Scheme For Finding The Next Term Of A Sequence Based On Evolution {File Closing Version 5}. ISSN 1751-3030

Author:

Ramesh Chandra Bagadi

Data Scientist INSOFE (International School Of Engineering), Hyderabad, India. rameshcbagadi@uwalumni.com +91 9440032711

Research Manuscript

Abstract

In this research investigation, the author has detailed a novel method of finding the next term of a sequence based on Evolution.

Theory

Given any Sequence of the kind,

$$
S = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}
$$

We first write them as

$$
S = \begin{cases} y_1 = {}^{N}p_{j_1 + \delta_1}, y_2 = {}^{N}p_{j_2 + \delta_2}, y_3 = {}^{N}p_{j_3 + \delta_3}, \dots, y_{n-1} = {}^{N}p_{j_{n-1} + \delta_{n-1}}, \\ y_n = {}^{N}p_{j_n + \delta_n} \end{cases}
$$

where in $P_{j_1+\delta_1}$ *N* ${p}_{j_1+\delta_1}$, N is the Order Number of the Higher Order Sequence Of Primes in which the number y_1 is slated,

 $\left(j_1 + \delta_1\right)$ is the position number of the Prime Metric Basis Element. Here, j_i 's are Positive Integers and $0 < \delta_i < 1$.

For Example,

7 which is the 4th Prime Metric Basis Element of the Standard Primes, the Order [1] of which can be taken to 1. Therefore 7 can be written as p_4 p_4 . In a similar fashion, 8 can be written as

J \backslash I \setminus ſ $+1^{\circ}$ $11–7$ 8–7 4 1 *p* where 7 is the nearest previous prime number of 8 and 11 is the next nearest prime number of 8. Here, in the notation $P_{4+\frac{8-7}{12}}$ J $\left(\frac{8-7}{11-7}\right)$ \setminus ſ \overline{a} $+\left(\frac{8}{11}\right)$ $11 - 7$ $4 + \frac{8-7}{1}$ 1 *p* , we can consider $\left(\frac{\delta}{11-7}\right)$ \backslash I I L ſ ═ Ξ 11–7 $\frac{8-7}{11-7}\big)$ as the δ , the 4 as the $\,j\,$ and the 1 as the $\,N$. We can also denote any number in a similar fashion using Higher Order Primes as well. [1] i.e., $N > 1$.

 $Given \left(j_i + \delta_i \right)$, a method of calculating the Decimal (Pseudo) $\text{Prime corresponding to } \left(\textit{j}_i + \delta_i \right) \textit{ in } ^N\textit{p}_{\left(\textit{j}_i + \delta_i \right)}$ $P_{(j_i+\delta_i)}$. If δ_i is equal to $\left(\frac{12.5 \text{ m/s}}{10^{k}}\right)$ $\bigg)$ $\overline{}$ \setminus $\frac{a_1 a_2 a_3 \dots a_{k-1}}{10^k}$ $a_1 a_2 a_3 \ldots \ldots a_{k-1} a_k$ 10 $\frac{1}{10^k}$ $\frac{1}{10^k}$ where $0 < a_l < 10$ for l =1 to k , we write

__

$$
\left\{\n\begin{array}{c}\n\stackrel{N}{\left(} p_{(j_i+\delta_i)}\right) =\n\end{array}\n\right\} p_{j_i} +\n\left\{\n\begin{array}{c}\n\stackrel{N}{\left(} a_1 a_2 a_3 \dots a_{k-1} a_k \right)^{\text{th}} \text{PrimeNumber} \\
\stackrel{of \ N^{\text{th}} \text{ Order}}{\left(10^k \right)^{\text{th}} \text{PrimeNumber}}\n\end{array}\n\right\} \left\{\n\begin{array}{c}\n\stackrel{N}{\left(} p_{j_i+1} -\n\begin{array}{c} N p_{j_i} \right)\n\end{array}\n\end{array}\n\right\}
$$

 $Given \binom{N}{p}$ *, a method of calculating the Decimal (Pseudo)* **Position** $\left(j_i + \delta_i\right)$, i.e., the Prime Metric Basis Element $\emph{Position corresponding to $\left(N \atop p\right)$}$ i *n the Sequence of* N^{th} *Order Sequence Of Primes.*

__

We write the given number (Real) say *b a* as

d c p b a i j $=\frac{N}{p_{j_i}} + \frac{C}{d}$ where *c*,*d* are some Nth Order Primes such that the equation holds roughly.

We then find the positions of c, d along the Nth Order Sequence of Primes , say they are *^l*,*^m* .

