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Abstract

Regarding Benford’s law, many believe that the statistical data resulting from

various data sources follow a Benford law probability density function ( )
xLn(10)

when, in actuality, it really follows a Lognormal probability density function. The
only data that strictly follows a Benford’s law probability density function is an
exponential function i.e. N*. The other sets of data conform to a Lognormal
distribution and, as the standard deviation approaches infinity, approximates a
true Benford distribution.

Also, the so called Summation theorem whereby the sum of the values with
respect to the first digits is a uniform distribution only applies to an exponential
function. The data derived from the aforementioned Lognormal distribution is
more likely to conform to a Benford like distribution as the data seems to
indicate.

Proof that an exponential function conforms to Benford’s Law.
1) Let exponential function y=10"

2) Let v = Logio (y) = x Logio (10) = x, which is the probability distribution of the log of 10" as the log of
10" varies from0Oto 1

3) The probability density function of the log of 10%is the derivative of v with respect to x, which is 1.

4) Apply the formula pdf, dv = pdf, dy



dv
5) pdfv = pdfv X E

1
6) v = Logio y) = g
dv 1
)% = Jino)
8) pdf, = !

yin(10)

9) fab pdf, dy = Probability [Pr(a <y <b)] =

b
— Ln—
10y [ Loy inrine) ini

b
yLn(10)  Ln(10)7a y o) - o) - 08w (2)

11) Let b =2, a = 1; Logo (2) = 0.30103
Letb =3, a=2; Logio (g) =0.176091
Let b=4, a = 3; Logo (g) = 0.124939
Letb =5, a =4 Logio (E) =0.096910
Letb=6,a=5; Logo (<) = 0.096910
Letb =7, a=6; Logio (g) = 0.066947
Letb=8,a=7; Logio (§) = 0.057992
Letb=9, a=8; Logio (%) =0.051153
Let b =10,a=9; Logio (?) =0.045757

The Ist digit distribution conforms to Benford’s Law.
Scale Invariance

The scale invariance associated with Benford’s law states if the original data were
multiplied by a constant the Ist digits distribution would still apply. An example of



this would be converting data from inches to centimeters. The following
argument constitutes a proof of this assertion.

_ 1 ato™tdx 1 N+ Ny 1 _
Let a = scale factor. n10) falON ~ S0 [ In(@a10™") —In(a10")] = —ln(lo)[(N+1)|n(10) +In(a)
_ 1 i _ _In(10) _
NIn(10) —In(a)] = ln(10)[Nln(10) NIn(10) + In(a) — In(a) + In(10)] = n(10)

1 [f2a1oN E] _In(2a10™-In(a10™) _

Numbers starting from a -2a

;ln(10) ato™ x4 In(10)
In(2)+In(a)-In(a)+nin(10)-nin(10) _ In(2) _
In(10) " In(10) logs 2

3
1 3a10Vdx In(3)
Upiion =22

Likewise for numbers starting with 2: —
In(10)

2a10" % In(10) log1o 3/2

Example: converting inches to centimeters

Scale factor: a = 2.54 centimeters/inch

1 2x2.54x10" dx 1 _In(2) _
T . [In(2.54) + In(2) + NIn(10) - In(2.54) = NIn(10)] = G0

254x10%  x In(10)

0810 2

1 ra(m+1)10dx _ Ny N _
) famlON — =[ In(a(m+1)x10") - In(amx10")}/In(10) = In(a) + In(m+1)

+NIn(10) = In(a) — In(m) — NIn(10) = [In(m+1) — In(m)]/In(10) = In(mTH)/In(lo) =log1g

m+1

m

The sum of the values with respect to the first digits for a pure Benford

distribution (pdf =

XIn(10) ) is a uniform distribution. This only applies to an

exponential function i.e. N*. The following argument is proof of this assertion.



An Alternate Proof of the Summation Theorem

For numbers that follow Benford’s law the sum of all numbers that start with a particular digit
are the same as the sum of all numbers that start with any other digit i.e. sum of all numbers
that start with 1 is the same as all numbers that start with 2 or 3, 4 etc.

