Scheme For Finding The Next Term Of A Sequence Based On Evolution. {Version 7}. ISSN 1751-3030

Author:

Ramesh Chandra Bagadi

Data Scientist INSOFE (International School Of Engineering), Hyderabad, India. rameshcbagadi@uwalumni.com +91 9440032711

Research Manuscript

Abstract

In this research investigation, the author has detailed a novel method of finding the next term of a sequence based on Evolution.

Theory

Given any Sequence of the kind,

$$S = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$$

We first write them as

$$S = \begin{cases} y_1 = {}^{N} p_{j_1 + \delta_1}, y_2 = {}^{N} p_{j_2 + \delta_2}, y_3 = {}^{N} p_{j_3 + \delta_3}, \dots, y_{n-1} = {}^{N} p_{j_{n-1} + \delta_{n-1}}, \\ y_n = {}^{N} p_{j_n + \delta_n} \end{cases}$$

where in ${}^{N}p_{j_1+\delta_1}$, N is the Order Number of the Higher Order Sequence Of Primes in which the number y_1 is slated,

 $(j_1 + \delta_1)$ is the position number of the Prime Metric Basis Element. Here, \dot{J}_i 's are Positive Integers and $0 < \delta_i < 1$.

For Example,

7 which is the 4th Prime Metric Basis Element of the Standard Primes, the Order [1] of which can be taken to 1. Therefore 7 can be written as ${}^{1}p_{4}$. In a similar fashion, 8 can be written as

 ${}^{1}p_{4+\left(\frac{8-7}{11-7}\right)}$ where 7 is the nearest previous prime number of 8 and 11 is the next nearest prime number of 8. Here, in the notation ${}^{1}p_{4+\left(\frac{8-7}{11-7}\right)}$, we can consider $\left(\frac{8-7}{11-7}\right)$ as the δ , the 4 as the j and the 1 as the N. We can also denote any number in a similar fashion using Higher Order Primes as well. [1] i.e., N > 1.

Given $(j_i + \delta_i)$, a method of calculating the Decimal (Pseudo) Prime corresponding to $(j_i + \delta_i)$ in ${}^N P_{(j_i + \delta_i)}$. Method 1 If δ_i is equal to $\left(\frac{a_1a_2a_3...a_{k-1}a_k}{10^k}\right)$ where $0 < a_l < 10$ for l = 1 to k, we write

$$\begin{cases} {n \atop p_{(j_{i}+\delta_{i})}}^{N} p_{j_{i}} + \\ \left\{ {(a_{1}a_{2}a_{3}....a_{k-1}a_{k})^{th} \operatorname{PrimeNumber}} \\ {of \ N^{th} \ Order} \\ {(10^{k})^{th} \ \operatorname{PrimeNumber}} \\ {(10^{k})^{th} \ \operatorname{PrimeNumber}} \\ {of \ N^{th} \ Order} \end{cases} \right\} \begin{cases} {n \atop p_{j_{i}+1}}^{-n} p_{j_{i}} \end{cases}$$

Given $\binom{N}{p}$, a method of calculating the Decimal (Pseudo) Position $\binom{j_i + \delta_i}{j_i}$, i.e., the Prime Metric Basis Element Position corresponding to $\binom{N}{p}$ in the Sequence of N^{th} Order Sequence Of Primes.

We write the given number (positive integer) say a as

$$a \equiv {}^{N} p_{\left(j_{i} + \frac{c}{d}\right)} \quad \text{where} \quad c = \left(a - {}^{N} p_{j_{i}}\right), d = \left({}^{N} p_{\left(j_{i} + 1\right)} - {}^{N} p_{j_{i}}\right)$$

We then write the Position of $\left({}^{N} p\right)$ as

$$j_{i} + \delta_{i} = j_{i} + \left\{ \frac{Position \ of \ Larg \ est \ Prime \ Number < c}{Position \ of \ Larg \ est \ Prime \ Number < d} \right\} + \frac{c_{1}}{d_{1}} + \frac{c_{2}}{d_{2}} + \frac{c_{3}}{d_{3}} + \dots$$
where $\frac{c_{1}}{d_{1}} = \frac{c}{d} - \left\{ \frac{Position \ of \ Larg \ est \ Prime \ Number < c}{Position \ of \ Larg \ est \ Prime \ Number < d} \right\}$ and

$$\frac{c_2}{d_2} = \frac{c_1}{d_1} - \left\{ \frac{Position \ of \ Largest \ Prime \ Number < c_1}{Position \ of \ Largest \ Prime \ Number < d_1} \right\}$$

and so on so forth.

