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Abstract. I can proof that there are infinitely many twin primes. The twin prime counting function π2(n), which 

gives the number of twin primes less than or equal to n for any natural number n, is for lim n → ∞  

lim n → ∞        π2(n) =  2 C2   
[π(n)]2

n
 

where π(n) is the prime counting function and C2 is the so-called twin prime constant with C2 = 0,6601618 …  

The prime numbers are equally distributed in the two progressions (6 i − 1) and (6 i + 1) as n → ∞, 

respectively. Thus the prime counting function π−(n), which gives the number of primes less than or equal to n 

of the form (6 i − 1), and the prime counting function π+(n), which gives the number of primes less than or 

equal to n of the form (6 i + 1), are for lim n → ∞ both equal and one half of the prime counting function 

π(n). To achieve both results I introduce a modified sieving method, based on the historical Eratosthenes 

sieve. This sieving method uses a shortened number line which is 
1

6
 of the natural number line ℕ, where every 

integer i represents a possible twin prime of the form (6 i − 1, 6 i + 1) and where every prime p ≥ 5 generates 

two distinct infinite series c1,2 + p i with i = 1 to ∞ and with c1 =
p±1

6
 and c2 = p −

p±1

6
 , respectively, and 

thus two “starting values” c1,2 within the interval [1, p]. According to Theorem 2.2 in conjunction with Theorem 

1.4 I can prove that a number i on the shortened number line is not divisible (“sieveable”) by any prime p ≥ 5 

from the ascending list of all primes is exactly (1 −
2

p
) and all these “events” are independent of each other. 

Thus the proportion of two natural numbers n and n + 2 on the natural number line ℕ, both not divisible 

(“sieveable”) by the ascending list of all primes p ≥ 5 and p ≤ n can be described by the infinite product 

1

6
 ∏ (1 −

2

p
)

p≤n

p prime
p≥5

 

In comparison with the infinite product 

∏ (1 −
1

p
)

p≤n

p prime

 

which describes the proportion of natural numbers n not divisible by all the primes p ≤ n (according to the 

Eratosthenes sieve) I can proof that the Twin Prime Conjecture from Hardy and Littlewood is true.  

With the modified sieving method I can also proof that a number i on the shortened number line, which 

represents either all the possible primes of the form (6 i − 1) or all the possible primes of the form (6 i + 1), is 

not divisible (“sieveable”) by any prime p is (1 −
1

p
) for p ≥ 5 and all these “events” are independent of each 

other as well. This results in the fact that π−(n) = π+(n) =
1

2
  π(n) as n → ∞.  



1. Introduction: 

For primes Euclid (ca. 300 B.C.) showed in his famous and well known proof that there are infinitely 

many primes. For twin prime pairs it was assumed that such a simple proof is very unlikely, because a 

great effort has already been made in the last 300 years by a big number of mathematicians all 

around the world (e.g. Yitang Zhang [1], Dan Goldston [2], Cem Yildirim and all their colleagues for 

modern times). The following proof rebuts the assumption and is based on the fact that the possible 

number of twin primes up to any primorial n#, which are not “sieved” by all the primes less than n 

(see Theorem 2.2 in conjunction with Theorems 1.1 to 2.1), is described by the following equation, 

which is the so-called ф2(n#) function (see also table 1): 

ф2(n#) =  
1

6
 n# ∏ (1 −

2

p
)

p≤n

p prime
𝑝≥5

 

A comparison of the ф2(n#) function with the Euler ф(n#) function for any primorial n#, which 

gives the number of all possible primes up to any primorial n#, which are not divided by all the 

primes less than n, with (see also table 1) 

ф(n#) = n# ∏ (1 −
1

p
)

p≤n

p prime

 

finally shows that the twin prime counting function π2(n) is for limn → ∞  

π2(n) =  2 C2  
[π(n)]2

n
 

 

p n# ф(n#) ф2(n#) 
2, 3 6 2 1 

5 30 8 3 

7 210 48 15 

11 2310 480 135 

13 30030 5760 1485 

17 510510 92160 22275 

… … … … 

 
Table 1: values for the ф(n#) and the ф2(n#) function up to p=17 and n# = 510510 

 

General Notations: 

Let ℕ:={1, 2, 3, 4, ...} be the list of all positive integers, let a, c, g, i, j, k, m, q, s, z ∈ ℕ be positive 

integers, n ∈ ℕ be used to denote natural numbers, ℙ:={2, 3, 5, 7, ...} be the ascending list of all 

primes p and their primorial n#  

n# = ∏ p

p≤n

p prime

 



be the product over all primes p less than or equal to any natural number n. Let the prime counting 

function π(n) be the number of primes less than or equal to any natural number n with π(n) =

: #{p ∈ ℙ ∣ p ≤ n} and the twin prime counting function π2(n) be the number of twin primes less 

than or equal to any natural number n with π2(n) =: #{(p, p + 2) ∈ ℙ ∣ p ≤ n}. 

