
  Statistical Relationships Involving Benford’s Law, the      

Lognormal Distribution, and the Summation Theorem     

                                   R C Hall, MSEE, BSEE               

                              e-mail: rhall20448@aol.com                         

 

                                                              Abstract 

Regarding Benford’s law, many believe that the statistical data resulting from 

various data sources follow a Benford law probability density function (
1

𝑥𝐿𝑛(10)
) 

when, in actuality, it really follows a Lognormal probability density function. The 

only data that strictly follows a Benford’s law probability density function is an 

exponential function i.e. N˟. The other sets of data conform to a Lognormal  

distribution and, as the standard deviation approaches infinity,  approximates a 

true Benford distribution.  

Also, the so called Summation theorem whereby the sum of the values with 

respect to the first digits is a uniform distribution only applies to an exponential 

function. The data derived from the aforementioned Lognormal distribution is 

more likely to conform to a Benford like distribution as the data seems to 

indicate.  

 

Proof that an exponential function conforms to Benford’s Law. 

1) Let  exponential  function  y = 10˟ 

2) Let v = Log₁₀ (y)  = x Log₁₀ (10) = x , which is the probability distribution of the log of 10˟ as the log of    

10˟ varies from 0 to 1  

3) The probability density function of the log of 10˟is the derivative of v with respect to x, which is 1.  

4) Apply the formula pdfᵥ dv = pdfᵧ dy 



5) pdfᵧ = pdfᵥ x 
𝑑𝑣

𝑑𝑦
 

6) v = Log₁₀ (y) = 
ln⁡(𝑦)

ln⁡(10)
 

7) 
𝑑𝑣

𝑑𝑦
 = 

1

𝑦𝑙𝑛(10)
  

8) pdfᵧ =  
1

𝑦𝑙𝑛(10)
 

9) ∫ 𝑝𝑑𝑓ᵧ
𝑏

𝑎
𝑑𝑦 = Probability [Pr(a ≤ y ≤ b)] = 

10) ∫
𝑑𝑦

𝑦𝐿𝑛(10)

𝑏

𝑎
 = 

1

𝐿𝑛(10)
 ∫

𝑑𝑦

𝑦

𝑏

𝑎
 = 

𝐿𝑛(𝑏)−𝐿𝑛(𝑎)

𝐿𝑛(10)
 = 

𝐿𝑛
𝑏

𝑎

𝐿𝑛(10)
 = Log₁₀ (

𝑏

𝑎
)  

11) Let b = 2, a = 1; Log₁₀ (2) = 0.30103 

       Let b = 3, a = 2; Log₁₀ (
3

2
) = 0.176091 

       Let b= 4, a = 3; Log₁₀ (
4

3
) = 0.124939 

       Let b = 5, a = 4; Log₁₀ (
5

4
) = 0.096910 

       Let b = 6, a = 5; Log₁₀ (
6

5
) = 0.096910 

       Let b = 7, a = 6; Log₁₀ (
7

6
) = 0.066947 

       Let b = 8, a = 7; Log₁₀ (
8

7
) = 0.057992 

       Let b = 9, a = 8; Log₁₀ (
9

8
) = 0.051153 

       Let b =10,a=9; Log₁₀ (
10

9
) = 0.045757 

The Ist digit distribution conforms to Benford’s Law. 

 

Scale Invariance 

 

The scale invariance associated with Benford’s law states if the original data were 

multiplied by a constant the Ist digits distribution would still apply. An example of 



this would be converting data from inches to centimeters. The following 

argument constitutes a proof of this assertion.  

                                

Let a = scale factor.  
1

ln⁡(10)
 ∫

𝑑𝑥

𝑥

𝑎10ᴺ⁺¹

𝑎10ᴺ
 = 

1

ln⁡(10)
 [ ln(a10ᴺ⁺¹) – ln(a10ᴺ)] = 

1

ln⁡(10)
[(N+1)ln(10) + ln(a) – 

Nln(10) – ln(a)] = 
1

ln⁡(10)
[Nln(10) - Nln(10) + ln(a) – ln(a)  + ln(10)] = 

ln⁡(10)

𝑙𝑛(10)
 = 1 

 

Numbers starting from a →2a; 
1

ln⁡(10)
 [∫

𝑑𝑥

𝑥

2𝑎10ᴺ

𝑎10ᴺ
] = 

ln(2𝑎10ᴺ)−ln⁡(𝑎10ᴺ)

ln⁡(10)
 = 

ln(2)+ln(𝑎)−ln(𝑎)+𝑛𝑙𝑛(10)−𝑛𝑙𝑛(10)

ln⁡(10)
 = 

ln⁡(2)

ln⁡(10)
 = log10 2 

Likewise for numbers starting with 2: 
1

ln⁡(10)
[∫

𝑑𝑥

𝑥

3𝑎10ᴺ

2𝑎10ᴺ
 = 

ln⁡(
3

2
)

ln⁡(10)
 = log10 3/2 

 

