Theorem of prime pair distribution

Let

$$
S_n = \{(A_1, B_1), (A_2, B_2), \cdots, (A_n, B_n)\}
$$

$$
A_n = a_1 n + a_2
$$

$$
B_n = b_1 n + b_2
$$

If A_n, B_n are not obviously composite,

 S_p contains 2pair that contains factor p Lenth of 3,3,5,5, \cdots , p, p is about $\frac{2p}{\ln n}$ lnp

3 continuous pair (A_n, B_n) contains 2 pair that contains factor 3

$$
(3,3,5), (3,3,5), \cdots, (3,3,p), (3,3,p), (3,3)
$$

It's length not greater than $\frac{2p}{lnp} \cdot \frac{3+2}{3-2} < \frac{2p}{lnp} \cdot \left(\frac{3}{3-1}\right)^4$

For p_i , p_i continuous pair (A_n, B_n) contains 2 pair that contains factor p_i makes it's lenth not greater than $\frac{2p}{2}$ lnp $\cdot \left(\frac{p_i}{\cdot} \right)$ p_i-1 $)^4$

Hence if
$$
\frac{2p}{ln p} \cdot \left(\frac{3}{3-1}\right)^4 \cdot \left(\frac{5}{5-1}\right)^4 \cdot \dots \cdot \left(\frac{p}{p-1}\right)^4 < n
$$
,
\n S_n doesn't contains (A_n, B_n) has factor $p_i \le n$
\nbut $\left(\frac{2-1}{2}\right) \cdot \left(\frac{3-1}{3}\right) \cdot \dots \cdot \left(\frac{p-1}{p}\right)$ is about $\frac{1}{ln p'}$,
\n $\left(\frac{3}{3-1}\right)^4 \cdot \left(\frac{5}{5-1}\right)^4 \cdot \dots \cdot \left(\frac{p}{p-1}\right)^4$ is about $\left(\frac{ln p}{2}\right)^4$

Hence lence of (A_1, B_1) , (A_2, B_2) , \cdots , (A_n, B_n) that isn't have factor $p_i \leq n$ is not greater than

$$
\frac{2p}{ln p} \cdot \left(\frac{ln p}{2}\right)^4 = p \cdot \left(\frac{ln p}{2}\right)^3
$$

Hence, if $n > p \cdot \left(\frac{ln p}{2}\right)$ 2) 3 , every $A_n, B_n < p^2$,

 S_n contains (A_k, B_k) that both A_k and B_k are prime.

From that, we can solve

1.

$$
A_n = 2n + 1
$$

$$
B_n = -2n + 2N - 1
$$

Goldbach's conjecture

$$
A_n = 2n - 1 + 2N
$$

$$
B_n = 2n + 1 + 2N
$$

Twin prime conjecture,

And polignac's conjecture, so on