1
In(2)x

. 2dx . 1 2dx
since fl —=In(2)i.e. ol

The pdf of numbers begin with digit 1 is

Average value of x = f: xpdf,dx / f; pdfydx ; Average value of numbers between 1and 2 =

1 2xdx _ 1 fz x_2—1_ ! =1.442695

In(2)71 x ~ In@)’1 " In)  In(2)

Average value between 10 —20 = 1niz) f1200 % = ﬁ f1200 x = 21?1;;)0 = 1;11(02) = 14.42695
Generally: Average Value =$f12;;10]“ X= 1111(():)

Likewise for numbers starting with 8: pdf = ﬁ(z) ; Average value = @ f:;rllo(f' - %

The average value of all numbers that begin with a particular digit X the number of numbers
that begin with the same digit = the sum of all numbers that begin with the same digit.

Let N = the total numbers or samples considered in a set of numbers that conform to Benford’s

law. If the range from 1 to 10 then the average number beginning with 1 is 1/In(2) and the

numbers of numbers that begin with 1 according to Benford’s law is N X % or N Xlogy, 2.

1 ,Nn@) _ N

The sum of all numbers starting with 1 is o X In(10) ~ In(10) "

The situation is a little different for numbers spread over several orders of magnitude.

1

5\ — . =
In(10°) = 5In(10); pdf = 5In(10)

Consider a range from 1 to 100,000. f1100,000ci_x =

_ NP _ NIn@2) _N
Numbers between 1-2 = SIn10) -~ SIn(io) - glogm 2

20dx
f107

N
5ln(10) Eloglo 2

Numbers between 10 — 20 =

200dx

_ wao? _N
Numbers between 100 — 200 = S0y - 3 logqo 2



2000dx

_ NI10007 _N
Numbers between 1,000 — 2,000 = S - Eloglo 2

20000dx

N —_
Numbers between 10,000 — 20,000 = Mioooo 5 _ ﬂloglo 2
5In(10) 5

N 10g10 2

Total = X5 =Nlogq, 2

The average value between 1-2 = ﬁ =1.44269504

The average value between 10 - 20 = % =14.4269504

10

The average value between 100 — 200 = T =144.4269504

The average value between 1,000 — 2,000 = TO) = 1444.269504
10000

The average value between 10,000 — 20,000 = o) - = 14442.69504

Summation = average value X the number of samples starting with the number 1

1 NIn(2), N
1n(2))x(51n(1o)) ~ 5In(10)

1-2:(

NIn(2) 10N

10-20:( 51n(10))=51n(10)

= (2)) (

Nin(2)
5In(10)

100N

100 — 200 (— S0

X )=

In (2)

1000
In(2)

Nin(2) _ 1000N
5In(10) ~ 5In(10)

1,000 — 2,000: (——)X(

10000
In(2)

10000N
5In(10)

Nin(2)

10,000 — 20,000: ( SIn(10)

)X( )=

Total Summation = X (1+10+100 + 1000 + 10000) = X11,111

N
51n(10) 5ln (10)

In General: Summation ( assuming ( highest value/lowest value) mod 10=0) = %

0810

minvalue

Zloglo maxvalue—1 10k
k=log,o minvalue

1 (10)

For numbers that range between 1.0 - 1.1, 10 — 11, 100 — 110 etc, the average values change as
follows:



The average value between 1.0-1.1 = 3

Likewise for:

L -10.4921

10-11: =
nl1.1

100 - 110: =~ = 104.9205
n1.1

1,000 — 1100: —2 = 1,049.2059
n1.1

1000

10,000 -20,000: —
In1.1

=10,492.059

Etc.

