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Abstract 

In my attempt to eliminate the Landau Pole from QED by “borrowing” asymptotic freedom from 

QCD, I was successful in uniting the coupling constants of the two, respectively. This equation, 

together with the already established electroweak unification forms a basis, within the Standard 

Model, to experimentally test Grand Unification. The part that can be tested experimentally is the 

value of the strong coupling constant for the energy value of the QCD integration parameter Λ, 

offering such a prediction for the first time. It should be also noted that I was successful in 

eliminating the Landau Pole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I   Introduction 

The two dimensionless running constants α(Q) and αS(Q) will be united in a single equation 

allowing us to both improve accuracy for the computing of αS(Q) and remove the problem 

arising due to infinities in α(Q) known as the Landau pole [1] when on a very large value of Q 

the fine-structure constant α → ∞ therefore we will effectively make QED a mathematically 

complete theory. The Landau pole will be eliminated since QCD enjoys asymptotic freedom [2] 

offering us exactly what we need since β-expansion describes the asymptotic behavior of a 

denominator of convergents of continued fractions. The paper will also provide the first 

prediction for the value αS(ΛQCD). 

Let βi > 1 be a real number and Tβi
: [0, 1) → [0, 1) be the β-transformation such that Tβi

(x) =

βix − [βix] where [x] is the largest integer that does not exceed x. Every x ∈ [0, 1) can be 

uniquely expanded into a finite or infinite series: 

 

x =
ε1(x)

βi
+

ε2(x)

βi
2 +

ε3(x)

βi
3 + ⋯ +

εn(x)

βi
n + ⋯ 

where εi(x) = [βix] and εn+1(x) = ε1(Tβi

n  x) for all n ≥ 1. For any Borel set A ⊆ [0, 1) where C 

is a constant that depends on βi such that C−1λ(A) ≤ μ(A) ≤ λ(A)C where the measure of the 

length/energy scale μ is Tβi
-invariant meaning that βi does not implicitly depend on μ and if A is 

Lebesgue measurable [3], then μ(A) = sup{μ(k): k ⊂ A} where k is compact. 

If x ∈ [0, 1) then any irrational number can be written as pn(x) qn(x)⁄ = [c1(x), c2(x), … , cn(x), … ] 

where c1(x) = [x−1] and cn+1(x) = a1(Tnx) for any n ≥ 1 is a convergent of the continued 

fraction expansion of x where pn(x) and qn(x) are relatively prime which allows us to study the 

asymptotic behavior of the denominator kn 

 

lim
n→∞

kn(x)

n
=

6 log 2 log βi

π2
 

For any ε > 0 there exists two positive constants A and α which depend on βi thus for all n ≥ 1: 

 

λ {x ∈ [0, 1): |
kn

n
−

6 log 2 log βi

π2
| ≥ ε} ≤ A ∙ e−αn 

If  log βi > π2 6 log 2⁄  then for λ almost all x ∈ [0, 1) exists a positive integer N1 that depends 

on x, such that for all n ≥ N1: 

1.1 

1.2 

1.3 



 

|x −
pn(x)

qn(x)
| > x − xn 

In the opposite case when log βi < π2 6 log 2⁄  we have an integer N2 and for all n ≥ N2: 

 

|x −
pn(x)

qn(x)
| < x − xn 

where the convergents of the β-expansion of x are xn = ε1(x) βi⁄ + ε2(x) βi
2⁄ + ε3(x) βi

3⁄ + ⋯ +

εn(x) βi
n⁄ .  

II   Running of 𝛂𝐒(𝐐) via β-expansion 

The QCD Lagrangian is: 

 

ℒQCD = ∑ Ψ̅f,a

f

(iγμ ∂μδab − gsγμtab
C Aμ

C − mfδab)Ψf,b −
1

4
Fμv

A FA μv 

where γμ are the Dirac γ-matrices, the Ψq,b are quark-field spinors for a quark of flavor f and 

mass mf, with a color-index a that runs from a = 1 to NC = 3 and gs = √4παS is the strong 

gauge coupling. 

Let us remember that Lebesgue measure was used in the introduction to β-expansion. A 

generalization of the Lebesgue measure for any locally compact group is known as the Haar 

measure [4]. If we assume that the simple compact Lie group we need is SU(N) one should see 

the paper by G. Nagy [5]. From the invariant metric ds2 = gαβdxαdxβ with a unitarity, provided 

that all eigenvalues λi different. For matrixes W and W† we get WdW† + dWW† = 0 and in a 

given set of coordinates we attain the invariant measure: 

 

dμ(x) = √det g(x) ∏ dxα

α

 

we parameterize the matrix W as W = exp(itαTα)  therefore we conclude that: 

 

det g ~(det Q)2 ∏|λi − λj|
4

i>j

 

the distribution of eigenvalues on the unitary group is given by the invariant measure: 

2.1 

2.2 

1.4 

1.5 

(2.1) 



 

dμ(θ) = ∏|exp(iθi) − exp(iθj)|
2

∏ dθi

ii>j

 

which is valid for U(N) groups. If we impose the constraint Σiθi = 0 mod 2π and implement it 

by a δ-function, the density distribution of the eigenvalues in SU(N) is given by the formula 

above as well. For the SU(3) group this would be of the form: 

 

H(θ) = ∏|exp(iθi) − exp(iθj)|
2

=

i>j
|

|

3 ∑ eq ∑ eq
2

∑ e̅q 3 ∑ eq

∑ e̅q
2 ∑ e̅q 3

|

|
 

We must first describe the running of αS(Q) and then proceed to connect it to the running of 

α(Q). Using β-functions for QCD, a SU(3) group theory we have for i = 0, 1, 2, … , n  

 

2β(αS) =
b0

2π
αS

2 −
b1

4π2
αS

3 −
b2

64π3
αS

4 − ⋯ 

where the QCD β-function has a negative sign due to gluons carrying color charge which leads to 

self-interactions. At one-loop order we determine: 

 

αS(μ) =
αS(μ0)

1 − b0αS(μ0) ln (
μ

μ0
)
 

Now we introduce the β-expansion for a real number q: 

 

x = ∑ cn

∞

n=0

q−n 

where for all n ≥ 0 we have 0 ≤ cn ≤ ⌊q⌋  where cn doesn’t have to be an integer and ⌊q⌋ is a 

floor function [6].  