Given $(j_i + \delta_i)$, a method of calculating the Decimal (Pseudo) Prime corresponding to $(j_i + \delta_i)$ in ${}^N P_{(j_i + \delta_i)}$. (Method2) If δ_i is equal to $\begin{cases} c^{th} \operatorname{Prime in the } N^{th} \operatorname{Order} \\ Sequence of \operatorname{Primes} \\ d^{th} \operatorname{Prime in the } N^{th} \operatorname{Order} \\ Sequence of \operatorname{Primes} \\ \end{cases}$ where $c = (a - {}^N p_{j_i}), d = ({}^N p_{(j_i+1)} - {}^N p_{j_i})$ ${}^N p_{(j_i+\delta_i)=} {}^N p_{j_i} + {} {c^{th} \operatorname{Prime in the } N^{th} \operatorname{Order} \\ \frac{Sequence of \operatorname{Primes}}{d^{th} \operatorname{Prime in the } N^{th} \operatorname{Order}} {} {sequence of \operatorname{Primes}}$

For Simplicity, we can take N = 1.

For our representational simplicity, we label our $S = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$ as

 $S = \{ y_1, y_2, y_3, \dots, y_{n-1}, y_n \}$ where the left south subscript 1 indicates that these numbers are at the level 1 (Base) of the triangle we are going to build.

We now compute the Evolution Orders

 $E^{(j+1)y_i}(jy_i) = _j y_{(i+1) \text{ where } (j+1)} y_i$ is the Evolution Order. By Evolution Order, we mean the difference between the Prime Basis Position Number of $_j y_{(i+1)}$ (when slated thusly) and the Prime Basis Position Number of $_j y_i$ given that we are considering this in N = 1. This means that $_j y_i$

needs to be evolved $(j+1) y_i$ times to get $j y_{(i+1)}$. Please see [2] for Evolution method. We repeat this process till we get $E^{(n) y_i}(_{(n-1)} y_i) = _{(n-1)} y_{(i+1)}$. We now evolve $(n-1) y_{(i+1)}$ by one step using [2] and get $E^1(_{(n-1)} y_{(i+1)})$. Note that $E^{\{E^1(_{(n-1)} y_{(i+1)})\}}(_{(n-2)} y_i) = _{(n-2)} y_{(i+1)}$.

We repeat this procedure, downwards, repeatedly to find $E^{\{(2), y_n\}}(y_n) = (1)Y_{(n+1)}$. If the Evolution Order $(j+1)Y_i$ is

negative, this implies that $j y_i$ needs to be devolved by $(j+1) y_i$ to reach $j y_{(i+1)}$. That is when the Evolution Order is Negative, we need to consider Devolution by the amount

of the Evolution Order. We illustrate this with an Example of three terms.

Considering

 $S = \{y_1, y_2, y_3\} \text{ which we write as}$ $S = \{y_1, y_2, y_3\} \text{ for future representational simplicity.}$ $E^{2y_1}(y_1) = y_2, E^{2y_2}(y_2) = y_3. \text{ Now, we write}$ $E^{3y_1}(y_1) = y_2. \text{ We now evolve } y_1 \text{ by one step using } [2],$ i.e., perform $E^1(y_1). \text{ And now, we write } E^{\{E^1(y_1)\}}(y_2) = y_3$. Finally, we write, $E^{(2y_3)}(y_1) = y_4 = y_4$ which is the next term of the sequence $S = \{y_1, y_2, y_3\}.$ This method can be used advantageously for forecasting.

Note that
$$E^{1}(0) = 0$$
 and $E^{1}(1) = E^{1}\left(\frac{2}{2}\right) = \frac{3}{2}$, from [2].

References

1.Bagadi, R. (2016). Field(s) Of Sequence(s) Of Primes Of Positive Integral Higher Order Space(s). *PHILICA.COM Article number 622*.

http://philica.com/display_article.php?article_id=622

2.Bagadi, R. (2017). One Step Evolution Of Any Positive Real Number. ISSN 1751-3030. PHILICA.COM Article number 1106.

http://philica.com/display_article.php?article_id=1106

3.http://www.philica.com/advancedsearch.php?author=128 97

4.http://www.vixra.org/author/ramesh_chandra_bagadi