1 11xdx _11-1.0 _ 0.1
1.0 x

In general: Summation =

0810 min value

1
maxvalue X (ln(10)

) x0.13

n1.1

T In11

log,9 max value—1
k=log,o minvalue

=1.0492

10k

Fig#l - Summation with Respect to the 1% Digits i.e. 1,2,3,4,5,6,7,8,9 of an

Exponential Function
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Avg % Diff=

The distribution with respect to the Ist digits is a uniform distribution

%Difference
63.11%
36.85%
11.28%
14.50%
40.71%
65.76%
90.85%

117.46%
144.00%
5.845198815

64.95%

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE



Proof that the multiplication of statistically independent numbers results in a
Lognormal distribution and the resulting distribution approaches a Benford
distribution as the standard deviation approaches infinity.

Most numbers encountered in real life such as populations, scientific data, and accounting data are
derived from the multiplication the multiplication of statistically independent numbers, which constitute
a Lognormal ( as opposed to a normal distribution) analogous to a Gaussian or Normal probability
density function, which is derived from the addition of statistically independent numbers.

The following is a proof that the multiplication of statistically independent numbers result in a
Lognormal distribution and as its standard deviation approaches infinity the probability density function
approaches a Benford distribution.

) Y =the product of xi, X2 X3, Xg ......X;
) Ln(Y) = Ln(x1) + Ln(x2) + Ln(x3) + Ln(xa) + .... Ln(x,)
3) Because Ln(x) is a function of x and Lx(x;) are statistically independent
) Pdf conforms to the Central Limit Theorem as r = oo.
)

pdf, = 1 e~ (v-w?/20?

6) Y=Ln(x);dy= %
7) pdf, dy = pdf,dx
8) pdf.= pdf,2Y = 2

dx x
1 2 2 1 _ —11)2 2 . —
9) pdf= = e~ 0w /20" o=(Un(x)-w)?/20% . ;s the standard deviation of
) pdfy xy 2mo? xv 2ma?

Ln(x)

10) The Benford probability density function = XIn(10)’

11) The Lognormal probability density function = e~ (In()-w?/20°

x+ 2mo?

12)Letu=0
1 2, 2 1
13) For x=1: 1/x = 1; ——— g~ (Ln(®) /20" o _L_
) et

xv 2mo? 2o’

V2mo?

Ln(10)

14) Normalize by multiplying the Lognormal distribution by

15) = 1 e~ (In()-w?/20”
xLn(10)

e —(Ln(x)-u)?/20?

16) For any given value of x the value approaches 1 as o approaches oo



Figs# 2-4 lllustrate the shape of the Lognormal probability density function as
the standard deviation increases and eventually approaches a Benford
probability density function

Fig#2 — Lognormal Probability Density Function v. Benford Probability Density
Function
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Figh3 — Lognormal Probability Density Function v. Benford Probability Density
Function
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Fig#4 — Lognormal Probability Density Function v. Benford Probability Density

Function
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Also, if the standard deviation of the Lognormal probability density function

approaches 0 then the distribution approaches a Gaussian or Normal distribution.

Proof that as the standard deviation of a lognormal distribution approaches 0
the distribution becomes a Normal distribution with a mean of e where u is
the mean of the natural logarithm of the data.

1) Lognormal distribution: F(x) =

1 —(Ln(x)—u)?
=¢ 20° ;u=mean(In(x)), o = std_dev(In(x))

X\ 2o



2) Determine the mode of the Lognormal distribution i.e.

dy 1 dy e—(Ln(x)—u)Z/Zfr2

= ) = 0; solve for x
dx 2ma? dx X

3) Y _ o-Lnx)-w?/20° [L’?“‘) -1]=0
dx o
—Ln(x)+u

4) SoIvexforT—1=0

5) Ln(x) = u-o0?

6) x=e® )
7) Aso->0; x>et
g F 1 —ane-w?
= 20°
Y x+/ 2ma? €

9) Taylor series of Ln(x) about e* =

uy | x—ev ) (x—e¥™)?  (x—e¥)?
10) Ln(e ) + el 2€2u 393u

+....+

11) Ln(x-e%) ~ Ln(e™) + ’% aso >0
x—e¥%
eu

12) Ln(x-e%) ~ u +

u
x—e
—(u+ s —u)?

e 207

13) F(x) ~

1
x 2mo?

x—e%,

_( eu)
e 20° aso—>0

14) F(x) =~

e%/2mo?