Please note that the next four Theorems are based on each other step by step and Theorem 1.4 will 

be the fundamental theorem for the following modified sieving method for twin primes. 

Theorem 1.1: 

Let P ≔ {p1, p2, … , pg, … , ps} be the list of randomly generated primes s ≥ 1 with g = 1 to s and 

their primorial s# be the product over all s primes (1.1) 

s# = ∏pg

s

g=1

 

Please note that for s = 1 the “primorial s#” is the prime p1 itself. Let the interval [1, s#] and all 

further infinite intervals [m s# + 1, (m + 1) s# ] on the natural number line ℕ with m = 1 to ∞ be 

denoted by “all the infinite intervals s#”. 

Let further be the prime pr a prime of the set ℙ ≠ P and the primorial sr# be the product over all 

(s + pr) primes (1.2) 

sr#  = ∏pg

s

g=1

 pr 

Let the interval [1, sr#] and all further infinite intervals [m sr# + 1, (m + 1) sr# ] with m = 1 to ∞ 

be denoted by “all the infinite intervals sr#” and these intervals further be divided into pr equal 

intervals, which are denoted by sections. These sections are defined by their terminal values 

e1, e2, … , epr
, whereupon e1 = 1 s#, e2 = 2 s#,… , ek = k s#,… , epr

= pr s# with k = 1 to pr and all 

these sections consist of s# values and are equal to all the intervals s# (1.3): 

[1, e1], [e1 + 1, e2], . . . , [ek−1 + 1, ek], . . . , [epr−1 + 1, epr
] 

Let further be chosen the first value in all pr sections and be indicated with E1 and the second value 

in all pr sections and be indicated with E2 and so on until j = s#. In general, let be chosen all values 

j = 1 to s# in all pr sections and be indicated in all these sections with Ej.  

Then: Within all the infinite intervals sr# the prime pr divides every integer Ej exactly one time. 

Proof 1.1: 

By definition the two integers s# (for s = 1 the prime p1) and pr are relatively prime (s# ⊥ pr) and 

their greatest common divisor gcd(s#, pr) = 1. Therefore the two integers s# and pr divide 

themselves at their least common multiple lcm(s#, pr) = s# pr. 

All integers Ej generate s# infinite series on the natural number line ℕ and these s# series have the 

form j + s# (i − 1) with j = 1 to s# and i = 1 to ∞. The prime pr also defines an infinite series of 

the form pr i with i = 1 to ∞ and therefore this two infinite series have a least common multiple of 



s# pr as well and expressed in numbers of sections a least common multiple of  
s# pr

s#
= pr sections, 

respectively.  

If the prime pr divides any integer Ej (for example E1) in any of the sections k with k = 1 to pr within 

the first interval sr# the first time, thus the number of sections until the next integer Ej (for example 

E1) is divided through the prime pr is (k + pr) sections apart and this integer Ej (for example E1) lies 

with k ≥ 1 and (k + pr) > pr out of the first interval sr#, namely in all the sections k of all further 

infinite intervals sr#. Therefore any integer Ej is divided through the prime pr at most one time in 

every interval sr# and thus the maximum number of divided integers Ej with j = 1 to s# through the 

prime pr in any interval sr# can only be ∑ 𝑗s#
𝑗=1 = s#. But at the same time s# is the actual amount of 

integers which are divided through the prime pr in any interval sr#, because 
s# pr

pr
= s#. Therefore 

the prime pr must divide every integer Ej exactly one time within all the infinite intervals sr#. ⎕ 

Theorem 1.2: 

Theorem 1.2 is an extended form of Theorem 1.1 and therefore all the used notations in Theorem 

1.1 are kept the same. 

Let further be the infinite series of the prime pr of the form pr i with i = 1 to ∞ not only be 

“started” at the integer pr (as in Theorem 1.1) but also within the interval [1, pr]. This pr distinct 

infinite series will thus have the form c + pr (i − 1) with i = 1 to ∞ and 1 ≤ c ≤ pr. 

Then: Within all the infinite intervals sr# the prime pr divides every integer Ej exactly one time, 

independently of the “starting value” c of the prime pr within the interval [1, pr].  

