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1 Abstract

The problem of gravitational potential energy is analyzed within a simple model, in which the 3-dimensional
(3D) space is a curved hypersurface of a 4-dimensional (4D) Euclidean space. The analysis shows that the
effect of gravitational potential energy deficit is present in the model. For a particular profile of hypersurface
representing 3D space, the effects of aforementioned deficit are similar to effects attributed to dark matter,
while not being contrary to Newton’s law of gravity.
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2 Introduction

We are analyzing the gravitational potential energy of a particle in a simple, non-relativistic model similar
to the well-known concept of 3D space being a deformed membrane of 4D Euclidean space. In this model,
we take a similar assumption: that the 3D space is the P hypersurface, which, on account of the universe
expansion, propagates itself with acceleration A⃗′ in a 4D Euclidean space. In the frame of reference linked to
the P hypersurface, for every point of 4D space, the absolute acceleration A⃗ = −A⃗′ is determined, generating
the conservative force F⃗ = mA⃗. This force shapes the P hypersurface and, depending on mass distribution,
gives it a particular y(r) profile in a 4D space, where y is the coordinate parallel to F⃗ force, and r is the
particle’s distance from the center in an undeformed hyperplane of y = 0 profile. For y(r) profile we only
assume, that: y(0) = ymin, dy/dr ≥ 0 and y(r → ∞) → 0.

3 Potential energy

In a flat 4D space, the conservative force F⃗ is the field force. The elementary work of field force F⃗ performed
over a particle (Fig.1) has the following form:

dL4D = F⃗ · dy⃗ = F⃗s · ds⃗, (1)

where F⃗s · ds⃗ is the elementary work performed while moving a particle over the P hypersurface.
The elementary work of field force F⃗ , contributes to potential energy:

Ep4D(y) = −
∫ y

0

F⃗ · dy⃗, (2)
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Figure 1: The work of F⃗ · dy⃗ as an elementary work of field force F⃗, in a flat 4D space.

Figure 2: Work F⃗s · dy⃗ as the part of elementary work of field force F⃗, that is available in curved 3D space.

where it is assumed that Ep4D(y = 0) = 0.
Therefore the potential energy of a particle on the P hypersurface takes the (2) form.
A particle located in a curved 3D space is present on the P hypersurface in 4D space. That is why its real
potential energy takes the (2) form as well. However, unlike in 4D space, in curved 3D space only the part

of elementary work dL4D of field force F⃗, that depends on force F⃗s, is available (Fig.2):

dL3D = F⃗s · dy⃗ = F⃗s · d⃗l, (3)

where: F⃗s · d⃗l is the equivalent of work F⃗s · dy⃗ performed while moving a particle over the P hypersurface in
a 4D space. The elementary work dL3D allows an elementary increment of potential energy:

dEps = − dL3D, (4)

which results in potential energy:

Eps(y) = −
∫ y

0

F⃗s · dy⃗, (5)

where it is assumed that Eps(y = 0) = 0.
The remaining part of elementary work dL4D, takes the following form:

dL(4D−3D) =
(
F⃗ − F⃗s

)
· dy⃗ = F⃗n · dy⃗. (6)

In a curved 3D space it is the cause of potential energy deficit of the following range of values:(
Epn(ymin) ; Epn(0)

)
. (7)
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The deficit indicates that even though the work against force field is being performed in curved 3D space, it is
not possible for the potential energy increase (and, therefore, decrease) of (7) values range to appear. That is
why in curved 3D space, the aforementioned energy remains on the lowest value level EpnMIN = Epn(ymin):

EpnMIN = −
∫ ymin

0

F⃗n · dy⃗, (8)

where it is assumed that Epn(y = 0) = 0.
Taking (5) and (8) into account, the potential energy Ep3D available in curved 3D space takes the following
form:

Ep3D(y) = Eps(y) + EpnMIN . (9)

The potential energy deficit (7) may be interpreted as the existence of a forbidden potential energy band
∆E′

p within the curved 3D space:

Ep3D /∈ ∆E′
p, where: ∆E′

p =
(
EpnMIN ; 0

)
. (10)

Taking (9) into account, the real potential energy (2) manifests itself in a curved 3D space in the following
form:

Ep4D(y) = Ep3D(y) + Ep+(y), (11)

where Ep+ is the positive gravitational potential energy:

Ep+(y) = mΦ+(y) (12)

and Φ+ is the gravitational potential positive:

Φ+(y) = − 1

m

∫ y

ymin

F⃗n · dy⃗. (13)

The positive gravitational potential energy is the missing part of real potential energy, moved into the positive
energy area:

Ep+(y) = Epn(y)− EpnMIN . (14)

Basing on equation (11), the real potential energy Ep4D of a particle is represented in the curved 3D space by
the sum of negative potential energy Ep3D and positive potential energy Ep+. This means, that the increase
(decrease) of potential energy Ep4D manifests itself in this space with an increase (decrease) of negative
potential energy Ep3D and an increase (decrease) of positive potential energy Ep+. However, in a curved 3D
space, the surplus of elementary work that is performed against the field force, higher than the value − dL3D

(see eq. (4)) should contribute towards the increase of kinetic energy of a particle. This means, that the
positive gravitational potential energy that appears in a curved 3D space, manifests itself in this space as
a component of kinetic energy of a particle. Therefore, for the case where total mechanical energy E of a
particle in 4D space is equal to zero:

Ek + Ep4D = 0, (15)

after taking equation (11) into account, we obtain:

Ek3D = Ek + Ep+ (for E = 0), (16)

where: Ek is the kinetic energy of a particle, and Ek3D is the kinetic energy of a particle manifested in the
curved 3D space.
Equation (16) shows that the positive potential energy overstates the kinetic energy of a particle exhibited
in a curved 3D space. This means, that the consequence of gravitational potential energy deficit (PED) is
the kinetic energy surplus (KES) in this space.

Then we assume, that the real potential energy (2) of a particle in a curved 3D space, is consistent with the
potential energy Ep(r) = mΦN (r) of a particle in a flat 3D space of the Newtonian model. The consequence
of this condition, is the P hypersurface profile:

y(r) = ΦN (r)/A, (17)
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where: ΦN is the Newtonian potential.
In addition, we introduce the PED-KES model - a modification of the Newtonian model that takes into
account the potential energy deficit and its effects. Unlike in the Newtonian model, in PED-KES model,
the particle possesses potential energy Epped

(r) compliant with its potential energy Ep3D(y) available in the
curved 3D space of the (17) profile. Taking (17) into account, the (11) equation for PED-KES model takes
the following form:

Ep(r) = Epped
(r) + Ep+(r), (18)

where:
Epped

(r) = m
(
ΦN (r)− Φ+(r)

)
, (19)

Ep+(r) = mΦ+(r) (20)

and:

Φ+(r) =

∫ r

0

dΦN

dr

[
1+

(
1

A

dΦN

dr

)2
]−1

dr. (21)

The forbidden gravitational potential energies ∆E′
p band takes the following form:

Epped
/∈
(
Epn(0) ; 0

)
, where: Epn(0) = −Ep+(∞). (22)

In the Newtonian model, the deficit of potential energy does not exist. The potential energy Ep can be
therefore presented as the sum of potential energies Eps and Epn:

Ep(r) = Eps(r) + Epn(r), (23)

where:
Eps(r) = mΦN (r)− Epn(r), (24)

Epn(r) = m

∫ r

∞

dΦN

dr

[
1+

(
1

A

dΦN

dr

)2
]−1

dr. (25)

Figure 3 presents the potential energy Ep(r) coming from point mass and its components, for both the
potential energy deficit presence (equation (18)) and the lack of it (equation (23)).