1 _(x_euzz
15)Fx) ~ s € 20

16) ux = mean(x); ox = std_dev(x)

17)ux~e%; ox~ uxo
_(x_u'x)2
e z(ax)z

1
18)F() ~ =

19) Which is a Normal Distribution with a mean of e*



Figh5 — Probability Density Function of a Lognormal Distribution with a Small
Value Standard Deviation
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the probability function of the Logio of the exponential function is a constant

while

The probability density function of an exponential function i.e. 10™ is

namely, 1.

The probability density function of logarithm of data that conforms to a
Lognormal distribution is a

Gaussian or Normal distribution.



The following argument constitutes a proof that the probability density function
of the logarithm of data that conforms to a Lognormal distribution is a Gaussian
or Normal distribution.

e—(Ln(x)—u)Z/Za2

1. ForaLognormal distribution the pdfy (probability density function) = —
X o

2. Y =Llogo(x)
pdf, dy = pdf,dx
dx
4. pdf, = pdfy o

dy 1 dx_
> dx  xLn(10)’ dy xLn(10)
6. x = 10Y

2
7. odf,(L = Ln(10)* 10'08) ;e_(Ln(lolog(x))_u) J20% _
pdf,(Log(x)) = Ln(10) T

8. (x)*Ln(10) ——

~(Ln()-w?/20% = | n(10) ——r ¢~ ELn(-w?/26* \\hichisa G .
wano Nl )We , Which is a Gaussian

distribution with respect to log(x)

Figures 6-8 lllustrate the probability density function of the logarithm of a data set
that conforms to a Lognormal distribution and how it approaches a uniform
distribution of a true Benford distribution as the Standard deviation increases.



Fig#6 — Probability Density Function of the Logarithm of a Data Set that
Conforms to a Lognormal Distribution
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For an exponential distribution, the mantissas between integral powers of ten

(IPOT) are uniform since the probability density function is 1. This accounts for the

fact that numbers beginning with 1 occur about 30% of the time and numbers

beginning with 9 occur about 4.6% of the time.



Fig#7 — Probability Density Function of a Data Set that Conforms to a Lognormal
Distribution as the Standard Deviation Increases
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Fig#8 - Probability Density Function of a Data Set that Conforms to a Lognormal
Distribution as the Standard Deviation Increases
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For a Lognormal distribution or any other distribution if it can be shown that the
sum of all mantissas for each IPOT approaches a constant value as the number of
number of integral powers of ten (IPOT) approaches infinity and therefore the
data set will conform to Benford’s Law. The following argument constitutes a
proof of this assertion.

Proof that if the probability density function of the logarithm of a data set is
continuous and begins and ends on the x-axis and the number of integral power
of ten (IPOT) values approaches infinity then the probability density function of
the resulting mantissas will be uniform and; therefore, the data set will conform
to Benford’s law

1) The probability density function of a data set that conforms to Benford’s Law is k/x =
1
In(10)x
2) The probability density function of the log of the same function is a uniform distribution,

a. pdf(y)dy = pdf(x)dx




In(x)

b. Y= Iog(x) = m
d
c. pdf(y) = pdf(x) ﬁ
dy _ 1
d. dx xIn(10)

dx
e. o - xIn(10)

In(10
f. pdf(y)=ilZE103

3) Therefore, If it can be shown that the pdf of the log of a function is uniform then the

data set follows Benford’s Law.

=1 — Uniform Distribution

Fx
PDF
Fmax
3 F7  Es Fo
P F F Fi Fig
; Flrm =L ms ms | m7 | mef me [ ol
Fo o m
X AX WX TAX VA XX WX WU XPLX XL X Wy
LOG \ G(Fmax)
4) Y =F(x)
dx

6) [o)Y'dx = [, F'(x)dx = F(Xf)~F(X0) = 0

, _ 1 Xf _ 0
7) Avg Value of Y’ = XF—xo on Y'dx = pe



8) Fi(x) =" a5 0

Xf ., _1 F(i+1)-F(
9) [3) F'(x)dx = 0; Tt HER=r0

Ax
10) let m(i) == —F(HZ)X_F(D

11) YN 'm@) AX=0;AX>0

Let’s consider a simpler case.

