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1 – Introduction  

 In [1] we showed that the three-dimensional Euler (𝜈 = 0) and Navier-Stokes 

equations in rectangular coordinates need to be adopted as 

(1) 
𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 = 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖,   

for 𝑖 = 1,2,3, where 𝛼𝑗 =
𝑑𝑥𝑗

𝑑𝑡
 is the velocity in Lagrangian description and 𝑢𝑖  and the 

partial derivatives of 𝑢𝑖  are in Eulerian description, as well as the scalar pressure 𝑝 and 

density of external force 𝑓𝑖. The coefficient of viscosity is 𝜈 and by ease we prefer to 

use the mass density 𝜌 = 1 (otherwise substitute 𝑝 by 𝑝/𝜌 and 𝜈 by ν/𝜌). 

 An alternative equation is 

(2) 
𝜕𝑝𝑖

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 = 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖, 

thus making the pressure a vector: 𝑝 = (𝑝1, 𝑝2, 𝑝3). In both equations is valid 

(3) 
𝐷𝑢𝑖

𝐷𝑡
=

𝐷𝑢𝑖
𝐸

𝐷𝑡
=

𝐷𝑢𝑖
𝐿

𝐷𝑡
= (

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 ) |𝐿, 

where the upper letter 𝐸 refers to Eulerian velocity (𝑢) and 𝐿 to Lagrangian velocity 

(𝛼) . The symbol |𝐿  means the respective calculation in Lagrangian description, 

substituting each 𝑥𝑖  as a function of time, initial value and eventually some 

parameters. With the notation 
𝐷

𝐷𝑡
 we want, in principle, to make explicit that we are 

calculating a total derivative in relation to time, and the result is a function exclusively 

of time (and possibly a set of constant parameters and initial position), without the 

spatial coordinates 𝑥, 𝑦, 𝑧, but when for some reason we need to leave the result as a 
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function of the spatial coordinates we can also do it. It is like when we want to write 

𝐷𝑢𝑖
𝐸

𝐷𝑡
=

𝐷𝑢𝑖
𝐿

𝐷𝑡
|𝐸, where the symbol |𝐸  means the respective calculation in Eulerian 

description. 

 A condition indicated by us in [1] were 

(4) {

𝜕𝑢𝑖

𝜕𝑥𝑗
= 0, 𝑖 ≠ 𝑗,

𝜕𝑥𝑖 = 𝑢𝑖𝜕𝑡
 

because we have, by definition, 

(5) 𝑢𝑖 =
𝑑𝑥𝑖

𝑑𝑡
, 

in Lagrangian description, and for this reason the velocity component 𝑢𝑖, a priori, is not 

dependent of others variables 𝑥𝑗, with 𝑥𝑗 ≠ 𝑥𝑖. More than a rigorous mathematical 

proof, this is a practical approach, which simplifies the original system.   

 We will describe in section 2 a circular motion with uniform angular velocity 

and in section 3 a quite general movement, both in rectangular coordinates. In the 

section 4 we will write the Euler and Navier-Stokes equations in cylindrical coordinates 

and in section 5 in spherical coordinates. The section 6 will be our Conclusion, 

concluding again on the breakdown solutions and the necessity of use of vector 

pressure. 

 

2 – Circular Motion in Rectangular Coordinates 

 Let a circular motion of radius 𝑅, centered at (𝑥𝐶 , 𝑦𝐶) and with constant 

angular velocity 𝜔 > 0 described by the equations: 

(6) {
𝑥 = 𝑥𝐶 + 𝑅 cos(𝜃0 +𝜔𝑡)
𝑦 = 𝑦𝐶 + 𝑅 sin(𝜃0 +𝜔𝑡)

 

and consequently 

(7) (𝑥− 𝑥𝐶)2 + (𝑦− 𝑦𝐶)
2
= 𝑅2. 

 Then the velocity components are 

(8) {
𝛼1 = 𝑢1

𝐿 = �̇� = −𝜔𝑅 sin(𝜃0 +𝜔𝑡) = −𝜔(𝑦 − 𝑦𝐶) = 𝑢1
𝐸

𝛼2 = 𝑢2
𝐿 = �̇� = +𝜔𝑅 cos(𝜃0 +𝜔𝑡) = +𝜔(𝑥 − 𝑥𝐶) = 𝑢2

𝐸  

and the acceleration components are    
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(9) {

𝐷𝑢1
𝐿

𝐷𝑡
= �̈� = −𝜔2𝑅 cos(𝜃0 +𝜔𝑡) = −𝜔

2(𝑥 − 𝑥𝐶) =
𝐷𝑢1

𝐸

𝐷𝑡

𝐷𝑢2
𝐿

𝐷𝑡
= �̈� = −𝜔2𝑅 sin(𝜃0 +𝜔𝑡) = −𝜔

2(𝑦 − 𝑦𝐶) =
𝐷𝑢2

𝐸

𝐷𝑡

   

 Supposing that the particles of fluid obey the motion described by (6) to (9), we 

have 

(10) {

𝜕𝑢1
𝜕𝑦
= −𝜔,    

𝜕𝑢1
𝜕𝑥
= 0

𝜕𝑢2
𝜕𝑥
= +𝜔,    

𝜕𝑢2
𝜕𝑦
= 0

 

apparently in disagree with (4) if 𝜔 ≠ 0. But, as 𝑥 is a function of 𝑦 and reciprocally, in 

this circular motion according (7), again (4) turns valid, for any signal of 𝑥 and 𝑦. For to 

complete a three-dimensional description, we define 𝑧 = 𝑧0, without dependence of 

time, and 𝑢3 = 0. 