Example: converting inches to centimeters 

Scale factor: a = 2.54 centimeters/inch 

1

ln(10)
 [∫

𝑑𝑥

𝑥

2𝑥2.54𝑥10ᴺ

2.54⁡𝑥10ᴺ
 = 

1

ln⁡(10)
[ln(2.54) + ln(2)  + Nln(10) – ln(2.54) – Nln(10)] = 

ln⁡(2)

ln⁡(10)
 = log10 2 

m = 1…….9  
1

ln⁡(10)
∫

𝑑𝑥

𝑥

𝑎(𝑚+1)10ᴺ

𝑎𝑚10ᴺ
 =[ ln(a(m+1)x10ᴺ) – ln(amx10ᴺ)]/ln(10) = ln(a) + ln(m+1) 

+Nln(10) – ln(a) – ln(m) – Nln(10) = [ln(m+1) – ln(m)]/ln(10) = ln(
𝑚+1

𝑚
)/ln(10) = log10

𝑚+1

𝑚
   

 

The sum of the values with respect to the first digits for a pure Benford 

distribution (pdf =  
1

𝑥𝑙𝑛(10)
 ) is a uniform distribution. This only applies to an 

exponential function i.e. Nˣ. The following argument is proof of this assertion. 

 

      

 



      An Alternate Proof of the Summation Theorem 

For numbers that follow Benford’s law the sum of all numbers that start with a particular digit 

are the same as the sum of all numbers that start with any other digit i.e. sum of all numbers 

that start with 1 is the same as all numbers that start with 2 or 3, 4 etc.  

 

The pdf of numbers begin with digit 1 is 
1

ln(2)𝑥
 since ∫

𝑑𝑥

𝑥

2

1
 = ln(2) i.e. 

1

ln⁡(2)
∫

𝑑𝑥

𝑥

2

1
 = 1 

Average value of x = ∫ 𝑥𝑝𝑑𝑓ᵪ𝑑𝑥
𝑏

𝑎
/∫ 𝑝𝑑𝑓ᵪ𝑑𝑥

𝑏

𝑎
 ; Average value of numbers between 1 and 2 = 

1

ln⁡(2)
∫

𝑥𝑑𝑥

𝑥

2

1
 = 

1

ln⁡(2)
∫ 𝑑𝑥
2

1
 = 

2−1

ln⁡(2)
 = 

1

ln⁡(2)
 = 1.442695  

Average value between 10 – 20 = 
1

ln⁡(2)
∫

𝑥𝑑𝑥

𝑥

20

10
 = 

1

ln⁡(2)
∫ 𝑑𝑥
20

10
 = 

20−10

ln⁡(2)
 = 

10

ln⁡(2)
 = 14.42695 

Generally: Average Value = 
1

ln⁡(2)
∫ dx
2x10ᴺ

10ᴺ
 = 

10ᴺ

ln⁡(2)
 

Likewise for numbers starting with 8: pdf =  
1

𝑥𝑙𝑛(
9

8
)
 ; Average value = 

𝟏

𝒍𝒏⁡(
𝟗

𝟖
)
∫ 𝒅𝒙
𝟗𝒙𝟏𝟎ᴺ

𝟖𝒙𝟏𝟎ᴺ
 = 

𝟏𝟎ᴺ

𝒍𝒏⁡(
𝟗

𝟖
)
 

The average value of all numbers that begin with a particular digit X the number of numbers 

that begin with the same digit = the sum of all numbers that begin with the same digit.  

Let N = the total numbers or samples considered in a set of numbers that conform to Benford’s 

law.  If the range from 1 to 10 then the average number beginning with 1 is 1/ln(2) and the 

numbers of numbers that begin with 1 according to Benford’s law is N X 
ln⁡(2)

ln⁡(10)
  or N X log10 2. 

The sum of all numbers starting with 1 is 
1

ln⁡(2)
 X 

𝑁𝑙𝑛(2)

ln⁡(10)
 = 

𝑵

𝒍𝒏⁡(𝟏𝟎)
 .  

The situation is a little different for numbers spread over several orders of magnitude.  