4 Centripetal force

Taking (18) into account, the real centripetal force affecting a particle in the PED-KES model equals:

F(r) = −dEp(r)

dr
= − d

dr

[
Epped

(r) + Ep+(r)
]
= −m

dΦN

dr
(26)

and is compliant with the Newton’s law of gravitation.

5 Circular speed

The real circular speed vc around mass center presented in the PED-KES model, is a consequence of known
dependencies. Taking equation (18) into account, we obtain:

v2c (r) =
r

m

dEp

dr
=

r

m

d

dr

[
Epped

(r) + Ep+(r)
]
. (27)

Taking equation (26) into consideration, from equation (27) we obtain:

v2c (r) =
r

m
|F(r)| . (28)
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Figure 3: Potential energy Ep in the function of distance from point mass (solid line), as a sum of two compo-
nents: (a) for the presence of potential energy deficit (the PED-KES model): the available potential energy
Epped

(r) (dotted line) and positive potential energy Ep+(r) (dashed line), ∆E′
p - the forbidden gravitational

potential energy band; (b) for the lack of potential energy deficit (equivalent of the Newtonian model): the
potential energy Eps(r) (dotted line) and the potential energy Epn(r) (dashed line). Presented in arbitrary
units.

The real circular speed around mass center in the PED-KES model is determined by the value of centripetal
force, and is identical to the one present in the Newtonian model. Out of equation (28) emerges the depen-
dency of circular motion kinetic energy Ekc from centripetal force value:

Ekc(r) =
1

2
r |F(r)| . (29)

In order to determine the influence of potential energy deficit on circular speed around mass center, we use
the Newtonian potential equation for spherical mass distribution (see [1], equation 2-22):

ΦN (r) = −4πG

[
1

r

∫ r

0

ρ(r′) r′2dr′ +

∫ ∞

r

ρ(r′) r′dr′
]
. (30)

Taking into account:

M(r) = 4π

∫ r

0

ρ(r′) r′2dr′, (31)

as well as the following relation:
v2c (r)

r
=

GM(r)

r2
, (32)

out of equation (30), we are able to obtain the connection between potential energy and kinetic rotation
energy Ekc for the Newtonian model:

Ep(r) = −2Ekc(r)− 4mπG

∫ ∞

r

ρ(r′) r′dr′. (33)

Taking into consideration, that positive potential energy manifests itself as a component of exhibited kinetic
energy, out of equations (33) and (18), for the PED-KES model, we obtain:

Epped
(r) = −2

(
Ekc(r) +

1

2
Ep+(r)

)
− 4mπG

∫ ∞

r

ρ(r′) r′dr′, (34)

5



therefore the circular motion kinetic energy around mass center Ekkes
, exhibited in the PED-KES model,

takes the following form:

Ekkes
(r) = Ekc(r) +

1

2
Ep+(r). (35)

Equation (35) shows, that positive potential energy overstates the exhibited kinetic energy of particle’s
rotation around mass center when compared to the real kinetic energy Ekc that results from centripetal force
(see eq. (29)). The consequence of equation (35) is the equation for circular speed around mass center vckes

exhibited in the PED-KES:

vckes
(r) =

√
2

m

[
Ekc(r) +

1

2
Ep+(r)

]
=

√
v2c (r) + Φ+(r). (36)

Equation (36) shows that positive potential energy manifests itself in the area of circular speed in a similar
way, as the additional circular speed vcex that has a value of:

vcex(r) =
√

Φ+(r). (37)

This is not, however, additional circular speed, since it is not accompanied by centripetal force (see eq. (28)).
This is a pseudo-circular speed, that results from manifestation of positive potential energy in the area of
kinetic energy.
The limit value of circular speed exhibited in PED-KES is determined by pseudo-circular speed and equals:

vckes
(∞) = lim

r→∞

√
Φ+(r). (38)

For mass distribution in which the maximum centripetal acceleration gNmax of matter’s rotation around center
is considerably lower than A, from equations (21) and (38) we obtain:

vckes
(∞) =

√
|ΦN (0) | (for gNmax≪ A). (39)

