the arches p1 and p2. Similarly • and =| represents an and node and a base-to-head
or-node. The direction of path is from left to right. If we do not need to describe the types of nodes , we use the notation p.r.
Here it is indicated that there is a node between p and r. Two subsequent arches are tied to each other with an and-node.
So if r immediately comes after p we will write this as p • r or pr. Naturally several subsequent arches can be thought as
one arc and one arc can be thought as composed of several subsequent arches. We will use both accordingly.

For each path there is a reverse path. For example the reverse of p1|= p2 • y9 =|y17x2 is x2y
′
17|= y′9 • p′2 =|y′1. |= and =|

are the reverse of each other. The reverse of a variable such as x is itself. the reverse of • is • again.
The notation pAr shows a path which begins with p and end with r. The paths are shown with capital letters. The

reverse of the path pAr is written as r′A′p′. On the other hand, the notation p..r shows any path begins with p and end
with r. The reverse of them are shown as r′..p′. p.. and ..r shows the paths beginning with p and the paths end with r
respectively.

The path relation is transitive. I.e if p..r and r..s exist then a path p..r..s exists.
If a path begins with a atomic term and end with an atomic term then it is a complete path. For example in a non-reduced

formula any path begins with root 1 and end with a variable is a complete path. The paths not complete can be called
subpaths.
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2.5 Equality and equivalences

In the standard statement formulas, if two formulas give the same results for the same interpretation, they are said to be
equal. The same thing can be defined for the two dimensional formulas. Now define equality and equivalence relations as
follows.

Definition 2 • The formulas give the same results for the same interpretations are equivalent.

• If two statement formulas give the same results for the same interpretations, they are equal.

• If two 2d formulas give the same results for the same interpretations, they are equal.

We show the equality with = and equivalence with ∼=.
Each formula and therefore each arc has a statement equivalence. The statement equivalence of an initial formula is the

statement formula which it has been formed. However,the statement equivalence of any two dimensional formula can be
found by the following recursive procedure regardless of how to construct it.

1. D(p) represents the statement correspondence of the formula beginning from p.

2. If p and beyond is in the form px then D(p) = x,

3. If p and beyond is in the form pr then D(p) = D(r).

4. If p and beyond is in the form p • (p1, .., pn) then D(p) = D(p1) · .. ·D(pn).

5. If p and beyond is in the form p|= (p1, .., pn) then D(p) = D(p1) ∨ .. ∨D(pn).

6. If p and beyond is in the form (p, ..) =|r, then D(p) = D(r).

If a 2d formula and a statement formula give the same results for the same interpretations then they are equivalent.
Therefore a 2d formula and its statement correspondence are equivalent. I.e. p{} ∼= D(p) becomes true.

If a 2d formula differs from the others by some formal chances we can call them matched formulas. We show matching
relation with ≡. For example an OR-node with more than one base arches can be shown with several OR-nodes with only
two base arches. Also the AND-nodes with more than three arches can be represented by AND-nodes with three arches only.
Then these are matched formulas.

...
q1 qn

p

≡

...

q1

q2 qn

p

q1
· · ·

qn

p

≡
qn

· · ·
q2

q1

p

0

p

r s

≡

p

r

1

p

r s

≡

p

r

x ≡ x x

Figure 16: Matching relations

An equivalent formula We can also mention the formulas starting from a variable. For example the formula found
beginning from x̃2 is shown in the figure.

This formula is in fact the conjunction of the formula of arc p′ which is connected to the variable x̃2 and the variable x̃2

itself. I.e. the statement correspondence of this formula becomes x̃2 ·D(p′). The subformula starting from p′ is indeed the
A-term of x̃2. Similarly the subformula found beginning from x2 is the conjunction of x2 and it’s A-term.

In the statement formulas, we have shown the simple form as x.α∨ x̃ ·β∨δ where α,β and δ are statement formulas. Here
α, β are the a-terms of x2 and x̃2 respectively and δ represents the rest of the statement formula. The simple form is equal
to the formula. Therefore, the following form must also be another equivalent form of the formula in 2d representations.

In this representation, we accept that the atomic terms connected with two arches are conjuncted with the arches. For
example, for p − x̃2 − r, D(p) = x̃2 ·D(r) and D(r′) = x̃2 ·D(p′) becomes true.Thus the simple form of the formula is the
formula starting from k′2. However, the simple form is equal to the formula. Then both k1 and k′2 gives the same value,
therefore both arches can be seen as the root arch

The formulas can start not only a variable but from any terminals of the formula. So, the scans starting from the root,
can be started from the root term also since the root term is a terminal of the graph. From here on, we will start the root
scans from the root term also.
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1

x̃1 x̃2 x3 x2 x4x1 x̃3

p

∼= x̃2 ·D(p′)

Figure 17: A formula starting from a variable

1

x̃1 x̃2 x3 x2 x4x1 x̃3

k1

1
k2

=

1

x̃1 x̃2 x3 x2 x4x1 x̃3

1

k1

k2

(a) The formula

1

x̃1 x̃2 x3 x2 x4x1 x̃3

1

k1

k2

(b) The simple form is the for-
mula starting from k′2

Figure 18: An equivalent formula

2.6 Validating the reductions and invalid terms

Validating the reductions We mentioned that for the reduction in 2d formulas to be valid, the statement equivalence
of a reduced formula obtained when a 2d formula is reduced, must be equal to the statement formula obtained when the
statement equivalence of that formula is reduced. In other words, the following must be true.

”Let 2D(xi) and S(xi) represent a 2d formula and its statement equivalence respectively. I.e. let 2D(xi) ∼= S(xi) be true.

If 2D(xi)
xi→ 2D() and S(xi)

xi→ S() then 2D() ∼= S()”
The statement equivalence of an initial formula is the formula from which it is formed. However, it is not determined

what the statement equivalence of the reduced formulas and how to find it. For example in the figure, the 2d correspondence
of the statement formula x ∨ x.x̃ ∨ x̃ · y and it’s reduced form wrt x are given. If we reduce the statement formula with x,
we obtain y. Therefore, for the 2d reduction to be true, the statement correspondence of the reduced 2d formula must be y.
We don’t know yet whether it is indeed equivalent to y or the properties which make it equivalent to y

1

y

x̃x

(a) A formula
whose statement
equivalance is
x ∨ x.x̃ ∨ x̃ · y

x→

1

y

(b) Is this formula
equivalent to y?