=0 asAX—>0

PDF
m2 ms3
m3
1 X1 2" x2 3 X3 4
IPOT
12) Let AX =1

13) mi+ M+ M3+ mg+tms = 0



14) Z?=1x1= MaX + My + MaX + My + Mz + M3X + Myt Mz + M3 + MaX +
my+my+ms+mg+msx = K

15) X( mi+ Mz + M3+ Mg +Ms) + M+ M+ M+ M+ Mz + Mz + My + M3+ mMs
+myg = K

16) mi+ ma+mz+mg+ms =0

17) Y2, xi= 4m+3m; + 2ms + my = K ( constant)

18) AREA UNDER PDF =1
18) [ f(x) dx =1
20)%+ m1+%+(m1+ m2)+%+( mi+ my+ m3)+%+ (mq+ Mz + m3 +my) +%

=1

21) mi+Ema+ms+mg+mg =0
22) Ami+3my+2mz+mg =1

Therefore K=1

The sum of all functions at IPOT + x = 1 for any x.

The sum of all mantissas is a uniform distribution whose amplitude is equal to 1

and the PDF approaches a Benford distribution as % - 0.

23) For the more general case:

24) Yo m; =

25) mix + my + myX + m; + my + msx + ... m; +m,+ms+..mx =
K

26) x(my+my + ... + mq )+ (r-2)my + (r-3)mz +..+ m,_, = K



27) x(my+my+mz+meq)=0

28) (n-2)m; + (n-1)m, + ...+ m,, =K

M1
2

29)%+m1+%+m1+m2+%+m1+m2+m3+..+mr_z+
=K
30)%(m1+ m,+ m3+mr_1)=0

31) (n-2)m; + (n-1)m, + ..... +m._,=1
32) K=1
33) The sum of mantissa values at IPOT + x = 1 for any x

34) The sum of all mantissas is a uniform distribution whose amplitude is

And, therefore, the PDF approaches a Benford distribution as AN—x - 0.

Proof that if the probability density function of the Logarithm a data set is
continuous and begins and ends on the x-axis and the number of integral
power of ten values approaches infinity then the sum of probability

distributions of all fixed intervals from all IPOT (AX) equals the interval

Itself (AX).



PDF

TR 5
IPOT

w
=
=

14Ax 2AX

1) X1 fii+Apdf dx =%m1(Ax)2 + m;Ax +%m2(Ax)2 + (my + my)Ax +
%m3(AX)2 + (m; + m; + m3)Ax + % m,(Ax)? =K

2) %(AX) 2(m; + my + msz +my ) + (3my + 2m; + m3)Ax =K

3) m;+m;+mz+my=0

4) ~my +my ++2my +my Mg+ 2ms +my Mg+ ms +om, =

5) ;(m1+m2+m3+m4)+3m1+2m2+m3:1

6) 3m; +2m; +mz=1
7) (3m; + 2m; + m3)Ax =Ax

i+Ax

8) X[ pdf dx=Ax

In General:



i+Ax

9) XS pdf dx = S(AX)2(ma+ my +m + Mo )+
10) [(n—2)my+ (n—1)my + ... + m_,]Ax = Ax

It can be easily shown that the fixed intervals don’t have to start and end on an interval power
of ten such as 10,100,1000 or 1,2,3 on a LOG plot as long as the fixed intervals are all offset by a
power of ten.