Taking equation (35) into account, the real kinetic energy of a particle Ekc takes the following form:

Ekc(r) = Ekkes
(r)− 1

2
Ep+(r), (40)

therefore the real circular speed equals:

vc(r) =
√
v2ckes

(r)− Φ+(r). (41)

6 Escape speed

The consequence of equation (16) is the connection between escape speed vekes
exhibited in the PED-KES

model and the real escape speed ve:

vekes
(r) =

√
2

m

[
Ek(r) + Ep+(r)

]
=

√
v2e(r) + 2Φ+(r), (42)

where the influence of positive potential energy can be described as pseudo-escape speed veex that has a value
of:

veex(r) =
√
2Φ+(r). (43)

A particle moving with the real escape speed ve, that equals:

ve(r) =

√
2 |Ep |
m

=

√
2

m

∣∣Epped
(r) + Ep+(r)

∣∣ , (44)

6



exhibits kinetic energy (16) that suggests it is moving with speed vekes
, which is the result of equation (42).

The limit value of escape speed exhibited in PED-KES is determined by pseudo-escape speed, and equals:

vekes
(∞) = lim

r→∞

√
2Φ+(r). (45)

For mass distribution in which the maximum centripetal acceleration gNmax of matter’s rotation around center
is considerably lower than A, from equations (21) and (45) we obtain:

vekes
(∞) =

√
2 |ΦN (0) | (for gNmax≪ A). (46)

7 Absolute acceleration A

For the case of point mass, from equation (21) we obtain:

Φ+(r) =
Ark

2
√
2

[
1

2
ln

(
r2

r2k
−

√
2
r

rk
+ 1

)
− 1

2
ln

(
r2

r2k
+
√
2
r

rk
+ 1

)
+ arctan

(√
2
r

rk
+ 1

)
+ arctan

(√
2
r

rk
− 1

)]
, (47)

where rk =
√
GM/A is the distance from point mass, for which the centripetal acceleration equals A.

The rk form is similar to MOND radius rM =
√

GM/a0 [2, 3], present in the MOND concept, where a0 is
the acceleration introduced in this concept as a new physical constant. It turns out, that assuming the value
of absolute acceleration as equal to A = 1.2 × 10−10 m/s2 = a0, gives good compliance of the PED-KES
concept with observation. This may suggest that acceleration a0 is the absolute acceleration in the PED-KES
concept. However, unlike a0, the A acceleration has an unambiguously determined physical sense. Therefore,
in the PED-KES concept, we use A to denote absolute acceleration.

8 Results

The following assumes spherical mass distribution and A = 1.2× 10−10 m/s2.
Figure 4 presents a graph of relations (36) and (42) for an exemplary point mass equal to the baryonic mass
of the Galaxy [4]. As seen on the graph, the PED-KES rotation can be conventionally divided into two areas:
Keplerian, for r < rk, and non-Keplerian for r > rk. rk can thus be regarded as radius of the Keplerian area.
Formula (38) indicates that the terminal value of PED-KES circular speed is defined by pseudo-circular speed
vcex and, for the assumed value of mass, the v∞ matches the Galaxy’s terminal circular speed value [4].
Taking equations (47) and (38) into account, for point mass we obtain:

vc∞ =

√
πArk

2
√
2

=

(
π2

8
AGM

)1/4

. (48)

From the equation (48) we obtain the relation between point mass M and terminal circular speed around
mass M exhibited in PED-KES:

M = q v4∞, where: q =
8

π2 AG
≈ 0.81

AG
. (49)

Figure 5 presents BTFR relations graph [5] with the graph resulting from equation (49) drawn over it.
Taking equations (36) and (47) into account, for point mass, we can determine the v2ckes

/v2c ratio as a
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Figure 4: Rotation curve and escape curve, which result from kinetic energy exhibited in the PED-KES model
for the case of gravitational field coming from point mass of exemplary mass M = 8, 3 × 1010M⊙ (baryonic
mass of the Galaxy): red line - PED-KES circular speed; dotted line - Keplerian circular speed; black solid
line - pseudo-circular speed

√
Φ+(r), establishing the terminal circular speed for this mass at 200 km

s ; green
line - escape speed exhibited in the PED-KES model; dashed line - actual excape speed.