Figure 19: A formula and its reduced form
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A solution to this problem might be to divide the formula into its elementary products and define the value of the formula
in terms of the values of its elementary products.

Invalid terms In a statement formula the value of the formula is equal to the conjuncted value of the elementary products.
The same thing must be valid for the 2d formulas. In the disjunctive normal form of a formula each elementary product
either includes xi or x̃i or both xi and x̃i or does not include them. Then the formula can be written as

xi · (a1 ∨ .. ∨ ak) ∨ x̃i · (b1 ∨ .. ∨ bl) ∨ xi · x̃i · (c1 ∨ .. ∨ cm) ∨ (d1 ∨ .. ∨ dn) = xi · α ∨ x̃i · β ∨ xi · x̃i · δ ∨ γ
Here the term xi · x̃i · δ is invalid and eliminated directly or indirectly.

xi · α ∨ x̃i · β ∨ xi · x̃i · δ ∨ γ
xi→ (0 · α ∨ 1 · β ∨ 0 · 1 · δ ∨ γ) · (1 · α ∨ 0 · β ∨ 1 · 0 · δ ∨ γ)

= α · β ∨ γ

However, if we reduce a 2d formula, there is no term or part eliminated. I.e. invalid terms are preserved after reduction.
In any formula, the invalid elementary products does not affect the truth of the formula. Then after any reduction. the

value of the formula is determined by the value of elementary products not invalid. If in a formula the invalid products are
not eliminated then in the last reduced form of any invalid formula, all the elementary products must be invalid.

Thus if in a last reduced form, it is found that every elementary product is inconsistent, then we can decide that the
original formula is invalid, otherwise it is valid. However, before applying this idea, we must find answers to the questions
what is an elementary product and how they can be found in a two dimensional formula.
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Part II

Elementary scans
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3 Initial formulas and elementary products

3.1 Finding elementary products

To find the elementary products of a statement formula, it is enough to apply the equivalence x · (y∨z) = x ·y∨x ·z until can
not be applied. We could use a similar method in two dimension, but then the original formula would be changed. However,
there are ways to obtain the elementary products without changing the original formula. Now let investigate these ways.

The following is an algorithm to do this.

Algorithm 4 1. Put the formula to the stack.

2. Do the followings until there is no more element in the stack.

(a) Pop an element from the stack.

(b) If this is a disjunction, i.e. the current element is in the form (a1 ∨ ..∨ an) then choose one of ai and push to the
stack.

(c) If the current element is in the form (a1 · .. · an) then push all the ai’s to the stack.

(d) If the current element is an atomic term then put it to VAR.

3. All the atomic terms in VAR form an elementary product. Each different selection in a disjunction leads to different
elementary products.

For example let find the elementary products of x1 ·x2 · x̃3 ∨x3 · (x̃1 · x̃2 ∨x3 · x̃2)∨x2 ∨ x̃3 ·x4 by this way. The following
figure shows how to find an elementary product by this way. The elements marked by an underline shows the selection made
in each disjunction.

x1 · x2 · x̃3 ∨ x3 · (x̃1 · x̃2 ∨ x3 · x̃2) ∨ x2 ∨ x̃3 · x4

x3 x̃1 · x̃2 ∨ x3 · x̃2

x̃1 x̃2

Figure 20: Finding elementary products in a statement formula

Now the corresponding algorithm to find an elementary product in a two dimensional formula is given below.

Algorithm 5 1. Begin from the root of the formula

2. Push the current element to the stack.

3. Do the followings until the stack is empty.

(a) Pop an arc from the stack. Let this be p.

(b) If p and beyond is an OR-node, i.e. is in the form p|= (r1, .., rn) then push ri for any i to the stack.

(c) If p and beyond is an AND-node, i.e. is in the form p • (r1, .., rn), for all i = 1, .., n, push ri to the stack.

(d) If p and beyond is in the form p =|r or pr then push the arc r to the stack.

(e) If p is tied to a variable or atomic term, i.e. is in the form px then put the atomic term to VAR.

4. The subformula scanned is an elementary product. Its statement correspondence is found by production of the atomic
terms in VAR.

We call this the algorithm of finding elementary products or the algorithm of elementary product scanning. In the figure,
finding an elementary product with this algorithm is shown. The arrows shows the selection and the numbers near the arrows
shows the sequence.

Here, we feel it is necessary to make a distinction between the scanning of an elementary product and the elementary
product itself. In the scanning, the arches have a direction, but in the e-products, arches have no direction and independent
from scanning. An elementary product itself is seen as a tree from all the leafs and there is no difference between the leafs
in that respect. So we can say that an elementary product has an existence independent of which terminals its scanning
begins. On the other hand an e-product can be found by scanning only. We will investigate this subject later.
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1

x̃1 x̃2 x3 x2 x4x1 x̃3

(a) The scanning

1

x̃1 x̃2 x3

(b) the e-product found

Figure 21: Scanning of an e-product in a two dimensional formula

Figure 22: An e-product is seems the same from every terminals and can be found with a single scanning

3.2 Scan starting from an arc

Not only we can mention the elementary products of a formula, but also the elementary products of subformulas beginning
from an arc. For example in the following, a subformula beginning from y1 and the elementary products of it are shown.

1

x̃1 x̃2 x3 x2 x4x1 x̃3

y3

y4
y1

y5 y6
y7 y8

y9 y11
y12 y13

y15 y16 y17 y18 y19 y20

y21

k

y10 y14

y2

x̃1 x̃2 x3

y1

x̃2 x3

y1

Figure 23: Elementary products beginning from the arc y1

Then we should change the scanning algorithm to cover this new situation. The following is such an algorithm.

Algorithm 6 1. This algorithm finds an elementary product beginning from the element X. X can be an atomic term
or arc.

2. Put x to the stack.

3. Do the followings until the stack is empty.

(a) pop an element from the stack.

