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Abstract: Theory of everything (T.O.E), final theory or ultimate theory is a theoretical framework in the field of 

physics, which holds an ultimate key to unify all the fundamental forces of nature in a single field. In other words 

such theory can glue quantum mechanics with general relativity into a single framework. Many theories have been 

postulated over the decades but the dominant one includes string theory and loop quantum gravity. In this paper I 

would like to present a new framework which can unify quantum mechanics with general relativity  by showing that 

the change in Riemannian metric or the bend in space time is always an integral multiple of planks constant and 

since gravity is the result due to bend in space-time, gravity itself is a discrete force. 
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1. Introduction: Physicists have been trying over decades to unify quantum mechanics 

with general relativity in order to define unified field theory. So far, number of theories 

has been evolved including String Theory and Loop Quantum Gravity. String theory 

predicted that the fundamental particles are made up of invisible strings, which vibrate at 

different frequencies and as a result of its vibration different particles are made like 

proton, electron etc. Whereas on the other hand Loop Quantum Gravity suggested that 

the whole universe has a fundamental structure or in other words a granular structure 

which cannot be broken down any further. But this is in complete violation of Einstein’s 

special relativity. However both theories did have a unique approach for unifying the four 

fundamental forces but none of them have a complete success so as it can be globally 

accepted. Theory of discrete gravity is another approach to unify the theory of very big 

and theory of very small by postulating that the change in Riemannian metric is discrete 

hence the gravity is also discrete. 

 

2. Planks Length: The planks length is the scale at which the classical idea about space-

time and gravity vanishes and quantum effects take over. The value of planks length is 

roughly 1.6 × 10−35 m and is defined by a series of constants i.e. Gravitational Constant 

(G), Planks constant (h) and speed of light (c) given by 

                                                 𝑙𝑝 =  √
ℏ𝐺
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3. General Relativity & Einstein Field Equation: General Relativity is the geometric 

theory of gravitation published by Albert Einstein in 1915. General Relativity generalizes 

special relativity and Newtonian law of universal gravitation, providing a description of 

gravity in terms of geometric property of space-time. In other words, the curvature of 

space-time is related to the energy and momentum of any matter present in space-time. 

The relation is specified by Einstein’s field equation given by  

                                             𝑅𝜇𝜈 −  
1

2
𝑔𝜇𝜈𝑅 +  Λ𝑔𝜇𝜈 =   

8𝜋𝐺

𝑐4  𝑇𝜇𝜈              (3) 

4. Discrete Gravity: Gravity is the result of bend in space-time due to mass of an object 

present in it as illustrated by equation (3). In general relativity, the whole mathematics is 

based on minkowski space-time, which forbids space-time to have a discrete structure but 

what if bend in space-time is discrete rather than the space-time itself. This property of 

space-time will explain gravity on a quantum scale without violating any rules that 

general relativity is based on. This hypothesis can be proved mathematically by showing 

that change in geometry of space-time is always an integral multiple of planks constant or 

h-bar. Let us consider the mass M represented by equation (3) 

 

Now, Let us consider a test mass m revolving around a mass M, then the force between 

the two masses and Energy of mass M is given by  

                                                    𝐹 =  −
𝐺𝑀𝑚

𝑟2             [- sign represent attractive force]        (4)                                             

           Integrating both sides with respect to r  

                                                       ∫ 𝐹. 𝑑𝑟 =  − ∫
𝐺𝑀𝑚

𝑟2  𝑑𝑟                    
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                                                  ∫ 𝑀.
𝑑𝑟

𝑑𝑡
. 𝑑𝑣 = − ∫

𝐺𝑀𝑚

𝑟2  𝑑𝑟  

                                                       𝑀 ∫ 𝑣𝑑𝑣 = − ∫
𝐺𝑀𝑚

𝑟2  𝑑𝑟     [𝑣 =  
𝑑𝑟

𝑑𝑡
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Since, planks length is the boundary up to which classical idea exists, so the limit for                

integral part of equation (7) can be defined from 𝑙𝑝 to ∞.For velocity 0 to v. Therefore, 
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4𝜋𝑟2
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2𝜋𝑙𝑝𝑣2𝑀 =  [
𝐺𝑀𝑚

𝑟2
] 4𝜋𝑟2 

The term on the R.H.S of the above equation represents area integral of force. So above 

equation can be represented as  

                                           2𝜋𝑙𝑝𝑣2𝑀 =  ∫ 𝐹. 𝑑𝐴 

                                                           ∫ 𝐹. 𝑑𝐴 =   2𝜋𝑙𝑝𝑣2𝑀              (5) 

5. Divergence Theorem: According to divergence theorem, the area integral of force is 

equal to the volume integral of co-variant derivative of force. Mathematically,                                                       

                                                             ∫ 𝐹. 𝑑𝐴 =  ∫ ∇𝐹. 𝑑𝑉                (6) 

            Therefore, from equation (5) and (6) 

                                                             ∫ ∇𝐹. 𝑑𝑉 =  2𝜋𝑙𝑝𝑣2𝑀                         (7)  

The mass can be defined as the volume integral of density. So equation (7) can be re-

written as 

                                                           ∫ ∇𝐹. 𝑑𝑣 =  2𝜋𝑙𝑝𝑣2 ∫ 𝜌. 𝑑𝑉                  (8)       

                                                                     ∇𝐹 =  2𝜋𝑙𝑝𝑣2𝜌                            (9)        

             Since, relativistic mass density is given by 

                                                          𝜌 = 𝛾2𝜌0 =  
𝜌0

(1−
𝑣2

𝑐2)
                        (10) 