 This is a motion of velocity without potential, because 
𝜕𝑢𝑖

𝜕𝑥𝑗
≠

𝜕𝑢𝑗

𝜕𝑥𝑖
 for some 

𝑖 ≠ 𝑗, but if 𝑓 = (𝑓1, 𝑓2, 𝑓3) has potential we have 
𝜕𝑆𝑖

𝜕𝑥𝑗
=

𝜕𝑆𝑗

𝜕𝑥𝑖
 for all 𝑖, 𝑗 = 1,2,3, with  

(11) 𝑆𝑖 = −
𝜕𝑢𝑖

𝜕𝑡
− ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 + 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖,        

then the system (1) has solution. 

 A calculation for the scalar pressure of this motion is 

(12) 𝑝 = ∫ (𝑆1, 𝑆2, 𝑆3) ∙ 𝑑𝑙𝐿
= ∫ (−

𝐷𝑢

𝐷𝑡
+ 𝑓) ∙ 𝑑𝑙

𝐿
 

 = 𝜔2 [(
𝑥2

2
− 𝑥𝐶𝑥) |𝑥0

𝑥 + (
𝑦2

2
− 𝑦𝐶𝑦) |𝑦0

𝑦
] + 𝑈 − 𝑈0 + 𝑞(𝑡)   

 = 𝜔2 [(
𝑥2

2
− 𝑥𝐶𝑥) − (

𝑥0
2

2
− 𝑥𝐶𝑥0) + (

𝑦2

2
− 𝑦𝐶𝑦) − (

𝑦0
2

2
− 𝑦𝐶𝑦0)] + 

      𝑈 − 𝑈0 + 𝑞(𝑡), 

where 𝑓 = ∇𝑈, 𝑈0 = 𝑈(𝑥0, 𝑦0, 𝑧0, 𝑡)  and 𝐿  is any smooth path linking a point 

(𝑥0, 𝑦0, 𝑧0) to (𝑥, 𝑦, 𝑧). We can ignore the use of 𝑥0, 𝑦0, 𝑧0 and  𝑈0, and use only the 

free function for time, 𝑞(𝑡), which on the other hand can include the terms in 𝑥0, 𝑦0 

and 𝑧0, and nevertheless this solution shows us that the pressure is not uniquely well 

determined, therefore we get to the negative answer to Smale's 15th problem, 

according already seen in [2] and [3], even if we assign the velocity value on some 

surface that we wish and even if 𝑞(𝑡) and 𝑈 does not depend explicitly on the variable 

time 𝑡. In this motion the pressure is dependent, besides of 𝑥, 𝑦 and 𝑈, without any 

problematic question, and 𝑥𝐶 , 𝑦𝐶  and 𝜔,  specific parameters of the movement 
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conditions of a particle, of 𝑞(𝑡), 𝑈0 and more three parameters, 𝑥0, 𝑦0 and 𝑧0, then 

there is not uniqueness of solution. 

 Another calculation for pressure is possible due to fact that we can describe the 

acceleration 
𝐷𝑢

𝐷𝑡
 of a particle of fluid as a function only of time, 

𝐷𝛼

𝐷𝑡
, without the 

variables 𝑥, 𝑦, 𝑧, and then 

(13) 𝑝 = −
𝐷𝛼

𝐷𝑡
∙ ∫ 𝑑𝑙
𝐿

+ 𝑈 − 𝑈0 + 𝑞(𝑡) 

       = +𝜔2𝑅[cos(𝜃0 + 𝜔𝑡) (𝑥 − 𝑥0) + sin(𝜃0 +𝜔𝑡) (𝑦 − 𝑦0)] 

          + 𝑈 − 𝑈0 + 𝑞(𝑡), 

with 

(14) 

{
 
 

 
 
𝜕𝑝

𝜕𝑥
= +𝜔2𝑅 cos(𝜃0 +𝜔𝑡) + 𝑓1 = +𝜔

2(𝑥 − 𝑥𝐶) + 𝑓1
𝜕𝑝

𝜕𝑦
= +𝜔2𝑅 sin(𝜃0 +𝜔𝑡) + 𝑓2 = +𝜔

2(𝑦 − 𝑦𝐶) + 𝑓2

𝜕𝑝

𝜕𝑧
= 𝑓3

 

in fact derivatives such as can be obtained from (12). 