(b) If the element is an atomic term, i.e. is in the form xp then put the term x to VAR and put the arc p to the stack.

(c) If the element is an arc, do the followings.

i. Let the arc be p.

ii. If p and beyond is in the form p|= (r1, .., rn) then choose an i and push ri to the stack.

iii. If p and beyond is in the form p • (r1, .., rn) then for all i = 1, .., n, push ri to the stack.

iv. If p and beyond is in the form p =|r or pr, then put r to the stack.

v. If p and beyond is an atomic term, i.e. is in the form px then put the atomic term to VAR.

4. The subgraph scanned is an elementary product. Its statement correspondence is found by conjunction of the variables
in VAR.
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3.3 Simple and elementary product scans

Each e-product scan can be written as a set of its paths. For example the paths of the elementary product scan in the figure
can be written as

x̃1 x̃2 x3 x2 x4x1 x̃3

y3

y4
y1

y5 y6
y7 y8

y9 y11
y12 y13

y15 y16 y17 y18 y19 y20

y21

k

y10 y14

y2

1

Figure 24:

{−>1k.y1.y5.y8.y10.y16x̃2, −>1k.y1.y5.y8.y10.y11.y17x3, −>1k.y1.y6.y17x3}

We call such a set as the path set of an e-product scan. Here −> indicates both the starting point and the direction.
Every set of paths does not correspond to an elementary product scanning. Let the structure where a path forked from

the others by an and node be simple product scans. So, naturally, all the e-product scans are simple product scans. However,
not every simple product scans are e-product scans.

1

x̃1 x̃2

(a) A simple product scan

1

x̃1 x̃2 x3

(b) An e-product
scan

Figure 25: Simple and elementary product scans

So an simple product scan would have the following properties.

• All the paths starts from the same element. The element can be an arc or atomic term.

• All the paths are separated from an and node.

If a simple product scan has the following additional property, then it is an e-product scan.

• All the arches out from an and-node which belongs to the scan take place in the scan.

Let ⋏ determine a simple product scan and λ determine e-product scans. In that case, ⋏a and λb, indicate a simple
product scan and an e-product scan respectively.

3.4 The value of the scans

The value of a simple product scan is the conjunction of the values of atomic terms found. Each atomic are reached via
a path. So it is possible to define a value for paths. Let the statement correspondence of a path is equal to the element
terminating it. In this case, for

λa = −>{1k.y1.y5.y8.y10.y16x̃2, 1k.y1.y5.y8.y10.y11.y17x3, 1k.y1.y6.y17x3}
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it become

D(λa) = D(−>1k.y1.y5.y8.y10.y16x̃2) ·D(−>1k.y1.y5.y8.y10.y11.y17x3) ·D(−>1k.y1.y6.y17x3)

= x̃2 · x3 · x3

= x̃2 · x3

Thus the following definitions hold.

Definition 3 1. The statement equivalence of an atomic term is equal to themselves. I.e. D(x) = x.

2. The value of a path is equal to the value of its terminating atomic term. I.e. D(p..x) = D(x) = x.

3. The value of a simple product scan is the conjunction of the values of its paths.

On the other hand, since the value of a path is equal to the value of its terminal, the following would always be true.

D(p.A) = D(A)

4 Initial formulas and elementary products

4.1 The value of arches and elementary product scans

We can show that the value of an initial formula starting from an arc is the disjunction of the values of all the e-product
scans of it.

A formula beginning from an arc is the formula that can be scanned from that arc. Therefore the formula scan of an arc
is the set of the eproduct scans starting from that arc. So the formula scan of an arc can be shown as in the figure.

(λa1, ..,λam)

p

Figure 26: The formula scanned from an arc is the set of the eproduct scans starting from that arc

This can be written as p{} = {λa1, ..,λan} where λai is the i’th eproduct scan starting from p.
The e-product scan algorithm starting from an arc can be made recursive as follows.

Algorithm 7 This algorithm chooses an e-product starting from p. e{p} represents the path set of the e-product thus scanned.

1. Do the followings starting from element p.

(a) If p and beyond is px then it becomes e{X} = px.

(b) If p and beyond is p•(r1, .., rn) then for each r1, .., rn apply this algorithm. As a result e{X} = p•{e{r1}, .., e{rn}}
holds.

(c) If p and beyond is p|= (r1, .., rn), then for only one ri, apply this algorithm. As a result e{p} = p|= e{ri} holds.

Each formula is either a conjunction or disjunction of other formulas. So the e-product of a formula is composed of the
e-product of other formulas.

{λr1..λrm} {λs1..λsn}

r s

p

{λr1..λrm} {λs1..λsn}

s

p

r

Figure 27: The types of formulas and e-products

For each type of formula, the relationship among the e-products are given below.

• If p and the next element are in the form px then λp = px
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• Let p and the next element be p • (r, s). In this case p() = p • {r(), s()} would be true. If r() = {λr1, ..,λrm} and
s() = {λs1, ..,λsn} is true, then for any i = 1, ..,m and j = 1, .., n, λpij = p • {λri,λsj} would be true.

• If p and the next element are in the form p|= (r, s), then p() = p|= {r(), s()} would be true. According to the e-product
search algorithm, after p either r or s must be chosen. In that case, the number of all possible e-product would be
m+n. If r() = {λr1, ..,λrm} and s() = {λs1, ..,λsn} is valid then λpi = p|= λri and λpm+j = p|= λsj would be valid.

Some e-products starting from p are illustrated below.

{λr1..λrm} {λs1..λsn}

p

sr

λp11 = p • {λr1,λs1}

{λr1..λrm} {λs1..λsn}

s

p

r

λp1 = p|= λr1

{�r1.. � rm} {λs1..λsn}

s

p

r

λpm+1 = p|= λs1

Figure 28: Some e-products found

4.2 Values of arches

Now by using these relations, we show if p() = {λp1, ..,λpk} is true, then D(p) = D(λp1) ∨ .. ∨ D(λpk) would be true by
induction.

Proposition 2 In an unreduced formula, let p() = {
k
∪
i=1

λpi} be valid. Then D(p) =
k
∨
i=1

D(λpi) would be true.