Please note that hereinafter it should be spoken of “sieved integers” if the “starting value” of the 

prime pr is not equal to pr itself.  

Proof 1.2: 

In Theorem 1.1 the starting value of the prime pr within the first interval sr# and all further intervals 

sr# is the prime pr itself and the terminal value is s# pr, thus within a range (distance) of s# pr − pr 

exactly s# integers are divided through the prime pr. As long as the starting value c of the prime pr 

plus the distance s# pr − pr is less than or equal to the total number of integers within any interval 

sr#  

(s# pr − pr + c) ≤ s# pr 

the “sieved” integers will be exactly s# as well and for 1 ≤ c ≤ pr it is fulfilled.  

According to Theorem 1.1 any integer Ej is divided through the prime pr exactly one time in all the 

infinite intervals sr# and it is independent in which section k the prime pr sieves any integer Ej the 

first time. Thus the maximum number of divided integers Ej with j = 1 to s# through the prime pr in 

all the infinite intervals sr# can only be ∑ 𝑗s#
𝑗=1 = s# as well. Therefore the prime pr must divide 

every integer Ej with j = 1 to s# exactly one time within all the infinite intervals sr#, independently 

of the “starting value” c of the prime pr within the interval [1, pr]. ⎕ 

 



Theorem 1.3: 

Theorem 1.3 is an extended form of Theorem 1.1 and Theorem 1.2 and therefore all the used 

notations in Theorem 1.1 and Theorem 1.2 are kept the same. 

Let further be T ≔ {t1, t2, … , ta, … , tq} a set of randomly distributed “unsieved” integers ta within 

the first interval s# with a = 1 to q and 1 ≤ q < s#.  

Let the set T generate an new set of “unsieved” integers D ≔ {d1, d2, … , dqn
} within the first interval 

sr# and all further intervals sr#. Their distribution within all the infinite intervals sr# corresponds, 

beginning at the starting values 1, e1, e2, … , epr−1 of all pr sections 

[1, e1], [e1 + 1, e2], . . . , [ek−1 + 1, ek], . . . , [epr−1 + 1, epr
] 

to the randomly distributed unsieved integers ta within the interval s#, because by definition any 

interval s# is equal to any sections k with its s# values Ej. The number of “unsieved” integers thus 

increases in all the infinite intervals sr# to qn = q pr.  

Then: Within all the intervals sr# exactly q numbers from the set D ≔ {d1, d2, … , dqn
} are sieved 

from the prime pr and it is independent from the “starting value” of the prime pr within the interval 

[1, pr]. The number of insieved integers of the set D ≔ {d1, d2, … , dqn
} is thus reduced from 

qn = q pr to  qr = qn − q and qr = q pr − q = q (pr − 1), respectively. 

Proof 1.3: 

By definition, every unsieved integer ta from the set T corresponds to a determined value Ej (by 

definition exactly q values Ej from the whole set of s# values Ej) and it is valid for all the s# sections 

within all the infinite intervals sr#. 

According to Theorem 1.2 every integer Ej is sieved from the prime pr exactly one time within all the 

intervals sr# and it is independent of the “starting value” c of the prime pr within the interval [1, pr]. 

Therefore the unsieved integers ta from the set T, which are by definition a subset of all s# values Ej, 

can only be sieved exactly one time from the prime pr within all the intervals sr# as well and it is 

independent of the “starting value” c of the prime pr within the interval [1, pr]. The number of 

insieved integers of the set D ≔ {d1, d2, … , dqn
} is thus reduced from qn = q pr to qr = qn − q and 

qr = q pr − q = q (pr − 1), respectively. ⎕  

Theorem 1.4: 

Theorem 1.4 is an extended form of Theorem 1.1 to Theorem 1.3 and therefore all the used 

notations in Theorem 1.1 to Theorem 1.3 are kept the same. 

Let further be z with 2 ≤ z < pr a selected number of pr distinct infinite series of the prime pr of the 

form c + pr (i − 1) with i = 1 to ∞ and with 1 ≤ c ≤ pr and consider that these z distinct infinite 

series of the prime pr run through all the infinite intervals sr# synchronously and at the same time. 

Then: Within all the intervals sr# exactly q z numbers from the set D ≔ {d1, d2, … , dqn
} are sieved 

from the z distinct infinite series of the prime pr of the form c + pr (i − 1) with i = 1 to ∞ and with 



1 ≤ c ≤ pr. The number of unsieved integers of the set D ≔ {d1, d2, … , dqn
} is thus reduced from 

qn = q pr to qr = qn − q z and qr = q pr − q z = q (pr − z), respectively. 