Consider a range from 1 to 100,000.  ∫
𝑑𝑥

𝑥

100,000

1
 = ln(10⁵) = 5ln(10); pdf = 

1

5ln⁡(10)
 

Numbers between 1-2 = 
𝑁∫

𝑑𝑥

𝑥

2
1

5ln⁡(10)
 = 

𝑁𝑙𝑛(2)

5ln⁡(10)
 = 

𝑁

5
log10 2 

Numbers between 10 – 20 = 
𝑁∫

𝑑𝑥

𝑥

20
10

5ln⁡(10)
  = 

𝑁

5
log10 2 

Numbers between 100 – 200 = 
𝑁∫

𝑑𝑥

𝑥

200
100

5ln⁡(10)
 =  

𝑁

5
log10 2 



Numbers between 1,000 – 2,000  = 
𝑁∫

𝑑𝑥

𝑥

2000
1000

5ln⁡(10)
 = 

𝑁

5
log10 2 

Numbers between 10,000 – 20,000 = 
𝑁∫

𝑑𝑥

𝑥

20000
10000

5ln⁡(10)
 = 

𝑁

5
log10 2 

Total = 
𝑁 log10 2

5
 X 5 = Nlog10 2 

The average value between 1 – 2 = 
1

ln⁡(2)
 = 1.44269504 

The average value between 10 – 20 = 
10

ln⁡(2)
 = 14.4269504 

The average value between 100 – 200 = 
100

ln⁡(2)
 = 144.4269504 

The average value between 1,000 – 2,000 = 
1000

ln⁡(2)
=⁡ 1444.269504 

The average value between 10,000 – 20,000 = 
10000

ln⁡(2)
 = 14442.69504 

Summation = average value X the number of samples starting with the number 1 

1 – 2: (
1

ln⁡(2)
)X(

Nln⁡(2)

5ln⁡(10)
) = 

𝑁

5ln⁡(10)
  

10 – 20: (
10

ln⁡(2)
)X(

𝑁𝑙𝑛(2)

5ln⁡(10)
) = 

10𝑁

5ln⁡(10)
 

100 – 200: (
100

ln⁡(2)
)X(

𝑁𝑙𝑛(2)

5ln⁡(10)
) = 

100𝑁

5ln⁡(10)
 

1,000 – 2,000: (
1000

ln⁡(2)
)X(

𝑁𝑙𝑛(2)

5ln⁡(10)
 = 

1000𝑁

5ln⁡(10)
  

10,000 – 20,000: (
10000

ln⁡(2)
)X(

𝑁𝑙𝑛(2)

5ln⁡(10)
) = 

10000𝑁

5ln⁡(10)
 

Total Summation = 
𝑁

5ln⁡(10)
 X (1 +10 +100 + 1000 + 10000) =  

𝑁

5ln⁡(10)
 X 11,111 

In General: Summation ( assuming ( highest value/lowest value) mod 10 = 0 ) =  
𝑁

log10
max𝑣𝑎𝑙𝑢𝑒

min𝑣𝑎𝑙𝑢𝑒

 

X(
1

ln⁡(10)
) X ∑ 10ᵏ

log10max𝑣𝑎𝑙𝑢𝑒−1
𝑘=log10min𝑣𝑎𝑙𝑢𝑒  

 

For numbers that range between 1.0 – 1.1, 10 – 11, 100 – 110 etc, the average values change as  

follows: 



The average value between 1.0 – 1.1 = 
1

𝑙𝑛1.1
∫

𝑥𝑑𝑥

𝑥

1.1

1.0
 = 

1.1−1.0

𝑙𝑛1.1⁡
 = 

0.1

𝑙𝑛1.1
 = 1.0492 

Likewise for: 

10 – 11:  
1

𝑙𝑛1.1⁡
 = 10.4921 

100 - 110: 
10

𝑙𝑛1.1
 = 104.9205 

1,000 – 1100: 
100

𝑙𝑛1.1
 = 1,049.2059 

10,000 – 20,000: 
1000

𝑙𝑛1.1
 = 10,492.059 

Etc. 

In general: Summation =  
𝑁

log10
max𝑣𝑎𝑙𝑢𝑒

min 𝑣𝑎𝑙𝑢𝑒

 X ( 1

ln⁡(10)
) X 0.1∑ 10𝑘

log10𝑚𝑎𝑥⁡𝑣𝑎𝑙𝑢𝑒−1
𝑘=log10min𝑣𝑎𝑙𝑢𝑒  

Fig#1 - Summation with Respect to the 1st Digits i.e. 1,2,3,4,5,6,7,8,9 of an 

Exponential Function 

 

The distribution with respect to the Ist digits is a uniform distribution 



Proof that the multiplication of statistically independent numbers results in a 

Lognormal distribution and the resulting distribution approaches a Benford 

distribution as the standard deviation approaches infinity. 

Most numbers encountered in real life such as populations, scientific data, and accounting data are 

derived from the multiplication the multiplication of statistically independent numbers, which constitute 

a Lognormal ( as opposed to a normal distribution) analogous to a Gaussian or Normal probability 

density function , which is derived from the addition of statistically independent numbers.  

The following is a proof that the multiplication of statistically independent numbers result in a 

Lognormal distribution and as its standard deviation approaches infinity the probability density function 

approaches a Benford distribution.  