Figure 5: Graph of relations between baryonic mass and PED-KES terminal rotation for point mass - red
line, drawn over BTFR relations graph [5]. Based on [5].
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Figure 6: Graph of (v2ckes
/v2c ) (gN ) relations for point mass (red line), drawn over a graph of (V 2/V 2

b ) (gN )
relations, resulting from hundreds of measurements taken for nearly a hundred spiral galaxies. Based on [5].

function of Newton’s acceleration gN = v2c/r = Ar2k/r
2:

v2ckes

v2c
(gN ) = 1 +

1

2
√
2

√
A

gN

[
1

2
ln

(
A

gN
−

√
2A

gN
+ 1

)

− 1

2
ln

(
A

gN
+

√
2A

gN
+ 1

)
+ arctan

(√
2A

gN
+ 1

)

+ arctan

(√
2A

gN
− 1

)]
. (50)

Figure 6 shows relation (50) graph drawn over V 2/V 2
b graph, where V is the observed velocity and Vb is the

velocity attributable to visible baryonic matter in Newton’s acceleration function gN = V 2
b /r, resulting from

hundreds of measurements taken for nearly a hundred spiral galaxies [5].
Figures 7 and 8 show a number of examples of determined PED-KES rotations drawn over galaxies rotation
graph from [6, 5]. Basing on baryonic rotation curves shown on the sourcing graphs, from equation (21)
we numerically designated a gravitational potential positive Φ+(r). Then, from equation (36), PED-KES
rotations have been determined. Figure 8 also includes escape speed curves obtained from equation (42).
Figure 9 shows three examples of galaxies from [5, 7], for which the maximum centripetal acceleration of

matter’s rotation around center is significantly lower than A. For those galaxies, the compliance of PED-KES
rotation with the observed has been achieved for masses larger than usually assumed. Basing on the original
baryonic rotations, baryonic rotations providing similar compliance between PED-KES and MOND rotations
have been determined.

9 Conclusions

The consequence of negative gravitational potential energy deficit is the positive gravitational potential energy.
Because this energy manifests itself in the area of particle’s kinetic energy, it naturally overstates its exhibited
value. That’s why PED-KES concept can also be called NES (Natural Energy Surplus)1. PED-KES concept
is a simple concept based on elementary physics. It does not require any additional non-baryonic matter to
exist and, at the same time, is not contradictory to Newton’s gravity model. Therefore further verification
of this concept seems justified.

1see also viXra:1506.0040
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Figure 7: PED-KES rotation curves determined for exemplary spiral galaxies: observed rotation - gray strip
(M33 - circles); PED-KES rotation curves - red line; pseudo-rotation speed

√
Φ+(r) as a consequence of

potential energy deficit - thick black line; resultant baryonic rotation - thin green line (M33 - thin black line).
All other markings as described in [6, 5]. Based on [6, 5].
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Figure 8: PED-KES rotation curves and escape curve determined for exemplary spiral galaxies: observed
rotation - gray strip; PED-KES rotation curves - red line; pseudo-rotation speed

√
Φ+(r) as a consequence

of potential energy deficit - thick black line; resultant baryonic rotation - thin green line; Newtonian escape
velocity curve - dashed line; PED-KES escape speed curve - thick green line. All other markings as described
in [6]. Based on [6].
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Figure 9: Baryonic rotation curve suggested by PED-KES (dashed line) that provides similar compliance
of PED-KES and MOND rotation curves for three examples of galaxies, for which gNmax≪ A. PED-KES
rotation curves - red line. All other markings as described in [5, 7].
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