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Annotation
A solution of the Maxwell equations for a variable voltage 

capacitor with a variable voltage is given, which is a development 
of inconsistency (corresponding to the energy conservation law) 
solution of the Maxwell equations for vacuum. It is shown that in 
an electromagnetic wave propagating through a capacitor, the flux 
of electromagnetic energy does not change with time. It is shown 
that there exists a longitudinal (along the radius) standing 
electromagnetic wave. For a simple verification of the findings, 
detailed proof is given.

1. Introduction
In [1, 2], a new solution of the Maxwell equations is proposed for a 

monochromatic wave in a nonconducting medium. The dielectric of the 
capacitor is also such a medium. If a monochromatic alternating voltage 
is present on the capacitor plates, then a monochromatic wave with 
electric and magnetic intensities should also be present in its dielectric. 
This wave propagates between the capacitor plates. This wave 
propagates between the capacitor plates. According to the existing 
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concept, in the energy flow through the capacitor only the average (in 
time) value of the energy flux is conserved [3]. This contradicts the law 
of conservation of energy (this was already discussed in [1, 2] for a 
traveling wave). Therefore, a new solution of Maxwell's equations for a 
capacitor is proposed below.

The Maxwell equations for free electromagnetic oscillations in an 
unbounded medium have the form

  0rot 




t
HE  , (1)

  0rot 




t
EH  , (2)

  0div E , (3)
  0div H . (4)

In [1, 2] the solution of these equations was obtained under the 
assumption that 0zE . Below this restriction is removed.

2. Solution of the Maxwell’s equations
As in [1, 2], we will use cylindrical coordinates zr ,,   and apply 

the following notation:
)cos(co tz   , (1)

)sin(si tz   , (2)

where  ,,  are some constants. We represent the unknown 
functions in the following form:

  co.  rhH rr , (3)

si)(.  rhH  , (4)

si)(.  rhH zz , (5)

  si.  reE rr , (6)

co)(.  reE  , (7)

co)(.  reE zz . (8)
Then the system of Maxwell's equations takes the form:
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where )(),( rerh  are some  functions of coordinate r .
Here we can not use the solution obtained in [1, 2], since there in 

the search for a solution it was assumed that 0)( re . Here such an 
assertion is not satisfied by the condition of the problem.

We will seek a solution in which the tensions are related by the 
relation 

0)( rhz , (17)
which follows from physical considerations. Then the system of 
equations (9-16) takes the form:
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In Appendix 1 it is shown that there exists a definite Bessel 
function, denoted as  rF , on which the functions of intensities 
depend, namely

   rFrez  ,

3



 rF
r

re 
1)(  ,  rF

r
rhr 

1)(  ,

   rF
dt
drer  ,    rF

dt
drh   .

More precisely,
   rFrez  , (26)

 rF
dt
drez  )( , (27)
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where
022  q . (32)

The function  rF  is a solution of the equation
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For the existence of this solution, the quantity q  must be positive.

3. Velocity of electromagnetic wave 
propagation
It was shown in [1, 2] that in such a solution for a free wave 

propagating at the velocity of light,

c
  . (1)

In the case under consideration, the quantity (2.32) must be positive, i.e. 
022   (2)

or

с
  , причем 

с
 min . (3)

4



Obviously, this velocity is equal to the derivative 
dt
dz

 
of the 

function given implicitly in the form (2.3-2.8). Having determined the 
derivative of these functions )(tz , we find the propagation velocity of a 
monochromatic electromagnetic wave





dt
dzvm . (4)

Combining (3, 4), we obtain:

с

vm 1
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.

So,
сvm  . (6)

Consequently, the propagation velocity of the electromagnetic wave in 
the capacitor is less than the velocity of light.

4. Energy density
The energy density is 
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or, taking into account previous formulas,
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Taking into account (2.29, 2.30), we obtain:
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Thus, electromagnetic wave energy density in condenser is constant 
in time and equal in all points of the cylinder of given radius.

5. Energy Flows
The density of electromagnetic flow is Umov-Pointing vector 

HES  , (1)
where 

 4c . (2)
In cylindrical coordinates zr ,,   the flux density of 

electromagnetic energy has three components zr SSS ,,   directed along 
the radius, along the circumference, along the axis, respectively. They are 
determined by the formula (as shown in [1, 2])
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where
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Taking into account (5, 2.27-2.31), we obtain:
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 eehehes rrrz  . (9)

Поток энергии, который распространяется по радиусу из всей 
окружности данного радиуса, как следует из (4), равен 

6



 












2

0

2
2

0

2 sisi dree
q

dre
q

eS zzzzr . (10)

We call this flow a radial flow of energy. The integral in (10) is a 
constant. In Appendix 3 shows that the quantity  ree zz   is a 
periodic function of r . This means that the radial energy flux varies 
along the radius, and its total value is zero.

The energy flow that propagates along a circle of a given radius, as 
follows from (4), is equal to
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The integral in (10a) is a constant. In Appendix 3 it is shown that 
the value  2

ze  is significant only at the center of the capacitor.
The energy flow, which propagates along the axis oz through the 

cross section of the condenser, is equal to
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zz ddrsS . (11)

Taking (9) into account, we obtain:
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or
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Both integrals in (13) are constants that do not depend on the 
coordinates z and t (as shown in [1, 2]). Consequently, the energy flux 
of the electromagnetic wave is constant in time. This flow is the 
active power zSР  , transmitted through the capacitor. This power does 
not depend on the design of the capacitor. The magnitude of the power 
does not depend on the intensities. There is only one parameter, which is 
not defined in the mathematical model of the wave - it is a parameter   
and power depends on it. More precisely, on the contrary, the power 

zSР   determines the value of the parameter  .
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6. Radial wave
In the capacitor there is a wave along the radius with the intensities

  )cos(. tzrhH rr   ,
  )sin(. tzreE rr  

- see (2.3) and (2.6). They correspond to the radial energy flux (5.10) 
considered above. It can be seen that these intensities are shifted in phase 
by a quarter of a period. In Appendix 3 shows the dependencies of these 
intensities and the energy flux on the radius. It can be seen that these 
tensions constitute a longitudinal standing wave, oscillating along the 
radius.