 

1) Y = the product of x₁, x₂ x₃, x₄ ……xᵣ 

2) Ln(Y) = Ln(x₁) + Ln(x₂) + Ln(x₃) + Ln(x₄) + …. Ln(xᵣ) 

3) Because Ln(x) is a function of x and Lx(xᵢ) are statistically independent 

4) Pdf conforms to the Central Limit Theorem as r → ∞. 

5) pdfᵧ =  
1

√2𝜋𝜎²
⁡𝑒−(𝑦−𝑢)

2/2𝜎² 

6) Y = Ln(x); dy = 
𝑑𝑥

𝑥
 

7) pdfᵧ dy = pdfᵪdx 

8) pdfᵪ= pdfᵧ
𝑑𝑦

𝑑𝑥
 = 

𝑝𝑑𝑓ᵧ

𝑥
 

9) pdfᵪ= ⁡=⁡⁡⁡⁡⁡
1

𝑥√2𝜋𝜎²
⁡𝑒−(𝑦−𝑢)

2/2𝜎²     
1

𝑥√2𝜋𝜎²
 𝑒−(𝐿𝑛(𝑥)−𝑢)

2/2𝜎² ; 𝜎 is the standard deviation of 

Ln(x) 

10) The Benford probability density function = 
1

𝑥𝐿𝑛(10)
. 

11) The Lognormal probability density function =     
1

𝑥√2𝜋𝜎²
 𝑒−(𝐿𝑛(𝑥)−𝑢)

2/2𝜎² 

12) Let u = 0 

13) For x=1: 1/x = 1;⁡
1

𝑥√2𝜋𝜎²
 𝑒−(𝐿𝑛(𝑥))

2
/2𝜎² =

1

√2𝜋𝜎²
 

14) Normalize by multiplying the Lognormal distribution by 
√2𝜋𝜎²

𝐿𝑛(10)
  

15) =     
1

𝑥𝐿𝑛(10)
 𝑒−(𝐿𝑛(𝑥)−𝑢)

2/2𝜎² 

 

16) For any given value of x the value  𝑒−(𝐿𝑛(𝑥)−𝑢)
2/2𝜎² approaches 1 as  𝜎 approaches ∞ 

 



Figs# 2-4 Illustrate the shape of the Lognormal probability density function as 

the standard deviation increases and eventually approaches a Benford 

probability density function  

 

 Fig#2 – Lognormal  Probability Density Function v. Benford Probability Density 

Function 

 

 

 

 

 

 

 

 



 

 

Fig#3 – Lognormal Probability Density Function v. Benford Probability Density 

Function  

 

 

 

 

 

 

 

 

 



 

 

Fig#4 – Lognormal Probability Density Function v. Benford Probability Density 

Function 

 

 

Also, if the standard deviation of the Lognormal probability density function 

approaches 0 then the distribution approaches a Gaussian or Normal distribution.  

Proof that as the standard deviation of a lognormal distribution approaches 0 

the distribution becomes a Normal distribution with a mean of 𝒆𝒖 where u is 

the mean of the natural logarithm of the data. 

 

1) Lognormal distribution: F(x) = 
1

𝑥√2𝜋𝜎²
 𝑒

−(𝐿𝑛(𝑥)−𝑢)²

2𝜎²  ; u = mean(ln(x)), 𝜎 =⁡std_dev(ln(x)) 



 

2) Determine the mode of the Lognormal distribution i.e.  

𝑑𝑦

𝑑𝑥
 = 

1

√2𝜋𝜎²
 
𝑑𝑦

𝑑𝑥
(
𝑒−(𝐿𝑛(𝑥)−𝑢)

2/2𝜎²

𝑥
) = 0 ; solve for x 

 

3) 
𝑑𝑦

𝑑𝑥
 = 𝑒−(𝐿𝑛(𝑥)−𝑢)

2/2𝜎² [ 
−(𝐿𝑛(𝑥)+𝑢)

𝜎²
 - 1] = 0 

4) Solve x for 
−𝐿𝑛(𝑥)+𝑢

𝜎²
 - 1 = 0 

5) Ln(x) = u-σ² 

6) x = 𝑒(𝑢−𝜎
2) 

