
Automatic Intelligent Translation of Videos

Shivam Bansal∗

Abstract

There are a lot of educational videos online which are in English and inac-
cessible to 80% population of the world. This paper presents a process to
translate a video into another language by creating its transcript and using
TTS to produce synthesized fragments of speech. It introduces an algorithm
which synthesyses intelligent, synchronized, and easily understandable audio
by combining those fragments of speech. This algorithm is also compared to
an algorithm from another research paper on the basis of performance.

Keywords: Automatic Video Translation, Automatic Video Dubbing

1. Introduction

Nowadays, internet is filled with videos from all around the world in
different languages. There is a lot of quality educational content which should
be accessible to everyone. But language barrier makes that difficult. Most of
the educational content on the internet is in English, whereas less than 20% of
the world’s population understands English. Making that content available
in other languages will allow a lot of people access to content online.

This paper presents a process to translate a video into another language
by creating its transcript and using TTS to produce synthesized fragments of
speech. It tackles the issue when synthesysed translation is longer than the
origanal speech by introducing an algorithm which creates intelligent, syn-
chronized, and easily understandable audio. Another algorithm was analysed
from another research paper. And the results from both the algorithms were
analysed and compared.

In the experiment videos from ocw.mit.edu were used as the main focus

∗Corresponding author.
Email address: mail@shivamb.com (Shivam Bansal)

October 15, 2017

of the experiment is on education videos. These videos were in English and
were translated to Hindi.

Plausible results were obtained. Although they didnt match those of man-
ual dubbing, but they were amazing. It was concluded that a lot educational
content can be translated in different languages.

2. Process

Figure 1: Outline of the procedure

2.1. Generating Transcript

Transcripts are to be genered with the following features :

• It should be seperated by sentences.

• It should also have each sentence’s starting and ending time.

• It should be able to classify the sentences by the speaker.

Such transcripts can be generated using IBM Watson Speech-To-Text engine
with a very high accuracy. Although the accuracy may not be very high
for entertainment videos, but educational videos are usually very clear and
hence will have almost 100% accuracy. These sentences are like subtitles.
From now on these may be reffered to as subtitles.

2.2. Translation of Transcript

The generated transcript needs to be translated into the required lan-
guage. This is an easy task and can be done using several services. Google
Translator was used for this experiment. A new transcript is stored in the
required language.

October 15, 2017

2.3. Generation of Synthetic Speech for each Subtitle

Synthetic speech is to be generated for each translated subtitle. For
different speakers, different voices are required. The generated speech needs
to be clear, loud, not slurred, and reasonably fast to get good results. There
are several TTS (Text-To-Speech) services available for this step. Google
TTS was used for this experiment.

2.4. Determining Scene or Topic changes

In a video, the scene or topic might change several times. And we dont
want that our speech from one scene extends to the other since that would
make it ugly. Hence we use technologies to detect scene and topic change
using audio and video clues [1] .

2.5. Determining optimal Start and End Times

Now the generated synthetic speeches are to be combined to form a single
audio file, which is to be finally merged with the video. This is the primary
focus of this research paper. The issue that arises here is that the generated
synthetic speech can be longer than the origanal speech. In our experiment
English was used as the input language and Hindi was used as the output
language, and on average sentences were 1.6 times longer. This made it hard
to synchronise with the video. High speeding up factors made the speech less
understandable and didn’t serve the origanal purpose. Although a reasonable
change in the starting and ending time of sentences could reduce the speeding
up factors, large shifts could mess up the events in the video and make it
ununderstable.

Hence an algorithm which determines optimal start and end times for each
subtitle, keeping the speeding up factors low and shift in positions minimal,
was required to produce an intelligent and understandable speech efficiently.

In this experiment two algorithms were tested and their results were com-
pared. One of them was created while working on this experiment and the
other one was introduced in a research paper by Jindrich Matousek and
Jakub Vit. [2]

In each of the algorithms the resulting subtitles must have the following
properties :

• a subtitle must not overlap a neighbouring subtitle

• a subtitle must not exceed a scene or topic change

October 15, 2017

• the speeding up factor has to be minimal

• the shifting in the position of the subtitle has to be minimal

2.5.1.

.

Notations Each subtitle i has the following properties :

• Xi = Starting time of origanal subtitle

• Yi = Ending time of each subtitle

• Di = Length of origanal subtitle (Yi −Xi)

• Li = Length of synthetic speech generated

The algorithms are as follows :

2.5.2. Spring Based Model (Brief) [2]

This model is based on physical simulation of springs. In this model each
subtitle is taken to be a spring with its length = Li. The spring’s left end is
denoted by X ′i and its right end is denoted by Y ′i . Its length at any point of
time is denoted by D′i which is equal to Y ′i −X ′i . At the beginning, X ′iis set
equal to Xi and Y ′i is set equal to Yi. After this compression is released, the
spring follows the Hooke’s Law with a restoring force of :

Fi = −Ka.(f
′
i − 1)

where f ′i = [li
d′i

] . To push X ′itowards Xi and Y ′i towards Yi, two additional

springs are put at the ends of each subtitle which each have a restoring force
of :

• F
(a)
i = −Kb.(x

′
i − xi)

• F
(b)
i = −Kb.(y

′
i − yi)

October 15, 2017

Figure 2: An illustration of the spring based algorithm. Darkness of the colour represents
the high speeding up factor. Image taken from the origanal research paper. [2]

The ratio [Ka

Kb
] allows to control between preferences either towards synthetic

speech with small speeding-up factors but with start and end positions some-
what receded from the original positions Ka < Kb or towards synthetic speech
at original positions, but more speeded up Ka > Kb.