 Note that in order to continue using the traditional form of the Euler and 

Navier-Stokes equations we will have non-linear equations, which can make it difficult 

to obtain the solutions and bring all the difficulties that we know. To make sense to 

use the velocity in Eulerian description rather than the Lagrangian description in  𝛼𝑗 it 

is necessary that, for all 𝑡 ≥ 0,  

(15) 𝑢𝐸(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑡) = 𝛼(𝑡) = (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) = 𝑢𝐿(𝑡),  

omitting the use of possible parameters of motion, then nothing more natural than the 

definitive substitution of the terms 
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 , as well as 

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1  

in the traditional form, by  
𝐷𝑢𝑖

𝐿

𝐷𝑡
  or  

𝐷𝛼𝑖

𝐷𝑡
. This brings a great and important simplification 

in the equations, and to return to having the position as reference it is enough to use 

the conversion or definition adopted for 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡), including the possible 

additional parameters, for example, substituting initial positions in function of position 

and time, etc. 

 Thus, more appropriate Euler (𝜈 = 0) and Navier-Stokes equations with scalar 

pressure are, in index notation,  

(16) 
𝜕𝑝

𝜕𝑥𝑖
+
𝐷𝛼𝑖

𝐷𝑡
= 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖. 
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3 – Generic three-dimensional motion in Rectangular Coordinates  

 Suppose that a particle of fluid moves according to equation 

(17) 𝑥𝑖 = 𝐴𝑖(𝑡)𝑥𝑖
0 + 𝐵𝑖(𝑡), 

𝐴𝑖(0) = 1, 𝐵𝑖(0) = 0, 𝐴𝑖 , 𝐵𝑖 ∈ 𝐶
∞([0,∞)), 𝑖 = 1,2,3, (𝑥1, 𝑥2, 𝑥3) ≡ (𝑥, 𝑦, 𝑧), where   

(𝑥1
0, 𝑥2

0, 𝑥3
0) ≡ (𝑥0, 𝑦0, 𝑧0) is the initial position of this particle in relation to three-

orthogonal system of reference considered at rest. 

 Your velocity in relation to this system is, for 𝑖 = 1,2,3, 

(18) �̇�𝑖 =
𝑑

𝑑𝑡
𝑥𝑖 = 𝑢𝑖

𝐿 = 𝛼𝑖 = 𝐴𝑖
′(𝑡)𝑥𝑖

0 + 𝐵𝑖
′(𝑡), 

with acceleration 

(19) �̈�𝑖 =
𝑑

𝑑𝑡
�̇�𝑖 =

𝐷

𝐷𝑡
𝑢𝑖
𝐿 =

𝐷

𝐷𝑡
𝛼𝑖 = 𝐴𝑖

′′(𝑡)𝑥𝑖
0 + 𝐵𝑖

′′(𝑡). 

We are using both the superior point (�̇�) and the prime mark (𝐴′), and respective 

repetitions, for indicate differentiations in relation to time.  

 We are going to transform Lagrangian velocity into Eulerian velocity through 

transformation 

(20) 𝑥𝑖
0 =

𝑥𝑖−𝐵𝑖(𝑡)

𝐴𝑖(𝑡)
, 

which results in  

(21) 𝑢𝑖
𝐸 = 𝑢𝑖

𝐿|𝐸 = (𝐴𝑖
′(𝑡)𝑥𝑖

0 + 𝐵𝑖
′(𝑡)) |𝐸 = 𝐴𝑖

′(𝑡)
𝑥𝑖−𝐵𝑖(𝑡)

𝐴𝑖(𝑡)
+ 𝐵𝑖

′(𝑡) 

        =
𝐴𝑖
′(𝑡)

𝐴𝑖(𝑡)
𝑥𝑖 −

𝐴𝑖
′(𝑡)𝐵𝑖(𝑡)

𝐴𝑖(𝑡)
+ 𝐵𝑖

′(𝑡) 

and  

(22) 
𝐷𝑢𝑖

𝐸

𝐷𝑡
=

𝐷𝑢𝑖
𝐿

𝐷𝑡
|𝐸 = (𝐴𝑖

′′(𝑡)𝑥𝑖
0 + 𝐵𝑖

′′(𝑡)) |𝐸 = 𝐴𝑖
′′(𝑡)

𝑥𝑖−𝐵𝑖(𝑡)

𝐴𝑖(𝑡)
+ 𝐵𝑖

′′(𝑡) 

                      =
𝐴𝑖
′′(𝑡)

𝐴𝑖(𝑡)
𝑥𝑖 −

𝐴𝑖
′′(𝑡)𝐵𝑖(𝑡)

𝐴𝑖(𝑡)
+ 𝐵𝑖

′′(𝑡). 

 We see that both 𝑢𝑖
𝐸 and 

𝐷𝑢𝑖
𝐸

𝐷𝑡
 are linear functions in 𝑥𝑖  or only functions of time 

if 𝐴𝑖(𝑡) ≡ 1. We still want the limits lim
𝐴𝑖
′
(𝑡)

𝐴𝑖(𝑡)
 and lim

𝐴𝑖
′′
(𝑡)

𝐴𝑖(𝑡)
 to be finite for all 𝑡 ≥ 0, 

otherwise we will have infinite velocities or accelerations in these instants of infinity if 
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the corresponding values in Lagrangian description also are. When 𝐴𝑖(𝑡) = 0 the    

values respect to Eulerian description are equal to the corresponding Lagrangian 

description. 