7) As σ→0; x→𝑒𝑢 

8) F(x) = 
1

𝑥√2𝜋𝜎²
 𝑒

−(𝐿𝑛(𝑥)−𝑢)²

2𝜎²  

9) Taylor series of Ln(x) about 𝑒𝑢 = 

10) Ln(𝑒𝑢) + 
𝑥−⁡𝑒𝑢

𝑒𝑢
 - 
(𝑥−𝑒𝑢)²

2𝑒2𝑢
 + 

(𝑥−𝑒𝑢)³

3𝑒3𝑢
 +….+  

11) Ln(x-𝑒𝑢) ~ Ln(𝑒𝑢) + 
𝑥−⁡𝑒𝑢

𝑒𝑢
  as σ → 0 

12) Ln(x-𝑒𝑢) ~ u + 
𝑥−⁡𝑒𝑢

𝑒𝑢
   

13) F(x) ~ 
1

𝑥√2𝜋𝜎²
 𝑒

−(𝑢+⁡
𝑥−𝑒𝑢

𝑒𝑢
−𝑢)²

2𝜎²  

14) F(x) = ~ 
1

𝑒𝑢√2𝜋𝜎²
 𝑒

−(⁡
𝑥−𝑒𝑢

𝑒𝑢
)²

2𝜎²  as σ → 0 

15) F(x)   ~ 
1

√2𝜋(𝜎𝑒ᶸ)²
 𝑒

−(𝑥−𝑒ᶸ)²

2(𝜎𝑒ᶸ)²  

16) uₓ = mean(x); 𝛔ₓ = std_dev(x) 

17) uₓ ~⁡𝑒𝑢 ; 𝛔ₓ ~ uₓ σ 

18) F(x)  ~ 
1

√2𝜋(σₓ)²
𝑒
−(𝑥−𝑢ₓ)²

2(𝜎ₓ)²  

19) Which is a Normal Distribution with a mean of 𝑒𝑢 

 

 

 

 

 

 

 

 

 



 

 

 

 

 Fig#5 – Probability Density Function of a Lognormal Distribution with a Small 

Value Standard Deviation  

 

 
 

 

The probability density function of an exponential function i.e. 10˟ is 
ln⁡(𝑥)

ln⁡(10)
 while 

the probability function of the Log₁₀ of the exponential function is a constant 

namely, 1.  

The probability density function of logarithm of data that conforms to a  

Lognormal  distribution  is a  

Gaussian or Normal distribution. 

 



The following argument constitutes a proof that the probability density function 

of the logarithm of data that conforms to a Lognormal distribution is a Gaussian 

or Normal distribution.  
 

1. For a Lognormal distribution the  pdfᵪ (probability density function) =  
1

𝑥√2𝜋𝜎²
 𝑒−(𝐿𝑛(𝑥)−𝑢)

2/2𝜎² 

2. Y = Log₁₀(x) 

3. pdfᵧ dy = pdfᵪdx 

4. pdfᵧ = pdfᵪ 
𝑑𝑥

𝑑𝑦
 

5. 
𝑑𝑦

𝑑𝑥
 = 

1

𝑥𝐿𝑛(10)
; 
𝑑𝑥

𝑑𝑦
 = xLn(10) 

6. 𝑥 =⁡ 10ʸ 

7. pdfᵧ(Log(x)) = Ln(10)* 10log⁡(𝑥)   
1

𝑥√2𝜋𝜎²
 𝑒−(𝐿𝑛(10

log⁡(𝑥))−𝑢)
2
/2𝜎² = 

8. (x)*Ln(10) 
1

𝑥√2𝜋𝜎²
 𝑒−(𝐿𝑛(𝑥)−𝑢)

2/2𝜎² = Ln(10)⁡
1

√2𝜋𝜎²
 𝑒−(𝐿𝑛(𝑥)−𝑢)

2/2𝜎², which is a Gaussian 

distribution with respect to log(x) 

Figures 6-8 Illustrate the probability density function of the logarithm of a data set 

that conforms to a Lognormal  distribution and how it approaches a uniform 

distribution of a true Benford distribution as the Standard deviation  increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig#6 – Probability Density Function of the Logarithm of a Data Set that 

Conforms to a Lognormal Distribution 

 

For an exponential distribution, the mantissas between integral powers of ten 

(IPOT) are uniform since the probability density function is 1. This accounts for the 

fact that numbers beginning with 1 occur about 30% of the time and numbers 

beginning with 9 occur about 4.6% of the time.  

 

 

 

 

 

 

 



 

 

 

 

 

Fig#7 – Probability Density Function of a Data Set that Conforms to a Lognormal 

Distribution as the Standard Deviation Increases 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



Fig#8 - Probability Density Function of a Data Set that Conforms to a Lognormal 

Distribution as the Standard Deviation Increases 

 

 
 

For a Lognormal distribution or any other distribution if it can be shown that the 

sum of all mantissas for each IPOT approaches a constant value as the number of 

number of integral powers of ten (IPOT) approaches infinity and therefore the 

data set will conform to Benford’s Law.  The following argument constitutes a 

proof of this assertion.  