Proof 2 1. If p and the next element are in the form px then λ(p) = {px} would be true. In this case |p| = x is valid.

2. Let p() = p • {r(), s()} be true. Now assume D(r) = (
m
∨
i=1

D(λri)) and D(s) = (
n
∨

j=1
D(λsj)) where r() = {λr1, ..,λrm}

and s() = {λs1, ..,λsn}. In this case we find

D(p) = D(r)D(s)

= (
m
∨
i=1

D(λri))(
n
∨

j=1
D(λsj))

=
m
∨
i=1

n
∨

j=1
D(λri)D(λsj)

On the other hand for any i = 1, ..,m and j = 1, .., n, we know λpij = p • {λri,λsj} is true. From here we deduce
D(λpij) = D(p • λri)D(p • λsj) = D(λri)D(λsj). Then

D(p) =
m
∨
i=1

n
∨

j=1
D(λri)D(λsj)

=
m
∨
i=1

n
∨

j=1
D(λpij)

is found.

3. Let p and the next element are in the form p|= (r, s). Now assume D(r) = (
m
∨
i=1

D(λri)) and D(s) = (
n
∨

j=1
D(λsj)) is

true where r() = {λr1, ..,λrm} and s() = {λs1, ..,λsn} is true. In this case, since D(p) = D(r)∨D(s) is true, we find

D(p) = D(r) ∨D(s) = D(λr1) ∨ .. ∨D(λrm) ∨D(λs1) ∨ .. ∨D(λsn)

We know for any i = 1, ..,m and j = 1, .., n, λpi = p|= λri and λpm+j = p|= λsj is true. This means that
D(λpi) = D(p|= λri) = D(λri) and D(λpm+j) = D(p|= λsj) = D(λsj) is true. From here
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D(p) = D(λr1) ∨ .. ∨D(λrm) ∨D(λs1) ∨ .. ∨D(λsn)

= D(λp1) ∨ .. ∨D(λpm) ∨D(λpm+1) ∨ .. ∨D(λpm+n)

is found.
■

4.3 Symmetry in e-products

An e-product scan could also start from a variable. In the following figure, the e-products found by starting from x̃2 are
shown.

1

x̃1 x̃2 x3 x2 x4x1 x̃3

1

x̃2 x3 x2 x4x1 x̃3x̃1

(a) Scanning

1

x̃1 x̃2 x3

1

x̃2 x3

(b) e-products found

Figure 29: the e-products scanning from x̃2 and found

In a formula, all the e-products are belong to the formula. I.e. all the e-product found by starting from x̃2 must also be
found by starting from the root term.

1

x̃1 x̃2 x3 x2 x4x1 x̃3

(a) The scannings starting from
the root

1

x̃1 x̃2 x3

1

x̃2 x3

(b) The e-products found

Figure 30: The e-products found by scanning from the root and includes x̃2 as a terminal

As seen from the figure, the e-products containing x̃2 could be found both from the root and from x̃2.
In an e-product, there is a path from each terminal to the other and whatever terminal is used for scanning, the same

e-product would be scanned. Each different scanning of the given e-product are illustrated in the following.
Let denote an e-product by �a[u1, .., un] where u1, .., un are all the terminals of it. Let denote a scanning from a terminal

by an arrow at that terminal. For example, we can write the scanning from the four terminals of this e-product as follows.

λa1 = �a[−>1, x̃1, x̃2, x3]

λa2 = �a[1,−>x̃1, x̃2, x3]

λa3 = �a[1, x̃1,−>x̃2, x3]

λa4 = �a[1, x̃1, x̃2,−>x3]
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1

x̃1 x̃2 x3

1

x̃1 x̃2 x3

1

x̃1 x̃2 x3

1

x̃1 x̃2 x3

(a) The scanning starting from a terminal

1

x̃1 x̃2 x3

(b) The e-product
found

Figure 31: All these scans find the same e-product

Each e-product has an statement equivalence. The value of an e-product is the conjunction of the values of its terminals.
For example

D(�a[1, x̃1, x̃2, x3]) = 1 · x̃1 · x̃2 · x3

. However as seen, an e-product can be found by scanning only from a single terminal because there is a path from every
terminal to the others and a single scanning finds all the terminals. In this case, the value of each scanning would be the
same and give the value of the e-product. In other words the following would be true.

D(�a) = D(λa1) = D(λa2) = D(λa3) = D(λa4)

Scannings of an e-product In an e-product, we can determine all the other scans from one scanning. Also all these scans
must give the same value. Let there are terminals xi and xj in an e-product. Thus, there is a path xiAxj in the scanning
starting from xi. Let show such a scan having such a path as in the figure.

xi xj

p q s

tr

Figure 32: A scan having the path xiAxj

However, in this case, there exists a scanning which starts from xj , has the path xjA
′xi and where all the arches of it,

except the arches on A and A′, are the same with the above scanning.

xi xj

p q s

tr

Figure 33: There is another e-product scan which has the path xjA
′xi

Let call the second scanning the reverse scanning over the path xiAxj . This means that, each scan has reverse scans over
each of its paths and all of these scans has the same terminals. Therefore they have the same value. So an e-product scan
and it’s all reverse scans determines the same e-product. This is true for every scan of an e-product. I.e. each scan of an
e-product is a reverse scan of all the others.

4.4 Regular Formulas

The paths of any e-product scanning from the root always ends with an atomic term. This means that an e-product can be
scanned from both the root and and one of the terminal of it. However, this does not guarantee that all the e-products that
can be found from x can also be found from the root. Two example that demonstrates this fact is shown in the figure.

However, such formulas is not derived from a statement formula by the method given. In a formula derived from a
statement formula by the given method does not include any e-product which can be scanned from a terminal but can not
be scanned from the root.
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x x̃

y

1

x x̃

1

Figure 34: e-products that can be scanned from x̃, but can not be scanned from the root

Definition 4 If in a formula, every e-product has the root as a terminal then this is a regular formula.

This definition in fact gives us a hint to define the root also.

Definition 5 In a formula, if every e-product can be scanned from an atomic term, then this term is also a root of the
formula.

