A cousin of one of Ramanujan's Identities

Lulu Karami

Abstract

This submission gives a closed form identity similar to one given by Ramanujan. A formula for infinitely many similar identities is presented here as well.

1 Definitions and Criteria on fields and algeabriac quantites in question

To start, consider p to be a prime of the form $4k+1$. Let ϵ be the fundamental unit of the real quadratic field with discriminant p with no concern on the embedding or sign of ϵ . Since p is a prime of the form $4k+1$, it just so happens that it can uniquely be written as the sum of two squares

$$
p = a^2 + b^2
$$

up to the order and sign of a and b . To slightly reduce confusion when it comes to the order, let b be even. Using the greek letter π , let it be defined as the algebraic quantity

$$
\pi=a+bi
$$

unless otherwise stated. Let ω be a solution in \mathbb{F}_p to the equation

$$
\omega^2 + 1 \equiv 0 \pmod{p}
$$

Let K_1 , K_2 be the fields defined as

$$
K_1 = \mathbb{Q}(\sqrt{\epsilon})
$$

$$
K_2 = \mathbb{Q}(\sqrt{\pi})
$$

and designate the basis of K_1 's unit group as

$$
\mathcal{O}_{K_{1}}^{\times }=<\sqrt{\epsilon },\gamma >
$$

Let $\gamma^{'}$ be the expression

$$
\gamma^{'}=(\sqrt{\frac{\gamma^{-}}{\gamma^{+}}})^{\mathrm{h}_{K_{2}}}
$$

where the algebraic quantities γ^{\pm} is are the positive/negative embeddings of γ into R such that

 $|\gamma^{'}| \leq 1$

and the quantity h_{K_2} is the class number of K_2 .

2 More definitions and tools

Still taking p to be the arbitrary $4k + 1$ from the previous section, denote the quantity d as

$$
d=\!2^{\frac{1-\chi_8(p)}{2}}
$$

where the character χ_8 is the real Dirichlet character taking the values

$$
\chi_8(p) = (-1)^{\frac{p-1}{4}}
$$

which is completely fine since p is of the form $4k + 1$. Let ψ be the non-trivial quadratic character on \mathbb{F}_p . Denote the quantity c as

$$
c = \sum_{n \in \mathbb{F}_p^{\times}} \psi(n) \cdot n^2
$$

Let ω be any integer solution in \mathbb{F}_p^{\times} to the equation

$$
\omega^2 + 1 \equiv 0 \pmod{p}
$$

and take the related algebraic quantity τ as

 $\tau = i + \omega$

where *i* is $\sqrt{-1}$. The choice of ω is irrelevant to the purpose it serves; it does not matter whether ω or $\omega + p$ is used.

Let $(a;q)$ be a function of a and q defined by the product

$$
(a;q) = \prod_{l \ge 0} (1 - a \cdot q^l)
$$

This is the **q-Pochammer symbol**, $(a;q)_{\infty}$, but the _∞ subscript has been ommitted out of convenience.

3 Unit Formula

By maintaining everything that was defined from before, with the exception that π is now the circle constant rather than a Gaussian prime, The quantity γ' can be given as the following product;

$$
\gamma'^d = e^{-\frac{\pi \cdot c \cdot d}{p^2}} \cdot \prod_{l \in \mathbb{F}_p^{\times}} \left(\left(e^{\frac{2\pi \cdot d \cdot \tau}{p} \cdot l}; e^{-2\pi d} \right) \cdot \left(e^{-\frac{2\pi \cdot d \cdot \bar{\tau}}{p} \cdot l}; e^{-2\pi d} \right) \right)^{\psi(l)}
$$

Alternatively, the quantity $-\frac{\pi \cdot c \cdot d}{2}$ $\frac{v}{p^2}$ can expressed differently as

$$
-\frac{\pi \cdot c \cdot d}{p^2} = \frac{2\pi d}{p} \cdot L(\psi, -1)
$$

where $L(\psi, s)$ is the Dirichlet L-function of the same character ψ defined earlier. If p is taken to be 5 and ζ_5 is the 5th root of unity

$$
\zeta_5=e^{\frac{2\pi\imath}{5}}
$$

then by plugging in concrete quantities for all the undetermined quantities, this yields the curious identity

$$
\frac{1+\sqrt{5}}{2}-\sqrt{\frac{1+\sqrt{5}}{2}}=e^{-\frac{8\pi}{25}}\prod_{l\geq 0}\frac{\left(1-\zeta_5e^{-(5l+1)\frac{4\pi}{5}}\right)\left(1-\zeta_5^{-1}e^{-(5l+1)\frac{4\pi}{5}}\right)\left(1-\zeta_5e^{-(5l+4)\frac{4\pi}{5}}\right)\left(1-\zeta_5^{-1}e^{-(5l+4)\frac{4\pi}{5}}\right)}{\left(1-\zeta_5^2e^{-(5l+2)\frac{4\pi}{5}}\right)\left(1-\zeta_5^{-2}e^{-(5l+3)\frac{4\pi}{5}}\right)\left(1-\zeta_5^{-2}e^{-(5l+3)\frac{4\pi}{5}}\right)}
$$

which resembles Ramanujan's identity

$$
\sqrt{\frac{5+\sqrt{5}}{2}}-\frac{1+\sqrt{5}}{2}=e^{-\frac{2\pi}{5}}\cdot\prod_{l\geq 0}\frac{(1-e^{-(5l+1)2\pi})(1-e^{-(5l+4)2\pi})}{(1-e^{-(5l+2)2\pi})(1-e^{-(5l+3)2\pi})}
$$

4 Remarks

A proof of the unit formula can be given by taking advantage of the residues of $\zeta_{K_1}(s)$ and $\zeta_{K_2}(s)$ at $s=1$ while manually working out some quantities/properties of the fields (discriminant, Regulator, roots of unity, real and complex embeddings,...). A full proof is not difficult to follow but is relatively tedious. Producing a smooth and proper proof has been set aside for the distant future.