 

Proof that if the probability density function of the logarithm of a data set is 

continuous and begins and ends on the x-axis and the number of integral power 

of ten (IPOT) values approaches infinity then the probability density function of 

the resulting mantissas will be uniform and; therefore, the data set will conform 

to Benford’s law 

 

1) The probability density function of a data set that conforms to Benford’s Law is k/x = 
1

ln(10)𝑥
 

2) The probability density function of the log of the same function is a uniform distribution, 

a. pdf(y)dy = pdf(x)dx 



b. Y = log(x) = 
ln⁡(𝑥)

ln⁡(10)
 

c. pdf(y) = pdf(x)⁡
𝑑𝑥

𝑑𝑦
 

d. 
𝑑𝑦

𝑑𝑥
 = 

1

𝑥𝑙𝑛(10)
 

e. 
𝑑𝑥

𝑑𝑦⁡
 = xln(10) 

f. pdf(y) = 
𝑥𝑙𝑛(10)

𝑥𝑙𝑛(10)
 = 1 – Uniform Distribution 

3) Therefore, If it can be shown that the pdf of the log of a function is uniform then the 

data set follows Benford’s Law.  

 
4) Y = F(x) 

5)  Y’ = 
𝑑(𝐹(𝑥))

𝑑𝑥
 

6)  ∫ 𝑌′𝑑𝑥
𝑋𝑓

𝑋𝑜
  =  ∫ 𝐹′(𝑥)𝑑𝑥

𝑋𝑓

𝑋𝑜
 =  F(Xf) – F(Xo) = 0  

      7)  Avg Value of Y’ = 
1

𝑋𝑓−𝑋𝑜
 ∫ 𝑌′𝑑𝑥

𝑋𝑓

𝑋𝑜
 =  

0

𝑋𝑓−𝑋𝑜
  



      8)  F’ᵢ (x) = 
𝐹(𝑖+1)−𝐹(𝑖)

∆𝑥
 ; ∆x → 0 

      9)  ∫ 𝐹′(𝑥)𝑑𝑥
𝑋𝑓

𝑋𝑜
 = 0 ; ∑

𝐹(𝑖+1)−𝐹(𝑖)

∆𝑥

𝑁−1
𝑖=0  = 0  as ∆X → 0 

      10)  let m(i) = = 
𝐹(𝑖+1)−𝐹(𝑖)

∆𝑥
          

      11)  ∑ 𝑚(𝑖)𝑁−1
𝑖=0  ∆X = 0 ; ∆X → 0  

 

Let’s consider a simpler case. 

 

     

      12) Let ∆X = 1 

      13)  m₁+ m₂+ m₃+ m₄+m₅  =  0 



      14)  ∑ 𝑥ᵢ5
𝑖=1  = m₁x + m₁ + m₂x + m₁ + m₂ + m₃x  + m₁+ m₂ + m₃ + m₄x +  

              m₁ + m₂ + m₃ + m₄ + m₅x  =  K  

      15)  x( m₁+ m₂ + m₃ + m₄ +m₅) + m₁+ m₁ + m₁ + m₁+ m₂ + m₂ + m₂ + m₃ + m₃ 

               + m₄  =  K 

      16)  m₁+ m₂ + m₃ + m₄ +m₅  = 0  

      17)   ∑ 𝑥ᵢ5
𝑖=1  =  4m₁+3m₂ + 2m₃ + m₄ = K ( constant)  

      18)  AREA UNDER PDF = 1 

      18) ∫ 𝑓(𝑥)
6

1
 dx = 1 

      20) 
𝑚₁

2
 + m₁+ 

𝑚₂

2
 + ( m₁+ m₂) + 

𝑚₃

2
 +( m₁ + m₂ + m₃) + 

𝑚₄

2
 + (m₁ + m₂ + m₃ +m₄) + 

𝑚₅

2
  

              = 1  

 

      21)   m₁+ m₂ + m₃ + m₄ +m₅  = 0  

      22) 4m₁ + 3m₂ + 2m₃ + m₄  = 1 

      Therefore K = 1 

 

The sum of all functions at IPOT + x = 1 for any x. 

The sum of all mantissas is a uniform distribution whose amplitude is equal to 1 

and the PDF approaches a Benford distribution as 
∆𝒙

𝒏
 → 0. 

                

      23) For the more general case: 