 The expression (22) is also obtained through the chain rule 

(23) 
𝐷𝑢𝑖

𝐸

𝐷𝑡
=

𝜕𝑢𝑖
𝐸

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖
𝐸

𝜕𝑥𝑗

3
𝑗=1 , 

being 

(24) 
𝜕𝑢𝑖

𝐸

𝜕𝑡
=

𝐴𝑖
′′𝐴𝑖−(𝐴𝑖

′)
2

𝐴𝑖
2 𝑥𝑖 − (

𝐴𝑖
′𝐵𝑖

𝐴𝑖
)
′

+ 𝐵𝑖
′′, 

(25) (
𝐴𝑖
′𝐵𝑖

𝐴𝑖
)
′

=
𝐴𝑖
′′𝐵𝑖+𝐴𝑖

′𝐵𝑖
′

𝐴𝑖
− (

𝐴𝑖
′

𝐴𝑖
)
2

𝐵𝑖  

and 

(26) ∑ 𝛼𝑗
𝜕𝑢𝑖

𝐸

𝜕𝑥𝑗

3
𝑗=1 = 𝛼𝑖

𝜕𝑢𝑖
𝐸

𝜕𝑥𝑖
= (𝐴𝑖

′𝑥𝑖
0 + 𝐵𝑖

′)
𝐴𝑖
′

𝐴𝑖
. 

 With movements where there is some linear relation between the spatial 

coordinates, as 

(27) 𝑥𝑖 = 𝐴𝑖1(𝑡)𝑥1
0 + 𝐴𝑖2(𝑡)𝑥2

0 + 𝐴𝑖3(𝑡)𝑥3
0 + 𝐵𝑖(𝑡), 

𝐴𝑖𝑗(𝑡), 𝐵𝑖(𝑡) ∈ 𝐶
∞([0,∞)) for 𝑖, 𝑗 = 1,2,3, we can transform 

(28.1) 𝐴𝑖(𝑡) ↦ 𝐴𝑖𝑖(𝑡)𝑥𝑖
0 

(28.2) 𝐵𝑖(𝑡) ↦ 𝐴𝑖𝑗(𝑡)𝑥𝑗
0 + 𝐴𝑖𝑘(𝑡)𝑥𝑘

0 + 𝐵𝑖(𝑡) 

into the previous equations (17) to (26), with 𝑗 < 𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘, 𝑖, 𝑗, 𝑘 = 1,2,3, and we 

will arrive at results similar to those already obtained. 

 If the relation between the coordinates is more complicated, not just linear, for 

example when the particles need follow a specific family of surfaces of type 

𝑧 = 𝑔(𝑥, 𝑦) (omitting other possible parameters), for 𝑔 smooth function, then we can 

abandon the dependency of position, at least in one coordinate, as  

(29) 𝑧 = 𝑔(𝑥, 𝑦) = 𝑔(𝑥(𝑡), 𝑦(𝑡)) = ℎ(𝑡), 

and therefore 



7 
 

(30) {

𝑢1 = 𝜑1(𝑥, 𝑡)
𝑢2 = 𝜑2(𝑦, 𝑡)

𝑢3 = 𝜑3(𝑧, 𝑡) = 𝜑3(ℎ(𝑡), 𝑡) = 𝛼3(𝑡)
 

Thus, (4) holds in an infinity of cases and the Euler and Navier-Stokes equations has 

solution in this way (if the external force 𝑓 is conservative).  

 Note that in both examples, sections 2 and 3, the solutions for velocity are at 

most linear in relation to spatial coordinates, and then there is no necessity of 

calculation of second derivatives of velocity, i.e., ∇2𝑢 = 0 for any viscosity coefficient 

and the Navier-Stokes equations are reduced to the  Euler equations. In general terms 

we have, from (21),  

(31) 𝑢𝑖
0 =

𝐴𝑖
′(0)

𝐴𝑖(0)
𝑥𝑖 −

𝐴𝑖
′(0)𝐵𝑖(0)

𝐴𝑖(0)
+ 𝐵𝑖

′(0), 

where we suppose that lim𝑡→0
𝐴𝑖
′(𝑡)

𝐴𝑖(𝑡)
 is finite for 𝑖 = 1,2,3. If it is necessary that 

∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0 (incompressible fluids) then it must be valid, for all 𝑡 ≥ 0, the 

relation 

(32) 
𝐴1
′ (𝑡)

𝐴1(𝑡)
+
𝐴2
′ (𝑡)

𝐴2(𝑡)
+
𝐴3
′ (𝑡)

𝐴3(𝑡)
= 0. 

 In all functions of time 𝐴𝑖(𝑡), 𝐴𝑖𝑗(𝑡) and 𝐵𝑖(𝑡) are implicit the inclusion of 

constant parameters of movement, as 𝑅, 𝜃0, 𝜔, 𝑥𝐶 , 𝑦𝐶 , 𝜈, etc. 