Proof 1.4: 

According to Theorem 1.3 each of the z infinite series of the prime pr, which has by definition a 

distinct “starting value” c within the interval [1, pr], sieves exactly q integers of the set D and 

because these sieved integers are never at the same position within all the infinite intervals sr#, the 

number of sieved integers from the set D must be q z. The number of unsieved integers from the set 

D ≔ {d1, d2, … , dqn
} is thus reduced from qn = q pr to qr = qn − q z and qr = q pr − q z = q (pr −

z), respectively. ⎕ 

The next two Theorems describe the modified sieving method for twin primes. 

Theorem 2.1: 

a) Every possible twin prime, except the twin prime (3, 5), has the form (6 i − 1, 6 i + 1) with 

i = 1 to ∞.  

b) Any product of two integers of the form (6 i − 1) with i = 1 to ∞ gives an integer of the form 

(6 i + 1). 

c) Any product of two integers of the form (6 i + 1) with i = 1 to ∞ gives an integer of the form 

(6 i + 1). 

d) Any product of an integers of the form (6 i − 1) with an integers of the form (6 i + 1) with 

i = 1 to ∞ gives an integer of the form (6 i − 1). 

Proof 2.1: 

a) Every integer n > 3 can be written of the form (6 i − 2), (6 i − 1), (6 i), (6 i + 1), (6 i + 2),

(6 i + 3) with i = 1 bis ∞. Integers of the form (6 i − 2), (6 i), (6 i + 2) are divisible by 2 and thus 

cannot be prime. Integers of the form (6 i + 3) are divisible by 3 and thus cannot be prime as well. 

Therefore every twin prime except the twin prime (3, 5) must have the form (6 i − 1, 6 i + 1) with 

i = 1 to ∞.  

b) Any product of two integers of the form (6 i − 1) with i = 1 to ∞ is 

(6 i − 1) (6 j − 1) = 6 (6 i j − j − i) + 1   with i, j = 1 to ∞   

and thus an integer of the form (6 i + 1). 

c) Any product of two integers of the form (6 i + 1) with i = 1 to ∞ is  

(6 i + 1) (6 j + 1) = 6 (6 i j + j + i) + 1   with i, j = 1 to ∞   

and thus an integer of the form (6 i + 1). 

d) Any product of an integer of the form (6 i − 1) with an integer of the form (6 j + 1) with 

i, j = 1 to ∞ is  

(6 i − 1) (6 j + 1) = 6 (6 i j − j + i) − 1   with i, j = 1 to ∞     



and thus an integer of the form (6 i − 1). ⎕ 

Theorem 2.2: 

Let the number of all possible twin primes up to any primorial n#, which are not “sieved” by all the 

primes less than n of the form (6 i − 1, 6 i + 1), except the twin prime (3, 5), be the so-called 

ф2(n#) function. 

Then: The so-called ф2(n#) function for any primorial n# is (2.1) 

ф2(n#) =  
1

6
 n# ∏ (1 −

2

p
)

p≤n

p prime
p≥5

 

Proof 2.2: 

As a first step we add the number 1 to any integer of the form (6 i − 1) and divide it through the 

number 6. As a second step we subtract the number 1 from any integer of the form (6 i + 1) and 

divide it through the number 6. Thus we receive two shortened number lines whereupon considered 

in conjunction every integer i with i = 1 to ∞ represents a possible twin prime of the form 

(6 i − 1, 6 i + 1). The shortened number line is 
1

6
 of the natural number line ℕ. 

Any product of the integers of the form (6 i − 1) and (6 i + 1) with i = 1 to ∞ generates the 

following infinite series on the shortened number line: 

a) Any product of two integers of the form (6 i − 1) with i = 1 to ∞ generates (see also Proof 2.1.b): 

6 (6 i j − j − i) + 1 =              ∣ −1 ∣: 6  

  6 i j − j − i =  

(6 j − 1) i − j                                with i, j = 1 to ∞   

It relates to the following infinite series:  

  j = 1:       − 1 + 5 i         = 4, 9, 14,… ≙ (5 . 5), ( 5 . 11), ( 5 . 17),… 

  j = 2:       − 2 + 11 i      = 9, 20, 31,… ≙ (11 . 5), (11 . 11), ( 11 . 17),… 

  j = 3:       − 3 + 17 i      = 14, 31, 48,… ≙ (17 . 5), ( 17 . 11), (17 . 17),… 

..... 