      24) ∑ 𝑚ᵢ𝑟−1
𝑖=1  =     

      25) m₁x⁡+⁡m₂⁡+⁡m₂x⁡+⁡m₁⁡+⁡m₂⁡+⁡m₃x⁡+⁡…..⁡m₁⁡+⁡m₂⁡+⁡m₃⁡+⁡…⁡mᵣ₋₁x  =     

             K 

      26)⁡⁡x(⁡m₁+⁡m₂⁡+⁡….⁡+⁡mᵣ₋₁   ) + (r-2)m₁⁡+⁡(r-3)m₃⁡+..+⁡mᵣ₋₂ = K  



      27)⁡⁡x(m₁⁡+⁡m₂⁡+⁡m₃⁡+ mᵣ₋₁ ) = 0 

      28) (n-2)m₁⁡+⁡(n-1)m₂⁡+⁡….+⁡mᵣ₋₂ = K 

      29) 
𝑚₁⁡

2
+⁡m₁⁡+⁡

𝑚₂

2
 +⁡m₁⁡+⁡m₂⁡+⁡

𝑚₃

2
 +⁡m₁⁡+⁡m₂⁡+⁡m₃⁡+⁡..⁡+⁡mᵣ₋₂ + 

𝑚ᵣ₋₁

2
  

              = K 

      30) 
1

2
 (⁡m₁+⁡m₂+⁡m₃⁡+⁡mᵣ₋₁ ) =0  

      31) (n-2)m₁⁡+⁡(n-1)m₂⁡+⁡…..⁡+⁡mᵣ₋₂ = 1  

      32) K=1  

      33) The sum of mantissa values at IPOT + x = 1 for any x  

      34) The sum of all mantissas is a uniform distribution whose amplitude is  

              And, therefore, the PDF approaches a Benford distribution as 
∆𝑥

𝑁
 →⁡0.⁡ 

 

 

 

Proof that if the probability density function of the Logarithm  a data set is 

continuous  and begins and ends on the x-axis and the number of integral  

power of ten values approaches infinity then the sum of probability  

distributions of all fixed intervals from all IPOT (∆X) equals the interval 

Itself⁡(∆X). 

 



 

 

 

1) ∑ ∫ 𝑝𝑑𝑓⁡𝑑𝑥
𝑖+∆

𝑖
4
1  = 

1

2
 m₁(∆x)²⁡+⁡m₁∆x⁡⁡+⁡

1

2
m₂(∆x)²⁡+⁡(m₁⁡+⁡m₂)∆x⁡+⁡ 

1

2
 m₃(∆x)²⁡+⁡(⁡m₁⁡+⁡m₂⁡+⁡m₃)∆x⁡⁡+⁡

1

2
 m₄(∆x)²⁡=⁡K 

2) 
1

2
 (∆x)⁡²⁡(m₁⁡+⁡m₂⁡+⁡m₃⁡+m₄⁡)⁡+⁡(3𝑚₁⁡ +⁡2m₂⁡+⁡m₃)∆x⁡=⁡K 

3) m₁⁡+⁡m₂⁡+⁡m₃⁡+m₄⁡=⁡0 

4) 
1

2
 m₁ + m₁ + + 

1

2
m₂ + m₁ + m₂ + + 

1

2
m₃ + m₁ + m₂ + m₃ + 

1

2
 m₄ = 

5) 
1

2
 (m₁⁡+⁡m₂⁡+⁡m₃⁡+m₄) + 3 m₁ + 2 m₂ + m₃ = 1 

6) 3m₁ +⁡2m₂⁡+⁡m₃⁡=⁡1⁡ 

7) (3𝑚₁⁡ +⁡2m₂⁡+⁡m₃)∆x⁡=∆x 

8) ∑ ∫ 𝑝𝑑𝑓⁡𝑑𝑥
𝑖+∆𝑥

𝑖
4
1  =⁡∆x 

In General: 



9) ∑ ∫ 𝑝𝑑𝑓⁡𝑑𝑥
𝑖+∆𝑥

𝑖
⁡𝑟−1
𝑖=1  =  

1

2
(∆x)²(⁡m₁+⁡m₂⁡+⁡m₃⁡+…⁡+⁡mᵣ₋₁ )+ 

10) [(𝑛 − 2)𝑚₁ + (𝑛 − 1)𝑚₂ +⁡…⁡+⁡mᵣ₋₂]∆x  = ∆x 

 

It can be easily shown that the fixed intervals don’t have to start and end on an interval power 

of ten such as 10,100,1000 or 1,2,3 on a LOG plot as long as the fixed intervals are all offset by a 

power of ten.  

For instance, the left most interval starting point, where the curve intersects the x-axis, could 

be 2 with each succeeding  interval 10 times the previous intervali.e 20,200,2000 etc. The data 

would still conform to Benford’s Law with digit 1 contained in intervals 10-20, 100-200, 1000-

2000; digit 2: 2-3,20-30,200-300;digit 3: 3-4,30-40,300-400;digit 4: 4-5,40-50,400-500;digit 5:5-

6,50-60,500-600;digit 6:6-7,60-70,600-700;digit 7:7-8,70-80,700-800;digit 8:8-9,80-90,800-

900;digit 9:9-10,90-100,900-1000. The first digit starts in the tens and ends in the 1000s; all of 

the others start in the single digits and end in the 100s. It’s still the same result obtained by 

having the IPOT at each interval such as 1,10,100,1,000 etc. 

 

This would explain why data sets that span many orders of magnitude conform 

very closely to Benford’s law and data sets that span fewer orders of magnitude 

do not. This also explains why several other distributions such as gamma, beta, 

Weibull and exponential probability density functions conform fairly closely to 

Benford’s law and why Gaussian or Normal distributions do not ( the pdf of the 

logarithm of a Gaussian data span a very limited number of IPOTs. i.e.  