 The scalar pressure is equal to 

(33) 𝑝 = ∫ (𝑆1, 𝑆2, 𝑆3) ∙ 𝑑𝑙𝐿
= ∫ (−

𝐷𝑢

𝐷𝑡
+ 𝑓) ∙ 𝑑𝑙

𝐿
 

 = ∑ ∫ (−
𝐷𝑢𝑖

𝐷𝑡
)

𝑥𝑖
𝑥𝑖
0 𝑑𝑥𝑖

3
𝑖=1 + 𝑈 − 𝑈𝑜 + 𝑞(𝑡), 

if 𝑓 is a conservative external force, 𝑓 = ∇𝑈, with 

(34) 𝑆𝑖 = −
𝐷𝑢𝑖

𝐷𝑡
+ 𝑓𝑖    

and  

(35) 
𝜕𝑆𝑖

𝜕𝑥𝑗
=

𝜕𝑆𝑗

𝜕𝑥𝑖
,  for 𝑖, 𝑗 = 1,2,3, i.e., 

𝜕𝑓𝑖

𝜕𝑥𝑗
=

𝜕𝑓𝑗

𝜕𝑥𝑖
,  

and then there is solution for Euler equations in this case. 

 As we have seen previously, the calculation of pressure is not unique and we 

can use 
𝐷𝑢𝑖

𝐷𝑡
 as a function of 𝑥𝑖  and 𝑡 or only of 𝑡. The simpler calculation gives 
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(36) 𝑝 = −∑ [𝐴𝑖
′′(𝑡)𝑥𝑖

0 + 𝐵𝑖
′′(𝑡)](𝑥𝑖 − 𝑥𝑖

0)3
𝑖=1 + 𝑈 − 𝑈𝑜 + 𝑞(𝑡), 

using 

(37) 
𝐷𝑢𝑖

𝐷𝑡
=

𝐷𝛼𝑖

𝐷𝑡
= 𝐴𝑖

′′(𝑡)𝑥𝑖
0 + 𝐵𝑖

′′(𝑡),  

according (19). The pressure is not dependent only of position and time, but also initial 

position, although there is a one-to-one correspondence between initial position with 

time and position, according (17) and (20). 

 See that we use 𝐴𝑖(𝑡) ≢ 0 because any particle start from some position and it 

is not possible all particles start from the same position, but if 𝐴𝑖(𝑡) = 0 for some 

𝑡 > 0 use for (18) to (37) the results equivalents to 𝐴𝑖
′(𝑡) = 𝐴𝑖

′′(𝑡) = 0 and 𝐴𝑖(𝑡) = 1, 

except (20) which is no sense in this case, and (17) will be 𝑥𝑖 = 𝐵𝑖(𝑡). 

 Another calculation for scalar pressure gives, from (33) and using 

(38) 
𝐷𝑢𝑖

𝐷𝑡
𝑑𝑥𝑖 =

𝑑𝑥𝑖

𝑑𝑡
𝑑𝑢𝑖 = 𝑢𝑖𝑑𝑢𝑖, 

the interesting result 

(39) 𝑝 = −∑
1

2
(𝑢𝑖

2 − 𝑢𝑖
0 2)3

𝑖=1 + 𝑈 − 𝑈𝑜 + 𝑞(𝑡) 

               = −
1

2
(𝑢2 − 𝑢0 2) + 𝑈 − 𝑈𝑜 + 𝑞(𝑡), 

as the Bernoulli’s law with 
𝜕𝜙

𝜕𝑡
= 0, 𝑢 = ∇𝜙 , compatible with the velocity 𝑢  in 

Lagrangian description, 𝑢 = 𝑢𝐿 = 𝛼, but whose value may be converted to Eulerian 

description too, using 𝑢𝑖
𝐸 = 𝑢𝑖

𝐿|𝐸 as (21). 

 

4 – Cylindrical Coordinates (𝒓,𝝋, 𝒛) 

 Using the transformations 

(40) {
𝑟 = √𝑥2 +𝑦2

𝜑 = arctan
𝑦

𝑥

 

and the inverse transformations 

(41) {
𝑥 = 𝑟cos𝜑 
𝑦 = 𝑟sin𝜑  

for radius 𝑟, azimuthal angle 𝜑 and elevation 𝑧 as shown in figure 1, it is possible write 

the Euler and Navier-Stokes Equations in cylindrical coordinates. Note that the inverse 
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tangent denoted in 𝜑 = arctan
𝑦

𝑥
 must be suitably defined, taking into account the 

correct quadrant of (𝑥, 𝑦).  

 

 

Fig. 1 – Cylindrical coordinates (r,φ, z). 

  

Based on Landau and Lifshitz[4], for viscous incompressible fluid we have for the 