              Rearranging the terms, we have 

                                                                𝑣2𝜌 =  𝑐2[𝜌 −  𝜌
0

]                         (11) 

                   Substituting the value of equation (11) in equation (9) 

∇𝐹 =  2𝜋𝑙𝑝𝑐2(𝜌 − 𝜌0) 

                   In general,                              ∇𝐹 =  2𝜋𝑙𝑝𝑐2𝜌                                (12)                                                



6. Christoffel Symbol: The christoffel symbol denoted by Γ  are a form of tensor derived 

from Riemannian metric and is given in form of metric tensor in general relativity 

represented by 

                                              Γ =  
1

2
 𝑔𝑎𝑑[

𝜕𝑔𝑑𝑐

𝜕𝑥𝑏
+  

𝜕𝑔𝑑𝑏

𝜕𝑥𝑐
+

𝜕𝑔𝑏𝑐

𝜕𝑥𝑏
]                    (13) 

For Newtonian mechanics the above equation or christoffel symbol reduced down to 
1

2

𝜕𝑔00

𝜕𝑥
 as the value of other derivatives are very small and can be neglected. Therefore 

                                                             Γ =  
1

2

𝜕𝑔00

𝜕𝑥
                                       (14) 

Christoffel symbol (Γ =  
𝑑𝑥𝜇

𝑑𝜏2 ) is the representation of force in Newtonian Mechanics thus 

the above equation can be treated equivalent to force. 

                                                             𝐹 =  
1

2

𝜕𝑔00

𝜕𝑥
                                      (15) 

              Also,                             𝐹 =  −
𝑑Φ

𝑑𝑥
   where Φ is potential              (16) 

              From equation (15) and (16) 
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2
𝑔00 +  𝑐𝑜𝑛𝑠𝑡 = − Φ                            (17) 

For a three dimensional analysis instead of normal differentiation we need to represent 

force as covariant derivative of potential. Therefore, 

                                                           𝐹 =  −∇Φ       

                                                         ∇𝐹 =  − ∇2Φ                                      (18) 

            Substituting the value of ∇𝐹  and Φ from equation (12) and (17) respectively, 

                                                ∇2 1

2
𝑔00 =  2𝜋𝑙𝑝𝑐2𝜌 

                                                    ∇2𝑔00 =  4𝜋𝑙𝑝𝑐2𝜌                                               (19) 

The mass density on the R.H.S of the equation (15) can be represented as a tensor in the 

form of stress-energy tensor whose derivative will always be equal to zero as energy can 

neither be created nor destroyed. Thus, 

                                                         4𝜋𝑙𝑝𝑐2𝜌 =  4𝜋𝑙𝑝𝑐2𝑇𝜇𝜈   and, 



                                                          ∇(4𝜋𝑙𝑝𝑐2𝑇𝜇𝜈) =  0                                         (20) 

            Multiplying and dividing by 
2𝑙𝑝𝑐

ℏ
 on the L.H.S of equation 20, we have 

                                                         ∇ (
8𝜋𝑙𝑝

2𝑐3

ℏ
(

ℏ

2𝑐𝑙𝑝
𝑇𝜇𝜈)) =  0                               (21) 

             Also, from general relativity,    ∇ (𝑅𝜇𝜈 – ( 
1

2
𝑅 − Λ)𝑔𝜇𝜈) =  0                     (22)          

             From equation (21) and (22) 

                                           𝑅𝜇𝜈 −  
1

2
𝑔𝜇𝜈𝑅 +  Λ𝑔𝜇𝜈 =  (

8𝜋𝑙𝑝
2𝑐3

ℏ
(

ℏ

2𝑐𝑙𝑝
𝑇𝜇𝜈))               (23) 

Since we are dealing with four dimensions, that is one dimension of time and three 

dimension of space we will divide the R.H.S of equation (23) with 𝑐4 

                                           𝑅𝜇𝜈 −  
1

2
𝑔𝜇𝜈𝑅 +  Λ𝑔𝜇𝜈 =  (

8𝜋𝑙𝑝
2𝑐3

𝑐4ℏ
(

ℏ

2𝑐𝑙𝑝
𝑇𝜇𝜈))                 (24) 

             Substituting the value of 
𝑙𝑝

2

ℏ
  from equation (2) in above equation and re-arranging 

                                                 𝑅𝜇𝜈 −  
1

2
𝑔𝜇𝜈𝑅 +  Λ𝑔𝜇𝜈 = ℎ [𝑘0𝑇𝜇𝜈]                           (25) 

          Where,     𝑘0 =  
2𝐺

𝑙𝑝𝑐5   

        Therefore, when stress-energy tensor 𝑇𝜇𝜈 changes by integral multiple of 𝑘0
−1

 that is  

        𝑇𝜇𝜈 = 𝑛𝑘0
−1

  Equation 25 can be redefined as, 

                         𝑅𝜇𝜈 −  
1

2
𝑔𝜇𝜈𝑅 +  Λ𝑔𝜇𝜈 =  𝑛ℎ   [ where n= 1, 2, 3….]                       (26) 

 

7. Conclusion: Due to the change in the mass of a body, the Riemannian metric changes 

accordingly. When there is a change in stress-energy tensor by a factor of 𝑘0
−1

 

,Riemannian metric changes discreetly. In general, the change in mass by an integral 

multiple of 𝑘0
−1

 leads to chance in space-time discretely. This can be clearly observed 

from equation (26). And since, gravity is the result of bend in Space-time and the bend of 

space-time is discrete in nature, this must conclude that the gravitational force itself is 

discrete in nature. 
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