X* 
1

√2𝜋𝜎²
⁡𝑒−(𝑥−𝑢)

2/2𝜎², the 𝑒−(𝑥−𝑢)
2/2𝜎² term falls too rapidly.  

 

The probability distribution function of the sum of the values with respect to the 

first digits is a uniform distribution for an exponential function i.e. 10˟ but not for 

a Lognormal distribution. The distribution is more apt to be a Benford 

Distribution as the following argument asserts.  

 

 



 

Proof that the probability distribution of the sum of the values of a Lognormal  

probability density function  with respect to the first digits (1 through 9) is 

nearly a Benford distribution and not a uniform distribution.  

The probability distribution function of the sum of the values of a Benford 

probability density function ( 1/x) with respect to the first digits is a uniform 

distribution but such is not the case for a Lognormal  density function.  

Most numbers encountered in real life such as populations, scientific data, and 

accounting data are derived from the multiplication of statistically independent 

numbers, which constitute a Lognormal probability density function analogous to 

a Gaussian or Normal probability density function, which is derived from the 

addition of statistically independent numbers.  

The following argument constitutes a proof that the sum of these numbers with 

respect to the first digits is nearly a Benford distribution as well as the number of 

values with respect to the first digits.  

 

1. Pdfᵪ ( probability density function)  =  f(x) 

2. Average value = 
∫ 𝑥𝑓(𝑥)⁡𝑑𝑥
𝑏

𝑎

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

   

3. Number of samples  between a and b  = N∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

4. Sum of values between a and b is Average value X number of samples between a and b = 

5. = 
∫ 𝑥𝑓(𝑥)⁡𝑑𝑥
𝑏

𝑎

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

  X  N∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 =  

6. N∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

7. For Lognormal distribution  f(x) = 
𝑒−(ln(𝑥)−𝑢)

2/2𝜎²

𝑥√2𝜋𝜎²
  

8. N∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 = N ∫ ⁡

𝑒−(ln(𝑥)−𝑢)
2/2𝜎²

√2𝜋𝜎²

𝑏

𝑎
 dx  

9. Assume  Pdfᵪ = 
𝑒−(ln(𝑥)−𝑢)

2/2𝜎²

√2𝜋𝜎²
  

10.  y = Log(x) 

11. Pdfᵧ dy = Pdfᵪ dx 

12. Pdfᵧ = Pdfᵪ 
𝑑𝑥

𝑑𝑦
   



13. 
𝑑𝑦

𝑑𝑥
 = 

1

𝑥𝑙𝑛(10)
 ; 
𝑑𝑥

𝑑𝑦
 = x ln(10) 

14. Pdfᵧ (log(x)) = ln⁡(10)10log⁡(𝑥) 
𝑒
−(ln⁡(10log⁡(𝑥))−𝑢)

2
/2𝜎²

√2𝜋𝜎²
  = 

15. (x)* ln(10)* 
𝑒−(ln(𝑥)−𝑢)

2/2𝜎²

√2𝜋𝜎²
 

16. If Log plot of can be approximated with straight line between Integral  power of ten (IPOT) then 

Because the mantissa distribution approaches a uniform distribution the resulting distribution of  

The x will be a nearly Benford distribution.  

 

17.  Therefore, the Ist digit distribution of the sum of values should be a  nearly Benford distribution  

Instead of a uniform distribution as previously thought. 

 

 

Fig#9 – Summation with Respect to the Ist Digits i.e. 1,2,3,4,5,6,7,8,9 of 

the Multiplication of Nine Random Numbers 
 

 

 

 

 

 

 



 

Fig#10 -  Summation with Respect to the Ist Digits i.e. 1,2,3,4,5,6,7,8,9 of 

Stream Flow data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig#11 -    Summation with Respect to the Ist Digits i.e. 1,2,3,4,5,6,7,8,9 of 

IRS Collection of Adjusted Gross Income (AGI) in 1978 

 

 
 

The distributions appear to reasonably close to a Benford distribution and not a 

uniform distribution  

 

                                                      Conclusion 

 

A true Benford distribution only occurs with an exponential function. All other 

numbers consisting of an aggregation of multiplied statistically independent 

numbers conform to a Lognormal distribution which approaches a true Benford 

distribution as the standard deviation approaches infinity. 

The probability density function of the logarithm of a data set that conforms to 

a true Benford distribution i.e. exponential function is a constant value, 



whereas the probability density function of the logarithm of a Lognormal data 

set is a Gaussian or Normal distribution that approaches a constant value as the 

standard deviation approaches infinity.  

The summation with respect to the Ist digits is a uniform distribution only for 

exponential functions and a Benford like distribution for Log Normal 

distributions.  
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