7. Voltage in the capacitor
The voltages in the solution found are determined to within a 

constant factor. For example, the intensity (2.8) should be written, taking 
into account (2.26) in the form:

  )cos(. tzrFАEz   , (1)

where A is an indefinite constant for all the intensities.
We assume that the potential on the lower plate for 0z  and 

some oo r,  is zero, and the potential on the upper plate for dz   and 
same oo r,  is numerically equal to the voltage U  across the capacitor. 
Then

  )cos( tdrFАU oo   , (2)

what can be used to determine the coefficient A. At some intermediate 
value z , the voltage for the same oo r,  will be equal to

  )cos()( tzrFАzu oo   , (3)

i.e. the voltage along the capacitor varies in function )cos( z .

8. Discussion
The proposed solution of the Maxwell equations for a capacitor 

under an alternating voltage is interpreted as an electromagnetic wave 
with three electric intensities and two magnetic intensities (there is no 
magnetic field directed along the axis of the capacitor). We note the 
following features of this wave:
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1. Magnetic and electrical intensities 
 
on a certain coordinate axis 

zr ,, 
 
are shifted in phase by a quarter of a period.

2. The vectors of electric and magnetic intensities are orthogonal.
3. The instantaneous (and not the average for a certain period) 

energy flow through the capacitor does not change in time, which 
corresponds to the law of conservation of energy.

4. The energy flow is equal to the active power transmitted through 
the capacitor.

5. The velocity of propagation of an electromagnetic wave is less 
than the velocity of light

6. This velocity decreases with  transmitted power (in particular, in 
the absence of power, the velocity is zero and the wave becomes 
standing)

7. The wave propagates along the radii; the intensities vary as the 
Bessel function of the radius.

8. There is a longitudinal standing wave in which the intensities and 
the energy flux oscillate along the radius; the total value of the energy 
flux is zero.

Appendix 1
Denote by:

, eee rr  (1)

Suppose, that
 rrr hheee    (2)

Let us find the sum of the equations (2.19, 2.20):
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Let us find the sum of the equations (2.18, 2.21):
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From (3) we find:
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From (5-7) we find:
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where
gq  . (10)

After simplifying (9), we obtain:
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It will be shown below, that 0q . Therefore (11) is the Bessel equation 
- see Appendix 2. Next we will denote this solution as  rF . So,
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From (2.21, 1) we find:
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From (6, 16) we find:

  ,0111







 

gr
ee

r
e
r

e z
z  (17)

Suppose, that








r
eКe z

 (18)







 


 2r

e
r
eКe zz

 (19)

We substitute (18, 19) into (17) and find:
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So, from (18--20) we find:
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From (1, 6, 21) we find:
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Consider equations (2.22-2.25). Subtracting (2.24) from (2.23), we 
find:

    ,0   eehh rr (23)

From (2, 23) we find:


   (24)

Then from (4, 24, 10) we obtain:
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Subtracting (2.22) from (2.25), we find:
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From (2, 26) we find:
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From (24, 28) we find:

  01  zr
r ee
r
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 . (29)

Equation (29) coincides with (5) This means that the assumptions made 
are satisfied.

From (2) we find:
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From (2.22, 30) we find:
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Сравнивая (32) и (16), замечаем, что
 ehr  (33)

From (33, 24) we find:
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From (30, 34, 1) we find:
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Consider the equation (2.20)
  0)()(  rhrere zr 

and paste in it (35, 22). Then we get:
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Thus, equation (2.20) becomes an identity, what was to be shown.

Appendix 2.
We know the Bessel equation, which has the following form:
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where   is the order of the equation. Denote by )(yZ  the general 
integral of the Bessel equation of order. It is shown in [4, p. 403] that an 
equation of the form
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can be transformed into an equation of the form (1), where )(yZ  and 
order   is determined through the parameters cmba ,,, .

In particular, equation (11) from Appendix 1 is transformed into an 
equation of the form (1) by the following substitution:

     22 4
2
1,,0,,1 cmqba . (3)

Thus, the solution of equation (11)
   qrZrFrez   )( . (4)
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Appendix 3.
Рассмотрим уравнение Бесселя 
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и функцию вида 
13



rryryr  )()()( . (2)
In Fig. 1 shows graphs of

• Bessel function у ,
• a derivative у  of this function,
• function )(r ,
• function 2у .

It can be seen that the function )(r  is a periodic function.

In Fig. 2 shows graphs of
• a derivative у , which is proportional to the intensity  rеr  - see 

(2.28, 2.27) and a solid curve with a large amplitude,
• a function rу /  that is proportional to the intensity  rhr  - see 

(2.30, 2.29, 2.26) and a solid curve with a small amplitude 
approaching the axis

• a function )(r  that is proportional to the energy flux along the 
radius rS  - see (5.10) and the dotted curve.

 производной от функции Бесселя, которая 
пропорциональна напряженности  rеr  - см. (2.28, 2.27) и 
сплошную кривую с большой амплитудой,

 функции rу / , которая пропорциональна напряженности 
 rhr  - см. (2.30, 2.29, 2.26) и сплошную кривую с малой 

амплитудой, приближающуюся к оси
 функции )(r , которая пропорциональна потоку энергии 

по радиусу rS  - см. (5.10) и пунктирную кривую.
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