For instance, the left most interval starting point, where the curve intersects the x-axis, could
be 2 with each succeeding interval 10 times the previous intervali.e 20,200,2000 etc. The data
would still conform to Benford’s Law with digit 1 contained in intervals 10-20, 100-200, 1000-
2000; digit 2: 2-3,20-30,200-300;digit 3: 3-4,30-40,300-400;digit 4: 4-5,40-50,400-500;digit 5:5-
6,50-60,500-600;digit 6:6-7,60-70,600-700;digit 7:7-8,70-80,700-800;digit 8:8-9,80-90,800-
900;digit 9:9-10,90-100,900-1000. The first digit starts in the tens and ends in the 1000s; all of
the others start in the single digits and end in the 100s. It’s still the same result obtained by
having the IPOT at each interval such as 1,10,100,1,000 etc.

This would explain why data sets that span many orders of magnitude conform
very closely to Benford’s law and data sets that span fewer orders of magnitude
do not. This also explains why several other distributions such as gamma, beta,
Weibull and exponential probability density functions conform fairly closely to
Benford’s law and why Gaussian or Normal distributions do not ( the pdf of the
logarithm of a Gaussian data span a very limited number of IPOTSs. i.e.

1

X* e~(-wW?/20° the o=(x~W?/20" torm falls too rapidly.

2mo?

The probability distribution function of the sum of the values with respect to the
first digits is a uniform distribution for an exponential function i.e. 10" but not for
a Lognormal distribution. The distribution is more apt to be a Benford
Distribution as the following argument asserts.



Proof that the probability distribution of the sum of the values of a Lognormal
probability density function with respect to the first digits (1 through 9) is
nearly a Benford distribution and not a uniform distribution.

The probability distribution function of the sum of the values of a Benford
probability density function ( 1/x) with respect to the first digits is a uniform
distribution but such is not the case for a Lognormal density function.

Most numbers encountered in real life such as populations, scientific data, and
accounting data are derived from the multiplication of statistically independent
numbers, which constitute a Lognormal probability density function analogous to
a Gaussian or Normal probability density function, which is derived from the
addition of statistically independent numbers.

The following argument constitutes a proof that the sum of these numbers with
respect to the first digits is nearly a Benford distribution as well as the number of
values with respect to the first digits.

1. Pdf, ( probability density function) = f(x)
f:xf(x) dx
J2 Feoax

Number of samples betweenaandb = fof(x)dx

2. Average value =

Sum of values between a and b is Average value X number of samples betweenaand b =

[ xf (x) dx b
=2-— " XN dx =
JP feoax fa flx)dx

6. Nf‘f xf (x)dx

e—(n()-1w)?/20

xv 2ma?
p e-(n@®-w?/20?

8. Nf; Xf(X)dX =N fa W dx

e—(ln(x)—u)z/za2

7. For Lognormal distribution f(x) =

9. Assume Pdf, =

2mo?

10. y = Log(x)
11. Pdf, dy = Pdf, dx

12. Pdf, = Pdfo—;



13.

14.

15.
16.

17.

dx xIn(10)

dy 1

’

Pdf, (log(x)) = In(10)10'°8()

—(In(x)-u)2/20°

(x)* In(10)*

dx _
dy_

x In(10)

V2mo?

If Log plot of can be approximated with straight line between Integral power of ten (IPOT) then
Because the mantissa distribution approaches a uniform distribution the resulting distribution of

—(ln(1010g("7))—u)2/2¢7z

21O

2

The x will be a nearly Benford distribution.

Therefore, the Ist digit distribution of the sum of values should be a nearly Benford distribution
Instead of a uniform distribution as previously thought.

Fig#9 — Summation with Respect to the Ist Digits i.e. 1,2,3,4,5,6,7,8,9 of
the Multiplication of Nine Random Numbers

First Digit Test

Digit

O ONOU A WNR

Total

Rate

MO

ST M Yoy v v,

-

Sample
49054
28470
20533
15742
12825
10977
9645
8210
7577

163033

Benford
0.301029996
0.176091259
0.124938737
0.096910013
0.079181246
0.06694679
0.057991947
0.051152522
0.045757491

i

Summation of multiplication of nine numbers

Sample
0.29667702
0.170892346
0.131689928
0.10075557
0.080854818
0.067219623
0.058996655
0.047086447
0.045827592