Therefore, a root term can be created by joining arches to all the e-products, disjuncting all of them via an OR-node and
terminating the main arc with 1.. For example, in the figure, by joining arches to all atomic terms and discoining them via
an OR-node and terminating the main arc of the node with a 1, a root term is obtained.

x̃2 x3 x2 x̃3

k1

1

1

x̃1 x4x1

k2

x̃2 x3 x2 x̃3

k1

1

1

x̃1 x4x1

k2

(a) Formulas with two root terms

x̃1 x̃2 x3 x2 x4x1 x̃3

1

(b) The formula without a root
term

Figure 35: Formulas can have any number of root terms

This lead us to express a formula in a more simple way, because we don’t have to draw the roots. A root can always be
created if needed. However, in this article, we will always draw the formulas with their roots. Also we will denote the root
term with k to differentiate it from the other atomic terms, If there are more then one root term, they will be denoted with
sub-indexes. For example the above formulas are shown as below with this notation.
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k

x̃2 x3 x2 x4x1 x̃3x̃1

k1

x̃1 x̃2 x3 x2 x4x1 x̃3

k2

Figure 36: The root terms are denoted by k and with indices if there are more than one
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5 Reduced formulas and e-product scanning

5.1 Validity of e-product scanning algorithm

As shown in the figure, in an elementary product including both x and x′, there are paths from x to x′ and from x′ to x.
However, after an x reduction, a closed path is produced.

x
x̃

Figure 37: The invalid e-products produce closed paths when reduced

Then it seems that the closed paths indicates invalidity. If this is so, a way to find whether a formula is a tautology or
not is to examine every e-product in a totally reduced formula and find whether all have a closed path. To be able to do
this we have to know what is an elementary product and how to find them in a reduced formula.

One way of doing this is to use the e-product scan algorithm developed for the initial formulas without any change on it.
However, at this stage, we are not sure this is really a true approach and need some investigation.

We know that, in a formula containing xi, every e-product contains either xi or x̃i or both xi and x̃i or neither of them.

α1 ∨ .. ∨ αk = (a1 ∨ .. ∨ ak) · x ∨ (b1 ∨ .. ∨ bl) · x̃ ∨ (c1 ∨ .. ∨ cm) · x · x̃ ∨ (d1 ∨ .. ∨ dn)

If reduce this for xi, we see that the newly created e-products are the compose of the parts of the e-product before
reduction.

(a1 ∨ .. ∨ ak) · x ∨ (b1 ∨ .. ∨ bl) · x̃ ∨ (c1 ∨ .. ∨ cm) · x · x̃ ∨ (d1 ∨ .. ∨ dn)
x→ (a1 ∨ .. ∨ ak) · (b1 ∨ .. ∨ bl) ∨ (d1 ∨ .. ∨ dn)

= ..ai · bj ∨ ..d1 ∨ .. ∨ dn

It must be true for two dimensional formulas too. Therefore an e-product scan in a reduced formula can be seen as a
unification of two elementary scan of the initial formula.

x̃1 x3 x1 x̃3 x4

k

k

x3 x1 x̃3 x4x̃1

x̃2 x2

Figure 38: An e-product scan in the reduced formula is the unification of two e-product scans in the initial one

Actually, it is not necessary to begin from the beginning element and scan the rest in a sequential order in order to
scan an elementary produc scan. Each part of an e-product can be scanned seperately. In the following figure, there is a
scan beginning from p. Then there is another scan beginning from the root, but this one stops at p. As a result, the whole
e-product is scanned.

So any e-product scan can be seen as a unification of two or more e-product scans. Therefore the e-product scan algorithm
given can also be used to find e-products in the reduced formulas too.
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Figure 39: An e-product can be scanned as a whole or separately

5.2 An example

In the figure, an elementary scan is shown. Here the arrows near the or-nodes shows the selection and the numbers by shows
the sequence of selections. In this example, there is no bound on the number of e-scans since the selection made in each
pass from an or-node leads different e-scans. There is no bound on the number of passed of an or-node, therefore there is no
bound on the number of different e-scans.
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(a) An e-product scan;
after p′10 is passed first
time p′8 is chosen
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(b) Another e-product
scan: After the first pass
of p′10, p′7 is chosen and
in the second pass, p′8 is
chosen
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p2

p1

p4

p6 p10

p7
p8

p3

n+11..n

(c) The e-product scan
where p′7 is chosen after the
first n pass of p′10 and p′8
is chosen after the n + 1’th
pass
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p1

p4

p6 p10

p7
p8

p3

(d) The e-product scan
where p′7 is chosen after
every pass of p′10

Figure 40: Some e-product scans starting from the root with the given algorithm

Here in all the e-products, after p1 , the arc p2 is chosen. In the first figure, on the OR-node whose main arc is p′10, the
arc p′8 is chosen. In the second figure, after p′10, p

′
7 is chosen and this lead to p6 for the second time. After passing p′10 for

the second time, the arc p′8 is chosen.

5.3 Paths

As seen, a path may be endless in a reduced formula. For example in the figure, if for every time the arc p′10 is passed, the
arc p′7 is chosen, then the path would be p1.p2.(p6.p

′
10.p

′
7.p5.)

∞ where {..}∞ shows that the sub path in the parenthesis is
repeated infinity times. In general, {..}n shows that the part in parenthesis is repeated n times and (..)0 denote an empty
path which means it does not indeed exist. For this reason AB0C ≡ AC is accepted as a valid equality.

In a path, it can be encountered a node which is passed already. This is either an AND-node or an OR-node passed from
main to base or an OR-node passed from base to main. These are cyclic paths. On the other hand, while following a path,
one can encounter the reverse of an already passed arcs and these are returning paths.

We can classify the paths as follows.

Definition 6 1. If a path is in the form ..p..p.. it is a p cyclic path or cyclic path.

2. If a path is in the form ..p..p′.. then it is a p returning path or returning path or bidirectional path.

3. If a path is not returning then it is unidirectional.

4. If a path is neither cyclic nor returning then it is a simple path.

A path can both cyclic and returning. For example ..p..r..r′..p.. is both cyclic and returning.
Since the number of arches are finite, an infinite path is always cyclic. Therefore a simple path always ends with an

atomic term.
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(a) paths end
with an atomic
term

(b) cyclic paths (c) returning paths

Figure 41: Some types of paths

5.4 Paths and E-scans

An e-product scan beginning from an arc can be written as a set of paths beginning from that arc. For example the path
set of the e-product scan shown in the figure is given below.