We then write the Position of $\binom{N}{p}$ *as*

$$
j_i + \delta_i =
$$

Pr *ime Basis Position of (c)in the N*th *Order*

$$
j_i + \frac{Sequence \ of \ Pr \ times}{Prime \ Basic \ Position \ of \ (d) \ in \ the \ N^{\text{th}} \ Order}
$$

Sequence of Pr imes

For Simplicity, we can take $N=1$.

For our representational simplicity, we label our $S = \{y_1, y_2, y_3, \ldots, y_{n-1}, y_n\}$ as

__

 $S = \{y_1, y_2, y_3, \ldots, y_{n-1}, y_n\}$ where the left south subscript 1 indicates that these numbers are at the level 1 (Base) of the triangle we are going to build.

We now compute the Evolution Orders

 $(j+1)$ $\left(\int_j y_i\right) = \int_j y_{(i+1)}$ \bigcup^{1} ^{y_i} \bigcup_{i} \bigcup_{i} \bigcup_{i} _{i+} ┿ *j i j i* $E^{(j+1)}$ ^{*y*_{*i*}} $\left(y_i\right)$ *j y*_{*i*} *y* where $(j+1)$ \mathcal{Y}_i is the Evolution Order. By Evolution Order, we mean the difference between the Prime Basis Position Number of $j Y_{(i+1)}$ (when slated thusly) and the Prime Basis Position Number of j \mathcal{Y}_i given that we are considering this in $N = 1$. This means that *j* y_i

needs to be evolved $_{(j+1)}y_i$ times to get j $\mathcal{Y}_{(i+1)}$. Please see [2] for Evolution method. We repeat this process till we get (n) $E^{(n) y_i} \Big(\Big(\begin{matrix} 0 & -1 \end{matrix} \Big) y_i \Big) =_{(n-1)} y_{(i+1)}.$ We now evolve $(n-1) y_{(i+1)}$ by one

step using [2] and get
$$
E^1({n-1}y(i+1))
$$
. Note that
\n $E^{\{E^1({n-1}y(i+1))\}}({n-2}y_i) = {n-2}y(i+1)$.

We repeat this procedure, downwards, repeatedly to find $\{ (2) y_n \}$ $\binom{n}{1} y_n = \binom{n+1}{n+1}$ 2 *n* $\equiv_{(1)} y_{(n+1)}$ $E^{\lambda(2)}^{y_n j} \binom{y_n}{j} P_{(1)} y_{(n+1)}$. If the Evolution Order $(j+1) y_i$ is

negative, this implies that j \mathcal{Y}_i needs to be devolved by

 $(y+1)$ y_i to reach j $y_{(i+1)}$. That is when the Evolution Order is Negative, we need to consider Devolution by the amount of the Evolution Order. We illustrate this with an Example of three terms.

Considering

 $S = \{y_1, y_2, y_3\}$ which we write as $S = \left\{ \vphantom{\frac{1}{2}}_{1}\gamma_{1},\vphantom{\frac{1}{2}}_{2}\gamma_{1}\gamma_{3}\right\}$ for future representational simplicity. ¹ ¹ ¹ ² 2 1 *E y y y* , ¹ ² ¹ ³ 2 2 *E y y y* . Now, we write $E^{\,\frac{3}{2}\,y_1}\big({}_2\,y_1\big){\models_2} y_2$. We now evolve $\,\frac{3}{2}\,y_1\,$ by one step using [2], i.e., perform $E^1({\bf y}_1)$. And now, we write $E^{\{E^{1}(3|y_1)\}}($ $_{2}y_{2})$ $=$ $_{2}y_{3}$. Finally, we write, $E^{(2 y_3)}(y_3) = y_4 = y_4$ which is the next term of the sequence $S = \{y_1, y_2, y_3\}$. This method can be used advantageously for forecasting.

Note that
$$
E^1(0) = 0
$$
 and $E^1(1) = E^1\left(\frac{2}{2}\right) = \frac{3}{2}$, from [2].

References

1.Bagadi, R. (2016). Field(s) Of Sequence(s) Of Primes Of Positive Integral Higher Order Space(s). *PHILICA.COM Article number 622*.

http://philica.com/display_article.php?article_id=622 2.Bagadi, R. (2017). One Step Evolution Of Any Positive Real Number. ISSN 1751-3030. *PHILICA.COM Article number 1106*.

http://philica.com/display_article.php?article_id=1106 3[.http://www.philica.com/advancedsearch.php?author=128](http://www.philica.com/advancedsearch.php?author=12897) [97](http://www.philica.com/advancedsearch.php?author=12897)

4[.http://www.vixra.org/author/ramesh_chandra_bagadi](http://www.vixra.org/author/ramesh_chandra_bagadi)