Benford

Sample

Difference
0.004352976

-0.005198913

0.006751191
0.003845557
0.001673572
0.000272833
0.001004708
-0.004066075
7.01014E-05
SUM=
MAD=

ABS Diff

0.00435298
0.00519891
0.00675119
0.00384556
0.00167357
0.00027283
0.00100471
0.00406608
7.0101E-05
0.02723593
0.00302621

Avg % Diff=

%Difference
1.45%
2.95%
5.40%
3.97%
2.11%
0.41%
1.73%
7.95%
0.15%
0.261259552

2.90%

FALSE
FALSE
TRUE
FALSE
FALSE
FALSE
FALSE
TRUE
FALSE



Fig#10 - Summation with Respect to the Ist Digits i.e. 1,2,3,4,5,6,7,8,9 of
Stream Flow data

First Digit Test

Summation of Streamflow Data

Digit Sample Benford Sample
1 135874 0.301029996 0.28420407
2 78775 0.176091259 0.1875077
3 55734 0.124938737 0.111979602
4 43170 0.096910013 0.102632923
5 34945 0.079181246 0.09556506
6 29078 0.06694679 0.0751976
7 25627 0.057991947 0.05641918
8 22737 0.051152522 0.044906045
9 20192 0.045757491 0.0415878
Total 446132
0.35 ‘ |
0.3 |
j 0.25 -
| .4 02
-
€ 015 L] Benford
01 L ] Sample
0.05

3 4 5 6 879

7
Digit

Difference
-0.016825926
0.011416441
-0.012959135

0.00572291
0.016383814
0.00825081
-0.001572767
-0.006246477
-0.004169691
SUM=
MAD=

ABS Diff

0.01682593
0.01141644
0.01295913
0.00572291
0.01638381
0.00825081
0.00157277
0.00624648
0.00416969
0.08354797
0.00928311

Avg % Diff=

%Difference

5.59%

6.48%
10.37%
5.91%
20.69%
12.32%
2.71%
12.21%
9.11%
0.854025489

9.49%

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE



Figll - Summation with Respect to the Ist Digits i.e. 1,2,3,4,5,6,7,8,9 of
IRS Collection of Adjusted Gross Income (AGl) in 1978

First Digit Test

0O N E WN R T

©

Total

Rate

49430

32276
18629
13499
10892
7862
6198
5934
6040

150760

Benford
0.301029996
0.176091259
0.124938737
0.096910013
0.079181246
0.06694679
0.057991947
0.051152522
0.045757491

Summation of AGI 1978

Difference

0.277 -0.024029996

0.188 0.011908741
0.1097 -0.015238737
0.1069 0.009989987
0.1 0.020818754
0.073 0.00605321
0.0558 -0.002191947
0.047 -0.004152522
0.042 0.003757491
SUM=
MAD
Benford

Sample

S Diff

0.02403
0.01190874
0.01523874
0.00998999
0.02081875
0.00605321
0.00219195
0.00415252
0.00375749
0.09814138
0.0109046

Y [Viff—
it

Difference
7.98%
6.76%

12.20%
10.31%
26.29%
9.04%
3.78%
8.12%
8.21%
0.926946723

The distributions appear to reasonably close to a Benford distribution and not a

uniform distribution

Conclusion

A true Benford distribution only occurs with an exponential function. All other

numbers consisting of an aggregation of multiplied statistically independent
numbers conform to a Lognormal distribution which approaches a true Benford
distribution as the standard deviation approaches infinity.

The probability density function of the logarithm of a data set that conforms to

a true Benford distribution i.e. exponential function is a constant value,

TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
FALSE
TRUE
TRUE



whereas the probability density function of the logarithm of a Lognormal data
set is a Gaussian or Normal distribution that approaches a constant value as the
standard deviation approaches infinity.

The summation with respect to the Ist digits is a uniform distribution only for
exponential functions and a Benford like distribution for Log Normal
distributions.
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