λa = λ{−>kp1.p2.p6.p
′
10.p

′
8 • p9y,−>kp1.p2.p6.p

′
10.p

′
8 • p′4.p′1k}

An e-product scan can have infinite number of paths. For example for the e-product scan where every time p′10 is passed
p′7 is chosen, the number of paths is infinite. To find these paths let write the e-product scan recursively as follows.
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(a) An e-product
scan
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X X X X

(c) Expansion of the scan

Figure 42:

We separate the scan into two parts where the second one is expressed recursively.

Y = −>{kp1.p2.p6X}
X = −>{p′10.p′7.p′3.p′11, p′10.p′7.p5.p6X}

If we expand this recursive definition, then we get

X = −>{p′10.p′7.p′3.p′11, p′10.p′7.p5.p6X}
= {A,BX}
= {A,B{A,BX}}
= {A, {BA,BBX}}
= {A,BA,BBX}
= .

= .

= {A,
..
∪
i=1

BiA,B∞}

= −>{p′10.p′7.p′3.p′11, {
..
∪
i=1

(p′10.p
′
7.p5.p6.)

ip′10.p
′
7.p

′
3.p

′
11}, (p′10.p′7.p5.p6)∞}

Here
..
∪
i=1

means from i = 1 to infinity but not includes infinity. In general, for l >= k , {
l
∪
i=k

ABiC} = {ABkC,ABk+1, .., ABlC}.
For the obvious reasons, B∞A = B∞ must be a valid equivalence. Then the following equivalence would be valid.

29



X = {A,
..
∪
i=1

BiA,B∞} = {
∞
∪
i=0

BiA}

where B0A = A. Therefore, the scan can be written as

λb = −>{kp1.p2.p6
∞
∪
i=0

(p′10.p
′
7.p5.p6)

ip′10.p
′
7.p

′
3.p

′
1k}

As in the initial formulas, we accept that the value of an e-product scan is the conjunction of the values of its paths.

6 Elementary sums

6.1 E-sum scans

it can be said of elementary sums of the formulas as well as elementary products. The elementary sums can be found with
e-sum scan. The e-sums of a formula can be found with the following algorithm.

Algorithm 8 1. start with the root term.

2. Put the current element into AC.

3. Do the followings until there is no more elements.

(a) get an element from AC.

(b) If this is an arc follow it and put the connected element into AC.

(c) If this is a top2base or-node then put all base arches into AC.

(d) If this is an and-node then choose one of the outgoing arches an put to AC.

(e) If this is a atomic term put it to VAR.

4. The sub formula scanned is an e-sum scan and its statement equivalence is found by disjuncting the elements in VAR.

We call this an e-sum scan.
In the figure, an e-sum scan is shown.
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x̃1 x̃2 x3 x2 x4x1 x̃3
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x3 x2 x1 x̃3

k

x3 x2 x1 x̃3

Figure 43: An e-sum scan and the e-sum found

On the other hand, we can again mention the e-sum scans starting from an arc.

Algorithm 9 1. This algorithm find an e-sum scan starting from p

2. Put p into stack.

3. Repeat the following until the stack is empty.

(a) Pop an arc from the stack. Let this be p.

(b) If p and beyond is in the form p • (r1, .., rn) then for one i, push ri to the stack.

(c) If p and beyond is in the form p|= (r1, .., rn), then for i = 1, .., n, push ri to the stack.

(d) If p and beyond is in the form p =|r or pr, then push r to the stack.

(e) If p is connected to a atomic term, i.e. if p and beyond is in the form px, then put x into VAR.

4. The sub formula scanned is an e-sum scan and its statement equivalence is found by disjuncting the elements in VAR..

As for the e-product scans, the value of the e-sum scan is defined as follows:
”The value of an e-sum scan is the dis junction of the values of it’s paths.
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6.2 Simple and elementary sums

Each e-sum scan can be written as a set of its paths. For example the paths of the e-sum scan in the figure can be written as

k

x̃1 x̃2 x3 x2 x4x1 x̃3

y3

y4
y1

y5 y6
y7 y8

y9 y11
y12 y13

y15 y16 y17 y18 y19 y20

y21

y0

y10 y14

y2

Figure 44:

{−>y0.y1.y5.y8.y10.y16x̃2, −>y0.y1.y5.y8.y10.y11.y17x3, −>y0.y1.y6.y17x3}

We call such a set as the path set of an e-sum scan.
Every set of paths does not correspond to an e-sum scanning. In the path set of an e-sum scan, a path forked from other

paths at a common OR node. On the other hand, all the paths forked from an OR-node found on a member path belong to
this set.

Let the structure where a path forked from the other ones by an OR-node be simple sum scans. So, naturally, all the
e-sum scans are simple sum scans. However, not every simple sum scans are e-sum scans.

k

x3 x2 x̃3

(a) A simple sum scan

k

x3 x2 x4x1 x̃3

(b) An e-sum scan

Figure 45:

Thus an e-sum scan would have the following properties.

1. All the paths starts from the same element. The element can be an arc or atomic term.

2. All the paths are separated via an OR-node.

3. All the arches out from an OR-node which is on the scan belongs to one path of the scan.

Let τ determine a simple product scan and π determine e-product scans. In that case, τa and πb, indicate a simple sum
scan and an e-sum scan respectively.

The value of an e-sum scan is defined as the dis junction of the values of it’s paths.

6.3 e-product scans vs e-sum scans

In a 2d formula, choosing one path from all the e-sum scans starting from an arc, is the same with choosing all the paths of
an e-product scan starting from that arc. Similarly, choosing one path from all the e-product scans starting from an arc, is
the same with choosing all the paths of an e-sum scan starting from that arc.

Proposition 3 A path starting from an element belongs to at least one e-sum scan and at least one e-product scan starting
from that element.