We connect equations (2.6) and (2.7) which yields: 

 

q−n = (
αS(Q2)

π
)

n

+ 𝒪 (
ΛQCD

4

Q4
) 
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meaning that x from equation (2.7) equals x = δQCD which is the correction due to QCD effects 

and ΛQCD = 217(30) is the integration constant which coresponds to the scale where the 

perturbatively defined coupling would deverge and we use a value of 240 MeV but other values 

can be used as well. Knowing the values c1 = 1, c2 = 1.9857 − 0.1152nf, c3 = −6.63694 −

1.20013nf − 0.00518nf
2 − 1.24η, c4 = −156.61 + 18.77nf − 0.797nf

2 + 0.0215nf
3 + Cη 

where the coefficient C of the η-dependent piece in the αS
4 term is yet to be determined and nf is 

the number of flavors, allows us to establish that η = (∑ eq)
2

3 ∑ eq
2⁄  is consistent with the 

Vandermonde eterminant of the Haar measure H(θ) for SU(3). 

We introduce v = 246 GeV the vacuum expectation value of the Higgs field [7] that gives quarks 

mass and therefore we measure αS(ΛQCD) for the first time being that no other work predicted 

the running value of αS for the ΛQCD parameter: 

 

αS(ΛQCD) =

ln (
v

ΛQCD
)

π2
 

This allows experimental tests to determine if the predicted value of αS(ΛQCD) is accurate and 

therefore test the β-expansion method. The equation for the running value of αS(Q) is then: 

 

αS(Q) =
αS(ΛQCD)

ln (
Q

ΛQCD
)
 

where it is evident that QCD enjoys asymptotic freedom. For αS(Q2) we add squared values for 

v, ΛQCD and Q. The numerical results are provided in the table 1 bellow. All the values are in a 

great agreement with experimental values such as provided by [8], [9], [10], [11]. 

Particle Data Group [12] provides the world average αS(Mz) = 0.1184(07). The method offered 

by β-expansion offers much desired [13] accuracy and simplicity. It might seem counterintuitive 

but instead of working within the U(1) group we remain within the SU(3) group with a 

connection to the SU(2) × U(1) symmetry through the necessary connection with the 

electroweak interactions and the Higgs mechanism. 

Using the Lyapunov exponent for the rate of exponential divergence from the initial perturbed 

conditions, we have  

 

ℒ(x) ≔ lim
n→∞

n−1 log|(Tn)′(x)| 

2.9 

2.10 

2.11 



where the constant θ has the form θ = (τ(log βi) − 1) log βi and τ(γ) ≔ dimH{x ∈

[0,1): ℒ(x) = γ } where we used the Housdorff dimension [14]. We eliminate the Landau pole in 

the running of α(Q) by establishing a link between α(Q) and αS(Q) which eliminates the 

infinities since QCD enjoys asymptotic freedom: 

 

α−1(Q) = α−1(0) − [(
π2

αS(Q)
)

1
2

] 

where α−1(0) is the value provided by NIST.  The results are in good agreement with 

experimental values [15], [16]. 

Energy [GeV] αS(Q) αS(Q2) α−1(Q) α−1(Q2) 

ΛQCD 0.702404(06) 1.404808(07)   

1 0.492184(06) 0.492184(07) 132.557978(12) 132.557978(12) 

10 0.188327(08) 0.188327(08) 129.796749(15) 129.796749(15) 

Mz 0.118249(13) 0.118249(13) 127.90012(24) 127.90012(24) 

MGUT = 1013 0.0224(21) 0.0224(21) 116.0454(33) 116.0454(33) 

MGUT = 1015 0.0173(24) 0.0173(24) 113.151(26) 113.151(26) 

Table 1: Measurments for the electromagneti and strong nuclear couplings for the values of 

𝛬𝑄𝐶𝐷 = 240 𝑀𝑒𝑉. 

In order to prove the lack of Landau pole in my equations I provide the measurements albeit the 

Landau pole is not relevant for particle physics but is purely of academic interest. The value of 

the Landau pole is estimated roughly to be around 10286eV, for this value αS(Q) =

0.00112(24) and α−1(Q) = 43.06(33) where the uncertainties are high since we are dealing 

with such a high energy level. We have thereby successfully eliminated the Landau pole. 

III   Conclusion and Debate 

In the Standard Model, constants in the one-loop β-functions are given as: 

 

bi =
2

3
T(Ri)d(Rj)d(Rk) +

1

3
T(Si)d(Sj)d(Sk) −

11

3
C2(Gi) 

we can summarize these results and insert the number of fermion generations NG = 3 and Higgs 

doublets NH = 1 obtaining us b1 = 41/10, b2 = −19/6 and b3 = −7. 

These three intersections point towards a range from MGUT = 1013GeV to MGUT = 1017GeV and 

correspond to a coupling ranging from αGUT
−1 = αS

−1 ≈ 40 to 47 where we see an agreement for 

MGUT ≈ 1013GeV in the table where αGUT
−1 = αS

−1 = 44.64(18). This means that regardless of 

2.12 

3.1 



unification, the equations measure the running of the couplings in excellent agreement with both 

the experimental values and the theoretical predictions of the SM. 
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