b) Any product of two integers of the form (6 i + 1) with i = 1 to ∞ generates (see also Proof 2.1.c): 

6 (6 i j + j + i) + 1 =              ∣ −1 ∣: 6  

  6 i j + j + i =  

(6 j + 1) i + j                                with i, j = 1 to ∞   

It relates to the following infinite series:  

j = 1:        1 + 7 i             = 8, 15, 22,…  ≙ (7 . 7), ( 7 . 13), ( 7 . 19), … 

j = 2:        2 + 13 i           = 15, 28, 41,… ≙ (13 . 7), (13 . 13), ( 13 . 19), … 

j = 3:        3 + 19 i           = 22, 41, 60,… ≙ (19 . 7), (19 . 13), ( 19 .19),… 

..... 



c) Any product of an integer of the form (6 i − 1) with an integer of the form (6 i + 1) with 

i = 1 to ∞ generates (see also Proof 2.1.d): 

6 (6 i j − j + i) − 1 =              ∣ +1 ∣: 6  

  6 i j − j + i =  

(6 j + 1) i − j                                with i, j = 1 to ∞   

It relates to the following infinite series:  

j = 1:       − 1 + 7 i        = 6, 13, 20,… ≙ (7 . 5), (7 . 11), ( 7 . 17),… 

j = 2:       − 2 + 13 i     = 11, 24, 37,… ≙ (13 .  5), (13 . 11), ( 13 . 17), … 

j = 3:       − 3 + 19 i     = 16, 35, 54,… ≙ (19 . 5), (19 . 11), ( 19 . 17), … 

..... 

or 

(6 i − 1) j + i                                with i, j = 1 to ∞    

It relates to the following infinite series:  

i = 1:        1 + 5 j            = 6, 11, 16,… ≙ (5 . 7), (5 . 13), ( 5 . 19), … 

i = 2:        2 + 11 j         = 13, 24, 35,… ≙ (11 . 7), (11 . 13), ( 11 . 19),… 

i = 3:        3 + 17 j         = 20, 37, 54,… ≙ (17 . 7), (17 . 13), ( 17 . 19),… 

..... 

The latter two infinite series (6 j + 1) i − j and (6 i − 1) j + i, respectively, represent for i, j = 1 to ∞ 

the same integers on the shortened number line, but as for the following modified sieving method 

for twin primes any prime p must be considered successively from the ascending list of all primes p, 

both infinite series will be successively taken into account. 

If we look at the infinite series from above in greater detail, we will see that every prime p generates 

on the shortened number line two distinct infinite series of the form c1,2 + p j with j = 1 to ∞. For 

example, prime 5 generates two infinite series 1 + 5 j and −1 + 5 j, prime 7 generates two infinite 

series 1 + 7 j and −1 + 7 j, prime 11 generates two infinite series 2 + 11 j and −2 + 11 j and so 

on… . All positive starting values from the distinct infinite series from above represent the 

corresponding prime p on the natural number line ℕ and for the following sieving method every 

prime p will be considered as well. Thus the two distinct infinite series for every prime p will have a 

starting value, expressed through the corresponding prime p, with c1 =
p±1

6
 and c2 = p −

p±1

6
 , 

respectively, and therefore two starting values c1,2 within the interval [1, p]. 

Modified sieving method for twin primes: 

Step 1: On the shortened number line, the first prime p = 5 generates two infinite series, namely 

   1 + 5 j         = 1, 6, 11, 16,… ≙ (5 . 1), (5 . 7), (5 . 13), ( 5 . 19), … and 

−1 + 5 j         = 4, 9, 14,… ≙ (5 . 5), ( 5 . 11), ( 5 . 17),… 

The sieved integers from the two infinite series from above are apart from each other by the value +3 

(1-4; 6-9; 11-14; …), thus the prime p = 5 sieves on the shortened number line 
2

5
 of all integers and 

remain 
3

5
 of all integers unsieved. 



Step 2: The next prime p = 7 generates also two infinite series, namely 

   1 + 7 j        = 1, 8, 15, 22,…  ≙ (7 .  1), (7 . 7), ( 7 . 13), ( 7 . 19), … and 

−1 + 7 j        = 6, 13, 20,… ≙ (7 . 5), (7 . 11), ( 7 . 17), … 

According to Theorem 1.4 with s# = p1 = 5, sr# = 5 . 7 = 35,  pr = 7, q = 3 and z = 2 the prime 

pr = p = 7 sieves q z = 3 . 2 = 6 integers within all the infinite intervals sr# and lets qr =

q (pr − z) = 3 (7 − 2) = 15 integers within all the infinite intervals sr# be unsieved. 