Proof 3 Trivial. ■
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Proposition 4 There is one and only one common path between any e-sum scan and any e-product scan starting from one
element.

Proof 4 First we will prove that there is at least one common path between an e-product scan and e-sum scan. Let λa be
an e-product scan and πb be an e-sum scan. Let consider two uncommon paths A and B where A ∈ λa and B ∈ πb. These
two paths must have a common beginning part and then fork either in an and-node or or-node. Suppose they fork in an
and-node and let this be q • (r, s). Now suppose A = pA1(q • r)A2 and B = pA1(q • s)B. However this means that there is
another path pA1(q • s)A3 which belongs to λa. Therefore there are two paths pA • sC and pA • sD which belongs to λa and
πb respectively and have a longer common initial part. Similarly, for the case of OR-node, we again obtain two paths which
have longer common initial path and belongs to λa and πb. These two paths are either the same path or different. However,
we can repeat the same reasoning as long as the paths are different. So this means that there is at least one common path
between λa and πb.

On the other hand, suppose there is more than one common path between λa and πb. Consider two of them. These are
both belong to an e-product scan and an e-sum scan. If two paths belongs to the same e-product scan they must fork in an
and-node. Similarly, if two paths belongs to the same e-sum scan they must fork in an or-node. Since two paths can fork in
one single node, and this node can not be both an and-node and an or-node, assumption is wrong.

■

Proposition 5 1. Let construct a set by taking one and only one path from each e-product scan of an element. This set
is the path set of an e-sum scan of that element.

2. Let construct a set by taking one and only one path from each e-sum scan of an element. This set is the path set of an
e-product scan of that element.

Proof 5 1. Let the set constructed be A. Any arbitrary pair of the paths in A must fork in an OR-node. Otherwise both
of them would belong to an e-product scan. Therefore they set up a simple sum scan. I.e. A must be a subset of a
path set of an e-sum scan such as πa. Suppose one of the paths of πa is not an element of A. Each path must be an
element of at least one e-product sum. Therefore this path is an element of an e-product scan, let say λb. However,
there is also a path in A which is also an element of λb since A includes a path from every e-product scan. This is not
possible because then there would be two common paths between λb and πa which contradicts with the previous theorem.
. Therefore, there can not be no path of πa which is not in A. This means that A is the path set of an e-sum scan.

2. Similar to the previous item.
■
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Part III

Value of formulas and tautological properties
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7 Values of formulas and arches

7.1 Values of the arches

The value of a formula is the value of it’s root term or arc. Therefore we only need to find the value of arches in general to
know the value of the formulas.

We have shown that the value of an arch in an initial formula is equal to the dis junction of the values of the e-product
scans starting from that arc. However, we can not prove a similar thing for reduced formulas by induction, because in
reduced formulas there can be no end of the paths and therefore the necessity of induction can not be satisfied. On the other
hand, we can see this is true for reduced formula too by the following reasoning.

Proposition 6 Suppose the value of an arc is equal to the dis junction of the values of its e-product scans. This property
does not change with reduction.

Proof 6 Consider the arches of the terms px and rx̃ in a formula. Assume all of the arches p, r, p′, r′ have this property.
Let reduce the formula for x. After reduction, the connection would be in the form ..pr′... If r′ still has this property, p would
have had this property by induction. However, there is no reason for r′ to loss this property by reduction. If there is no path
from r′ to p, this property of r′ does not affected by p. On the other hand, suppose there is a path pr′..p. In this case, this
property of p depends on itself. I.e. if we assume that p does not loss this property, by induction, p does not loss this property
and it seems that there is no reason for p to loss this property. Therefore, for any arc in the formula, a reduction does not
change this property

On the other hand the value of a formula is equal to the value of root the arc. I.e. The value of a formula is equal to the
disjunction of the values of the e-product scans of the root arc. However, after some though, we see that whether this is true
or not is not important in the sake of the reduction proof. We are free to make any assumption and if we prove that the
reduced formula has the same tautological value with the original formula under these assumptions, then these assumptions
can be treated as validating theyselves. We can express this as the following.

Postulate 1 Suppose T (xi) and D(xi) denotes a two dimensional formula and its statement equivalence respectively. I.e.

let T (xi) ∼= D(xi). Let T (xi)
xi→ T () and D(xi)

xi→ D(). If we prove that T () ̸= D() under the given assumptions then these
assumptions are false.

This is a general postulate and true for any assumptions even for the assumptions which do not relate to the subject.
We can use this postulate to verify any assertion. First assume an assertion is false. If it is shown that the reduction is

invalid under this condition then this means that the assumption is false. Therefore, the assertion is true.
Now our basic assumptions are the following.

Assumption 1 1. The value of an arc is the disjunction of the values of the e-product scans starting from that arc.

2. The value of an arc is the conjunction of the values of the e-sum scans starting from that arc.

3. The value of an e-product scan is the conjunction of the values of it’s paths.

4. The value of an e-sum scan is the disjunction of the values of it’s paths.

5. The value of a path is equal to the value of its last part.

7.2 The values of the infinite paths

We have said that the value of an e-product scan is equal the conjunction of the values of its paths and the values of a path
is equal to the value of its last element.

D(pX) = D(X).
However, infinite or closed paths don’t have a last element. The infinite paths can exist in any formula and the value

of any infinite path with the same form must be the same without considering its place in a formula. This means that the
value of any infinite path must be either 0 or 1. Let call them as valid and inconsistent paths respectively. Now our aim is
to investigate which properties might differentiate a valid path from an inconsistent one.

To find what could be the value of an infinite path, let consider the formula given in the figure.
The statement equivalence of this sample formula is x ∨ x · x̃ ∨ x̃ · y. If we do an x reduction, we get

x ∨ x · x̃ ∨ x̃ · y x→ (0 ∨ 0 · 1 ∨ 1 · y) · (1 ∨ 1 · 0 ∨ 0 · y)
= y

34



k

p5

y

x̃x

p7

p9
p3

p2

p1

p4

p8

p6 p10
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(b) reduced form by x

Figure 46: The reduced form must be equal to y

Then this must be the statement equivalence of the two dimensional formula obtained in the figure. However, there is an
e-product scan with an infinite path as seen in the figure.
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(a) An e-product
scan

Figure 47: What is the value of the path −>kp1.p2.p6.(p
′
10.p

′
7 • p5.p6)∞?