three components the new form 

(42.1) 
𝜕𝑝

𝜕𝑟
+
𝜕𝑢𝑟

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝑟 −

𝑢𝜑
𝐿 𝑢𝜑

𝑟
= 𝜈 (∇2𝑢𝑟 −

2

𝑟2

𝜕𝑢𝜑

𝜕𝜑
−
𝑢𝑟

𝑟2
) + 𝑓𝑟, 

(42.2) 
1

𝑟

𝜕𝑝

𝜕𝜑
+
𝜕𝑢𝜑

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝜑 +

𝑢𝜑
𝐿 𝑢𝑟

𝑟
= 𝜈 (∇2𝑢𝜑 +

2

𝑟2
𝜕𝑢𝑟

𝜕𝜑
−
𝑢𝜑

𝑟2
) + 𝑓𝜑, 

(42.3) 
𝜕𝑝

𝜕𝑧
+
𝜕𝑢𝑧

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝑧 = 𝜈 ∇

2𝑢𝑧 + 𝑓𝑧, 

where the Lagrangian velocity is 

(43) 𝑢𝐿 = (𝑢𝑟
𝐿, 𝑢𝜑

𝐿 , 𝑢𝑧
𝐿), 

the Eulerian velocity is  

(44) 𝑢𝐸 = 𝑢 = (𝑢𝑟 , 𝑢𝜑 , 𝑢𝑧), 

and, for 𝑣:ℝ3 × [0,∞) → ℝ smooth scalar function, 
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(45) (𝑢𝐿 ∙ ∇)𝑣 = 𝑢𝑟
𝐿 𝜕𝑣

𝜕𝑟
+
𝑢𝜑
𝐿

𝑟

𝜕𝑣

𝜕𝜑
+ 𝑢𝑧

𝐿 𝜕𝑣

𝜕𝑧
,  

(46) ∇2𝑣 =
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣

𝜕𝑟
) +

1

𝑟2
𝜕2𝑣

𝜕𝜑2
+
𝜕2𝑣

𝜕𝑧2
. 

The incompressibility condition (equation of continuity) is 

(47) ∇ ∙ 𝑢 =
1

𝑟

𝜕(𝑟𝑢𝑟)

𝜕𝑟
+
1

𝑟

𝜕𝑢𝜑

𝜕𝜑
+
𝜕𝑢𝑧

𝜕𝑧
= 0. 

 You can consult in internet for a brief comparison the links 

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations and 

https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates. In the 

first link the terms 
1

3
𝜈
𝜕

𝜕𝑟
∇ ∙ 𝑢,

1

3
𝜈
1

𝑟

𝜕

𝜕𝜑
∇ ∙ 𝑢 and 

1

3
𝜈
𝜕

𝜕𝑧
∇ ∙ 𝑢 are added respectively in 

right side of each one of equations (42) for viscous compressible fluid. 

 Using the substitutions 

(48) {

𝑥1, 𝑥 ↦ 𝑟
𝑥2, 𝑦 ↦ 𝜑
𝑥3, 𝑧 ↦ 𝑧

 

and, respectively, 

(49) {

𝑢1, 𝛼1, 𝐴1, 𝐵1, 𝐴1𝑗 ↦ 𝑢𝑟, 𝛼𝑟, 𝐴𝑟, 𝐵𝑟, 𝐴𝑟𝑗
𝑢2, 𝛼2, 𝐴2, 𝐵2, 𝐴2𝑗 ↦ 𝑢𝜑, 𝛼𝜑, 𝐴𝜑, 𝐵𝜑, 𝐴𝜑𝑗
𝑢3, 𝛼3, 𝐴3, 𝐵3, 𝐴3𝑗 ↦ 𝑢𝑧, 𝛼𝑧, 𝐴𝑧, 𝐵𝑧, 𝐴𝑧𝑗

 

in section 3, equations (17) to (22) and (27) to (31) for rectangular coordinates, it is 

possible obtain similar relations for cylindrical coordinates, such that 

(50) {

𝑟 = 𝐴𝑟(𝑡) 𝑟0 + 𝐵𝑟(𝑡)

𝜑 = 𝐴𝜑(𝑡) 𝜑0 + 𝐵𝜑(𝑡)

𝑧 = 𝐴𝑧(𝑡) 𝑧0 + 𝐵𝑧(𝑡)

 

supposing the time functions are smooth, with the initial conditions 

(51) {
𝐴𝑟(0) = 𝐴𝜑(0) = 𝐴𝑧(0) = 1

𝐵𝑟(0) = 𝐵𝜑(0) = 𝐵𝑧(0) = 0
  

 Differentiating in relation to time we have the velocity components in 

Lagrangian description 

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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(52) 

{
 
 

 
 �̇� =

𝑑

𝑑𝑡
𝑟 = 𝑢𝑟𝐿 = 𝛼𝑟 = 𝐴𝑟

′
(𝑡) 𝑟0+𝐵𝑟

′
(𝑡)

�̇� =
𝑑

𝑑𝑡
𝜑 = 𝑢𝜑𝐿 = 𝛼𝜑 = 𝐴𝜑

′
(𝑡) 𝜑0+𝐵𝜑

′
(𝑡)

�̇� =
𝑑

𝑑𝑡
𝑧 = 𝑢𝑧𝐿 = 𝛼𝑧 = 𝐴𝑧

′
(𝑡) 𝑧0+𝐵𝑧

′
(𝑡)

 

and using the initial conditions parameters obtained from (50)  

(53) 

{
 
 

 
 𝑟0 =

𝑟−𝐵𝑟(𝑡)

𝐴𝑟(𝑡)

𝜑0 =
𝜑−𝐵𝜑(𝑡)

𝐴𝜑(𝑡)

𝑧0 =
𝑧−𝐵𝑧(𝑡)

𝐴𝑧(𝑡)

  

in the Lagrangian velocity components (52) we have the Eulerian velocity components  

(54) 

{
 
 