The optimal timing of the subtitle and the optimal speeding up factor is
obtained when equillibrium of forces Fi, F

(a)
i , Fi(b) is reached.

This implementation of this algorithms does a physical simulation of
springs which is not very efficient.

2.5.3. Linear Model

In this model we use constant K which specifies how important it is to
minimize speeding-up factor than to minimize shift in position. This is a
relatively simple method which surprisingly gives amazing results. The start
and end positions of resulting subtitle i is denoted as X ′i and Y ′i . The length of
resulting subtitle is denoted as D′i which is equal to Y ′i −X ′i. In this algorithm
we need to adjust the subtitles such that the following is minimised :

L =
n∑

i=1

|Xi −X ′i|+ |Yi − Y ′i |+ K ∗ fi

where n is the total number of subtitles , fi = [li
d′i

], and K allows to control

between preferences either towards synthetic speech with small speeding-up
factors but with start and end positions somewhat receded from the original
positions or towards synthetic speech at original positions, but more speeded
up.

Implementation. For the simplicity of the implementation, we assume the
following :

October 15, 2017

• All the subtitles have origanal length more than 1 second. It is practi-
cally impossible for a meaningful sentence to be less than that.

• Two neighbouring subtitles can start and end at the same second.

• We take smallest unit of time to be 1 second. Since in 1 unit of second
only 2 subtitles can intersect, we do not need to take a time unit smaller
than that.

The algorithm is applied seperately on the different scenes of the video, since
different scenes wont share a sentence. The problem can be solved using
dynamic programming where dp[i][t] denotes the minimal value L for the
first i subtitles such that they fit in time <= t seconds from the start. This
can be formulated as :

dp[i][t] = min(dp[i][t− 1], |yi − t|+
t−1
min
j=1

(dp[i− 1][j] + |xi − j|+ K ∗ li
t− j

))

Performance Analysis. Let m be the duration of video in seconds. Then the
memory complexity of this algorithm is O(N ∗M) and the time complexity
is O(N ∗M2) . On average a subtitle is approximately 5 seconds long. Hence
we can assume that N ≈ M

5
. Which makes the time complexity equal to

O(M
3

5
) .

2.6. Combining the synthetic audio

Now that we have synthetic audio ready with their optimal start and end
times, we combine them to make a complete audio file. Since this involves
speeding up individual speeches, it can change the pitch of the speech and
hence make it understandable. We use WSOLA algorithm to speed up the
speeches which maintains the clarity and pitch of the voice. Then an audio
file is generated and merged with the video.

3. Results

3.1. Performance

Figure 3 shows how in both the algorithms, as the no. of subtitles or the
length of the video increases, the average speeding up factor decreases. This
is because in short videos, there is not much of a scope to shift subtitles.

As the spring based model is based on simulation, it often takes more
time on large videos. But on smaller videos it is very efficient and gives

October 15, 2017

Figure 3: Average speeding up factors VS No. of subtitles

better results. On larger videos Linear Model gave better results and turned
out to be more efficient.

Both the algorithms worked pretty well and gave amazing results on the
videos used to test them.

3.2. Problems Faced

The following problems were faced :

1. Automatic translation gives excellent results on educational videos
since they have a very smooth and medium paced speech. But these
algorithms dont work well on entertainment videos since these algo-
rithms dont have the ability to recognise emotions. Entertainment
videos also require perfect synchronisation which is very hard.

2. The translation may not be very accurate. In this experiment English
was used as the input language and Hindi was used as the output lan-
guage. Sometimes the translation was not 100% accurate. Moreover,
in some cases the Hindi translation by Google Translator was very hard

October 15, 2017

to understand. It contained words which only highly qualified Hindi
Literature students would know.

3. For the experiment different services were used seperately such as STT,
translation, and TTS, hence the processing was very slow. When a real
application is developed, these can be speeden up.

4. Conclusions

Automatic translation of videos is a new technology and has a lot of pros
and cons. Although it is very efficient with respect to manual dubbing, the
results are not as good. Manual dubbing is very perfect with each sentence
created of the same length, which is not possible in automatic translation.

This algorithm can be used to translate thousands of educational videos
over the internet into different languages and hence spread education.

References

[1] S.-C. Chen, M.-L. Shyu, W. Liao, C. Zhang, Scene change detection by
audio and video clues.

[2] J. Matousek, J. Vit, Improving automatic dubbing with subtitle timing
optimisation using video cut detection.

October 15, 2017