Thus the number of unsieved integers up to the primorial i# = 5 . 7 = 35 is (2.2) 

ф2(35) =  35 ∏ (
p − 2

p
)

p≤7

p prime
𝑝≥5

= 15 

Step 3: The next prime p = 11 generates also two infinite series, namely 

   2 + 11 j      = 2, 13, 24, 35, … ≙ (11 . 1), (11 . 7), (11 . 13), ( 11 . 19), … and 

−2 + 11 j      = 9, 20, 31,… ≙ (11 . 5), (11 .  11), ( 11 . 17),…   

According to Theorem 1.4 with s# = 5 . 7 = 35, sr# = 35 . 11 = 385, pr = 11, q = 15 and z = 2 

the prime pr = p = 11 sieves q z = 15 . 2 = 30 integers within all the infinite intervals sr# and lets 

qr = q (pr − z) = 15 (11 − 2) = 135 integers within all the infinite intervals sr# be unsieved. 

Thus the number of unsieved integers up to the primorial i# = 385 is (2.3) 

ф2(385) =  385 ∏ (
p − 2

p
)

p≤11

p prime
𝑝≥5

= 135 

Step 4 to ∞: All these steps can be applied for the ascending list of all primes p and because all 

primes p generate two infinite series c1,2 + p i with two distinct starting values c1,2 within the 

interval [1, p], the number of unsieved integers on the shortened number line up to any primorial i# 

is (2.4)  

ф2(i# ) =  i#  ∏ (
p − 2

p
)

p≤6 i±1

p prime
𝑝≥5

 

and expressed for the natural number line ℕ and thus for the primorial n#, which represents all the 

possible twin primes, which are not “sieved” by all the primes less than n, except the twin prime (3, 

5), it is (see also table 1) (2.5) 

ф2(n#) =  
1

6
 n# ∏ (

p − 2

p
)

p≤n

p prime
𝑝≥5

=
1

6
 n# ∏ (1 −

2

p
)

p≤n

p prime
𝑝≥5

 

⎕ 

  



2. Proof of the Twin Prime Conjecture 

Theorem 3: 

There are infinitely many twin primes. 

Proof 3: 

Let the prime counting function π(n) be the number of primes less than or equal to n. The prime 

number theorem [3] states that as n → ∞ (3.1) 

limn → ∞          
π(n)
n

ln (n)
 
= 1 

and thus the prime number density function for limn → ∞ is (3.2)  

limn → ∞          
π(n)

n
=

1

ln (n)
 

Let the twin prime counting function π2(n) be the number of twin primes less than or equal to n and 

the twin prime number density function be (3.3) 

π2(n)

n
 

Let further be ф(n#) the Euler ф function (Euler totient function) for any primorial n# (3.4) 

ф(n#) = n#  ∏ (1 −
1

p
)

p≤n

p prime

= n#  ∏ (
p − 1

p
)

p≤n

p prime

 

where the product extends over all primes p dividing n#. This function states the number of all 

possible primes up to any primorial n#, which are not divided by all the primes less than n, and 

includes all the actual primes within the interval [n, n2]. 

Mertens’ 3rd Theorem [4] describes the connection between the infinite product ∏ (
p−1

p
)

p≤n
p prime  and 

the natural logarithm ln(n) as n → ∞ (3.5) 

limn → ∞        ln(n)  ∏ (
p − 1

p
)

p≤n

p prime

= e−γ 

and with the Euler-Mascheroni constant γ = 0,57721… the equation from above (3.5) in 

conjunction with (3.4) gives (3.6) 

limn → ∞        ∏ (
p − 1

p
)

p≤n

p prime

=
1

ln (n)
 e−γ =

1

ln(n) ∗ eγ
=

1

ln(neγ)
=

ф(n#)

n#
 

Thus the Euler ф(n#) function for any primorial n# divided through the primorial n# is equal to one 

divided through the natural logarithm ln (neγ
) with neγ

= n1,7810720… as n → ∞. 



