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Deriving Relations

We begin with the convolution by functional arguments and translate into combinatorial factorial
relations:
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The second equation is then an explicit definition of the factorial function explicitly in terms of the
functional differential of the open derivative on the generalized factorial.
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The log differential method for this extrapolation is therefore defined on bounded sets as:
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The extrapolation given is then a recursive derivation of the extension of open measure on subsets:
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The center is then defined through the open and closed relations given through the connecting
aperature of the functions defined as follows:

J dgdf ==(f(0)): f dfdg=2(g(0))! (6)

As:
z(1) :ZJ f(2)g(z)dz 2(0) := z(f)dzfz (7)
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The admittance of a generalized interior to exterior relationship on that of the generalized expansion

of the differential and factorial is then given by:

of o 0
260 : T2 )4 O iy = g

Such that the general differential is carried by:

: 5 5
o1 = £(=)logl(5(2)) f 8@ L)+ £ E = () = 4()

Then the factorial of a given functional equivalence is given by:
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Now is defined the natural extension of measure for factorial as the equivalence:
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