 
 𝑢𝑟 = 𝑢𝑟

𝐸 = 𝑢𝑟
𝐿|𝐸 =

𝐴𝑟
′ (𝑡)

𝐴𝑟(𝑡)
𝑟 −

𝐴𝑟
′ (𝑡)𝐵𝑟(𝑡)

𝐴𝑟(𝑡)
+ 𝐵𝑟

′(𝑡)

𝑢𝜑 = 𝑢𝜑
𝐸 = 𝑢𝜑

𝐿 |𝐸 =
𝐴𝜑
′ (𝑡)

𝐴𝜑(𝑡)
𝜑 −

𝐴𝜑
′ (𝑡)𝐵𝜑(𝑡)

𝐴𝜑(𝑡)
+ 𝐵𝜑

′ (𝑡)

𝑢𝑧 = 𝑢𝑧
𝐸 = 𝑢𝑧

𝐿|𝐸 =
𝐴𝑧
′ (𝑡)

𝐴𝑧(𝑡)
𝑧 −

𝐴𝑧
′ (𝑡)𝐵𝑧(𝑡)

𝐴𝑧(𝑡)
+ 𝐵𝑧

′(𝑡)

  

 Differentiating (52) in relation to time we have the Lagrangian acceleration 

components   

 (55) 

{
 
 

 
 �̈� =

𝑑

𝑑𝑡
�̇� =

𝐷

𝐷𝑡
𝑢𝑟𝐿 =

𝐷

𝐷𝑡
𝛼𝑟 = 𝐴𝑟

′′
(𝑡) 𝑟0+𝐵𝑟

′′
(𝑡)

�̈� =
𝑑

𝑑𝑡
�̇� =

𝐷

𝐷𝑡
𝑢𝜑𝐿 =

𝐷

𝐷𝑡
𝛼𝜑 = 𝐴𝜑

′′
(𝑡) 𝜑0+𝐵𝜑

′′
(𝑡)

�̈� =
𝑑

𝑑𝑡
�̇� =

𝐷

𝐷𝑡
𝑢𝑧𝐿 =

𝐷

𝐷𝑡
𝛼𝑧 = 𝐴𝑧

′′
(𝑡) 𝑧0+𝐵𝑧

′′
(𝑡)

 

and using again the initial conditions parameters (53) now in (55) we have the Eulerian 

acceleration components 

(56) 

{
  
 

  
 
𝐷𝑢𝑟

𝐸

𝐷𝑡
=

𝐷𝑢𝑟
𝐿

𝐷𝑡
|𝐸 =

𝐴𝑟
′′
(𝑡)

𝐴𝑟(𝑡)
𝑟−

𝐴𝑟
′′
(𝑡)𝐵𝑟(𝑡)

𝐴𝑟(𝑡)
+𝐵𝑟

′′
(𝑡)

𝐷𝑢𝜑
𝐸

𝐷𝑡
=

𝐷𝑢𝜑
𝐿

𝐷𝑡
|𝐸 =

𝐴𝜑
′′
(𝑡)

𝐴𝜑(𝑡)
𝜑−

𝐴𝜑
′′
(𝑡)𝐵𝜑(𝑡)

𝐴𝜑(𝑡)
+𝐵𝜑

′′
(𝑡)

𝐷𝑢𝑧
𝐸

𝐷𝑡
=

𝐷𝑢𝑧
𝐿

𝐷𝑡
|𝐸 =

𝐴𝑧
′′
(𝑡)

𝐴𝑧(𝑡)
𝑧 −

𝐴𝑧
′′
(𝑡)𝐵𝑧(𝑡)

𝐴𝑧(𝑡)
+𝐵𝑧

′′
(𝑡)

 

 Being true that numerically we have 
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(57) 

{
 
 

 
 
𝐷𝑢𝑟

𝐷𝑡
=

𝜕𝑢𝑟

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝑟 −

𝑢𝜑
𝐿 𝑢𝜑

𝑟

𝐷𝑢𝜑

𝐷𝑡
=

𝜕𝑢𝜑

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝜑 +

𝑢𝜑
𝐿𝑢𝑟

𝑟
𝐷𝑢𝑧

𝐷𝑡
=

𝜕𝑢𝑧

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝑧

 

when all functions are converted into time functions, where 

(58) 

{
 
 

 
 (𝑢

𝐿 ∙ ∇)𝑢𝑟 = 𝑢𝑟
𝐿 𝜕𝑢𝑟

𝜕𝑟

(𝑢𝐿 ∙ ∇)𝑢𝜑 =
𝑢𝜑
𝐿

𝑟

𝜕𝑢𝜑

𝜕𝜑

(𝑢𝐿 ∙ ∇)𝑢𝑧 = 𝑢𝑧
𝐿 𝜕𝑢𝑧

𝜕𝑧

 

for  

(59) 
𝜕𝑢𝑟

𝜕𝜑
=

𝜕𝑢𝑟

𝜕𝑧
=

𝜕𝑢𝜑

𝜕𝑟
=

𝜕𝑢𝜑

𝜕𝑧
=

𝜕𝑢𝑧

𝜕𝑟
=

𝜕𝑢𝑧

𝜕𝜑
= 0, 

according (54), we write the Navier-Stokes equations (42) in cylindrical coordinates as 