As for lim n → ∞ 
1

ln(neγ
)
 is also equal to the prime number density function 

π(neγ
)

neγ  (see equation 3.2), 

thus the Euler ф(n#) function not only includes all the actual primes within the interval [n, n2] but 

also describes the prime number density function 
π(neγ

)

neγ  with n < neγ
= n1,7810720… < n2 if it is 

divided through the primorial n# (3.7): 

limn → ∞             
ф(n#)

n#
=  ∏ (1 −

1

p
)

p≤n

p prime

=
π(neγ

)

neγ  

Let ф2(n#) be the so-called ф2 function for any primorial n# (see Theorem 2.2) with (3.8) 

ф2(n#) =  
1

6
 n# ∏ (

p − 2

p
)

p≤n

p prime
p≥5

 

According to Theorem 2.2 this function states the number of all the possible twin primes up to any 

primorial n#, which are not divided or “sieved” by all the primes less than n, except the twin prime 

(3, 5), and includes all the actual twin primes within the interval [n, n2]. 

With the so-called twin prime constant C2 [5], which is defined as (3.9) 

limn → ∞         C2 = ∏ (
p (p − 2)

(p − 1)2 )

p≤n

p prim
p≥3

= 0,6601618… 

where the products extends over all primes except the prime 2, and with (3.10) 

∏ (
p − 2

p
)

p≤n

p prime
p≥5

=

[
 
 
 
 

∏ (
p − 1

p
)

p≤n

p prime
p≥5 ]

 
 
 
 
2

 ∏ (
p (p − 2)

(p − 1)2 )

p≤n

p prime
p≥5

= 

= [
2

1
  
3

2
]
2

 [ ∏ (
p − 1

p
)

p≤n

p prime

]

2

 
4

3
 ∏ (

p (p − 2)

(p − 1)2 )

p≤n

p prim
p≥3

 

we obtain from (3.8), (3.10) and (3.4) for limn → ∞ (3.11) 

ф2(n#) =  
1

6
 n# 9 [ ∏ (

p − 1

p
)

p≤n

p prime

]

2

 
4

3
 C2 = 

ф2(n#)

n#
=  2 C2  [ ∏ (

p − 1

p
)

p≤n

p prime

]

2

= 

limn → ∞          
ф2(n#)

n#
=  2 C2  [

ф(n#)

n#
]

2

 



The equation from above states that there is a fixed relation between the possible primes and the 

possible twin primes up to any primorial n# as n → ∞. We further know that the Euler ф(n#) 

function for primes and the so-called ф2(n#) function for twin primes also include the actual primes 

and the actual twin primes within the interval [n, n2]. As the Euler ф(n#) function for any primorial 

n# divided through the primorial n# describes the prime number density function 
π(neγ

)

neγ  for 

limn → ∞ (3.7), the equation from above also states the relation between the prime number density 

function 
π(neγ

)

neγ  and the twin prime number density function 
π2(neγ

)

neγ   for limn → ∞ and in general the 

relation between the prime number density function 
π(n)

n
 and the twin prime number density 

function 
π2(n)

n
 as n → ∞ (3.12): 

limn → ∞          
π2(n)

n
=  2 C2  [

π(n)

n
]

2

 

As the prime number density function  
π(n)

n
 can never become zero, the twin prime number density 

function  
π2(n)

n
 can never become zero as well and thus there are infinitely many twin primes. The 

twin prime counting function π2(n) for limn → ∞ is (3.13) 

limn → ∞          π2(n) =  2 C2  
[π(n)]2

n
 

⎕  

An estimate for n ≫ 0 is (3.14) 

π2(n) ≅  2 C 
[π(n)]2

n
    with C ≅ C2 

 and (3.15) 

∆π2(n) ≅  2 C 
[∆π(n)]2

∆n
    with C ≅ C2 

respectively (see Table 2 for the equation 3.15 with the actual primes and the actual twin primes 

from 106up to 1016 and the calculated constant C ≅ C2 = 0,66016…). 

 π(n) π2(n) ∆n ∆π(n) ∆π2(n) C 

106 78.498 8.169     

107 664.579 58.980 106 − 107 586.081 50.811 0,66566 

108 5.761.455 440.312 107 − 108 5.096.876 381.332 0,66055 

109 50.847.534 3.424.506 108 − 109 45.086.079 2.984.194 0,66062 

1010 455.052.511 27.412.679 109 − 1010 404.204.977 23.988.173 0,66070 

1011 4.118.054.813 224.376.048 1010 − 1011 3.663.002.302 196.963.369 0,66058 

1012 37.607.912.018 1.870.585.220 1011 − 1012 33.489.857.205 1.646.209.172 0,66050 

1013 346.065.536.839 15.834.664.872 1012 − 1013 308.457.624.821 13.964.079.652 0,66044 

1014 3.204.941.750.802 135.780.321.665 1013 − 1014 2.858.876.213.963 119.945.656.793 0,66040 