Let write the paths of this e-product scan.

λc = λ−>kp1.p2.p6.{p′10.p′7 • p′3.p′1k, {
..
∪
i=1

(p′10.p
′
7 • p5.p6.)ip′10.p′7 • p′3.p′1k}, (p′10.p

′
7 • p5.p6)∞}

All the paths except the last one finishes with root term. Since value of the root term is 1, the value of this e-product
scan must be equal to the value of it’s last path.

D(λc) = D(−>kp1.p2.p6.(p
′
10.p

′
7 • p5.p6)∞)

It is obvious that, the value of this path must be 0. Otherwise, the value of the e-product scan and therefore the value
of the formula would be 1 and the reduction would be wrong.

On the other hand, consider the following example.

p4 p5 p6 p7

p2 p3

p1

x ỹx̃ y

(a) An example

p4 p5 p6 p7

p2 p3

p1

(b) The last reduced
form

Figure 48: What is the value of p1.(p2|= p4p5 =|p′2.p3|= p6p7 =|p′3)∞ in the second figure?

The statement equivalence of the original formula is (x∨ x̃) · (y∨ ỹ) and we get 1 when totally reduced. However, as seen,
in the last reduced two form, there is at least one infinite path in every e-product scan. I.e. there is no one e-product scan
whose every path is finite. So, for the result be true, all the infinite paths of at least one e-product scan must be taken as 1.
On the other hand, there is a difference between the infinite paths in this and in the previous example.

Therefore, it seems that the unidirectional infinite paths must be treated as inconsistent while the returning infinite ones
are treated as valid in general. However, there is a problem here. For example let the subpath A is an unidirectional infinite
path in the returning path ..p..p′A. In this case. the value of this path can not be 1 although it is returning because the
value of a path is equal to its last part and the value of last part A is 0. On the other hand it can be shown that all infinite
paths fall into the following three categories.
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Definition 7 1. An infinite path which is unidirectional.

2. An infinite path whose one last part is unidirectional.

3. An infinite path which has no unidirectional last part, It is called an infinitely returning path.

All the closed paths in the second example are formed by connecting the subpaths

AB,AB′, A′B,A′B′

and all of them has subpaths in the form pXp where X is bidirectional. I.e. all the closed paths here are infinitely returning
paths. Therefore we can argue that the value of any infinitely returning path is 1.

p4 p5 p6 p7

p2 p3

p1

(a) The path A

p4 p5 p6 p7

p2 p3

p1

(b) The path B

p4 p5 p6 p7

p2 p3

p1

(c) The path A′

p4 p5 p6 p7

p2 p3

p1

(d) The path B′

Figure 49: All the closed paths in this example are formed from the subpaths A,B,A′, B′

7.3 Some demonstrations

Thus we have made the following additional assumptions.

1. The value of a unidirectional infinite path is 0.

2. The value of an infinitely returning path is 1.

Obviously an e-product is valid if it’s all paths are valid and inconsistent if at least one path of it is inconsistent. A valid
formula is a formula whose at least one e-product is valid and an inconsistent formula is a formula whose all e-products are
inconsistent. Therefore if a formula is a tautology, we must find an a valid e-product scan in its last reduced form.

In a last reduced form, every path is either infinite or finite and terminates with either a 0 or 1. So if the a formula is a
tautology, then its last reduced formula is a valid formula and if it is not a tautology, its last reduced form is inconsistent.
From the above assumptions we can write the followings.

1. If each path of an e-product scan is either ends with 1 or infinitely returning then this is a valid e-product scan.

2. If one path of an e-product scan is either ends with 0 or the last part of it is unidirectional infinite then this is an
inconsistent e-product scan.

3. If a formula is a tautology, then there is a valid e-product scan in its last reduced form.

4. If a formula is not a tautology, then every e-product scan of it is inconsistent in its last reduced form.

A tautology example For example, the formula given in the figure is a tautology and in the totally reduced form there
must be a valid e-product.

As seen in the figure, there is an e-product scan whose infinite paths are in the form −>p(AB)∞ or −>p(BA)∞.
These paths are infinitely returning paths. On the other hand, all the finite paths of this scan terminates with root term

whose value is 1, so this is a valid e-product.

A non tautology example On the other hand, the formula in the figure is not a tautology. So, at least one path of
every e-product in its last reduced form must be either unidirectional infinite or terminates with 0. However, the number of
e-products here is infinite and checking this is not an easy task.

However, we can check not only e-product but e-sums also. we can write the followings about the valid and inconsistent
e-sum scans..

1. If one path of an e-sum scan is either ends with 1 or infinitely returning then this is a valid e-sum scan.
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k

→

k

=

k1

k2 =

k

Figure 50: A valid formula and its reduced forms
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Figure 51: There is a valid e-product scan whose all paths are either infinitely returning or terminates with the root term k
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Figure 52: A non tautology formula and its last reduced form

2. If each path of an e-product scan is either ends with 0 or the last part of it is unidirectional infinite then this is an
inconsistent e-sum scan.

3. If a formula is a tautology, then every e-sum scan of it is valid in its last reduced form.

4. If a formula is not a tautology, then at least one e-sum scan of it is inconsistent in its last reduced form.

So there must be at least one inconsistent e-sum scan in the last reduced form of the example formula. As seen, there is
e-sum scan in this formula whose every path is either unidirectional infinite or ends with 0.

8 Further studies

Thus we have demonstrated some assumptions in 2d formulas which differentiate a tautology from a non tautology. However,
this is not enough. To use them to find tautology in two dimensional formulas, we need to prove they are true for every case.
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0

(a) An inconsistent e-sum scan

0 0 0 0

(b) All the paths of this e-sum scan either terminates with 0 or unidirectional infinite

Figure 53: There is an inconsistent e-sum scan in this formula

I.e. we must prove them in general.
Also, we must develop polynomial algorithms which decides whether a last reduced two dimensional formula is a tautology

or not by using these properties. These two tasks would be the subject of the next articles.
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