1015 29.844.570.422.669 1.177.209.242.304 1014 − 1015 26.639.628.671.867 1.041.428.920.639 0,66037 

1016 279.238.341.033.925 10.304.195.697.298 1015 − 1016 249.393.770.611.256 9.126.986.454.994 0,66034 

 
Table 2: actual numbers for π(n), π2(n), ∆n, ∆π(n), ∆π2(n) and C 



3. Prime Number Theorem for Arithmetic Progressions 

Theorem 4: 

The prime counting function π−(n), which gives the number of primes less than or equal to n of the 

form (6 i − 1), and the prime counting function π+(n), which gives the number of primes less than 

or equal to n of the form (6 i + 1), are for limn → ∞ both equal and one half of the prime counting 

function π(n): 

limn → ∞       π−(n) = π+(n) =
1

2
  π(n) 

Proof 4: 

As a first step we add the number 1 to every integer of the form (6 i − 1) and divide it through the 

number 6. We thus receive a shortened number line where any integer i represents a possible prime 

of the form (6 i − 1). The shortened number line is 
1

6
 of the natural number line ℕ. 

The same sieving method according to Theorem 2.2 in conjunction with Theorem 2.1.d and 

Theorem 1.3 is applied for the two infinite series (6 i − 1) j + i and (6 j + 1) i − j with i, j = 1 to ∞, 

which generates the following infinite series 

   1 + 5 j         = 1, 6, 11,… 

−1 + 7 j        = 6, 13, 20,… 

   2 + 11 j      = 2, 13, 24,… 

−2 + 13 j     = 11, 24, 37,… 

…. 

and we obtain a so-called ф−(i#) function for any primorial i# (4.1) 

i# = ∏ p

p≤6 i±1

p prime
p≥5

 

(4.2) 

ф−(i#) = i#  ∏ (
p − 1

p
) = i#  ∏ (1 −

1

p
)

p≤6 i±1

p prime
p≥5

p≤6 i±1

p prime
p≥5

 

The equation from above (4.2) expressed for the natural number line ℕ and thus for the primorial n# 

and the product of all primes less then n gives (4.3) 

ф−(n#) =
1

6
 n# 

2

1
  
3

2
 ∏ (1 −

1

p
) =

p≤n

p prime

 

ф−(n#) =
1

2
  n# ∏ (1 −

1

p
)

p≤n

p prime

 



This equation states the number of all possible primes of the form (6 i − 1) up to the primorial n#, 

which are not divided or “sieved” by all the primes less than n, and includes all the actual primes of 

the form (6 i − 1) within the interval [n, n2]. 

As a second step we subtract the number 1 from every integer of the form  (6 i + 1) and divide it 

through the number 6. We thus receive a shortened number line where any integer i represents a 

possible prime of the form (6 i + 1). 

The same sieving method from above is applied for the two infinite series (6 j − 1) i − j and 

(6 j + 1) i + j with i, j = 1 bis ∞, which generates the following infinite series 

−1 + 5 j        = 4, 9, 14,… 

   1 + 7 j        = 1, 8, 15,… 

−2 + 11 j     = 9, 20, 31,… 

   2 + 13 j     = 2, 15, 28,… 

…. 

and we receive a so-called ф+(n#) function for any primorial n#, which is identical to equation (4.3) 

(4.4) 

ф+(n#) =
1

2
 n# ∏ (1 −

1

p
)

p≤n

p prime

 

As we know that the Euler ф(n#) function for any primorial n# divided through the primorial n# is 

equal to the prime number density function 
π(neγ

)

neγ  for limn → ∞ (3.7): 

limn → ∞             
ф(n#)

n#
= ∏ (1 −

1

p
)

p≤n

p prime

=
π(neγ

)

neγ  

we see in comparison with equation (4.2) and (4.4), respectively, that the prime counting function 

π−(n) and the prime counting function π+(n) is exactly one half of the prime counting function π(n) 

for limn → ∞ (4.5)  

limn → ∞       π−(n) = π+(n) =
1

2
  π(n) 

⎕ 

 

4. Conclusion: 

I studied Civil Engineering at the Technical University of Vienna and I am examiner at the Austrian 

Patent Office. It was my unbiased look at twin prime pairs, which induced me to investigate the so-

called ф(n#) function from scratch and with an open mind. Theorems 1.1 to 2.2 are the results of 

this unbiased look. Especially Theorem 1.4 can be a helpful step for further investigation in number 

theory and especially in prime number theory. 
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