(60) 

{
 
 

 
 
𝜕𝑝

𝜕𝑟
+
𝐷𝑢𝑟
𝐷𝑡
= 𝜈 (∇2𝑢𝑟 −

2

𝑟2
𝜕𝑢𝜑
𝜕𝜑
−
𝑢𝑟
𝑟2
)+𝑓

𝑟

1

𝑟

𝜕𝑝

𝜕𝜑
+
𝐷𝑢𝜑
𝐷𝑡
= 𝜈 (∇2𝑢𝜑 −

𝑢𝜑
𝑟2
)+𝑓

𝜑

𝜕𝑝

𝜕𝑧
+
𝐷𝑢𝑧
𝐷𝑡
= 𝜈 ∇2𝑢𝑧+𝑓𝑧

 

 From (46) and (54) we have 

(61) {
∇2𝑢𝑟 =

𝐴𝑟
′ (𝑡)

𝐴𝑟(𝑡)

1

𝑟

∇2𝑢𝜑 = ∇
2𝑢𝑧 = 0      

 

and then in this case the Navier-Stokes equations are 

(62) 

{
 
 

 
 𝜕𝑝
𝜕𝑟
+
𝐷𝑢𝑟
𝐷𝑡
= 𝜈(

𝐴𝑟
′ (𝑡)

𝐴𝑟(𝑡)

1

𝑟
−

2

𝑟2
𝐴𝜑
′ (𝑡)

𝐴𝜑(𝑡)
−
𝑢𝑟
𝑟2
)+𝑓

𝑟

𝜕𝑝

𝜕𝜑
+ 𝑟

𝐷𝑢𝜑
𝐷𝑡
= −𝜈

𝑢𝜑
𝑟
+ 𝑟𝑓

𝜑

𝜕𝑝

𝜕𝑧
+
𝐷𝑢𝑧
𝐷𝑡
= 𝑓

𝑧

   

 Defining 
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(63) 

{
 
 

 
 𝑆𝑟 = −

𝐷𝑢𝑟
𝐷𝑡
+𝜈(

𝐴𝑟
′ (𝑡)

𝐴𝑟(𝑡)

1

𝑟
−

2

𝑟2
𝐴𝜑
′ (𝑡)

𝐴𝜑(𝑡)
−
𝑢𝑟
𝑟2
)+𝑓

𝑟

𝑆𝜑 = −𝑟
𝐷𝑢𝜑
𝐷𝑡
−𝜈

𝑢𝜑
𝑟
+ 𝑟𝑓

𝜑

𝑆𝑧 = −
𝐷𝑢𝑧
𝐷𝑡
+𝑓

𝑧

 

to have some solution to the system (62) it is necessary that 

(64)  

{
 
 

 
 
𝜕𝑆𝑟
𝜕𝜑
=

𝜕𝑆𝜑
𝜕𝑟
⇒

𝜕𝑓𝑟
𝜕𝜑
= −

𝐷𝑢𝜑
𝐷𝑡
+ 𝜈

𝑢𝜑
𝑟2
+𝑓

𝜑
+ 𝑟

𝜕𝑓𝜑
𝜕𝑟

𝜕𝑆𝑟
𝜕𝑧
=

𝜕𝑆𝑧
𝜕𝑟
⇒

𝜕𝑓𝑟
𝜕𝑧
=

𝜕𝑓𝑧
𝜕𝑟

𝜕𝑆𝜑
𝜕𝑧
=

𝜕𝑆𝑧
𝜕𝜑
⇒ 𝑟

𝜕𝑓𝜑
𝜕𝑧
=

𝜕𝑓𝑧
𝜕𝜑

 

so there is not always a solution to the Euler and Navier-Stokes equations in cylindrical 

coordinates, according to the above system, as too occurs in the case of rectangular 

coordinates. 

 When there is some solution for the system (62), given the velocity and 

external force, a solution for pressure is then as in the rectangular coordinates case, 

(65) 𝑝 = ∫ 𝑆 ∙ 𝑑𝑙
𝐴

𝐴0
+ 𝑞(𝑡), 

for 𝐴 = (𝑟, 𝜑, 𝑧),  𝐴0 = (𝑟0, 𝜑0, 𝑧0), (
𝜕𝑝

𝜕𝑟
,
𝜕𝑝

𝜕𝜑
,
𝜕𝑝

𝜕𝑧
) = (𝑆𝑟 , 𝑆𝜑 , 𝑆𝑧) = 𝑆  and with the line 

differential element equal to  𝑑𝑙 = (𝑑𝑟, 𝑟 𝑑𝜑, 𝑑𝑧), being also possible the use of the 

vector 𝑆 transformed as time function only, the Lagrangian description. The value of 

line integral is independent of path. 𝑞(𝑡) is any smooth and limited time function, a 

physically reasonable time function. 

 

5 – Spherical Coordinates (𝒓, 𝜽, 𝝋) 

 Using the transformations 

(66) 

{
 

 𝑟 =  √𝑥
2 + 𝑦2 + 𝑧2

𝜃 = arccos
𝑧

𝑟

𝜑 = arctan
𝑦

𝑥

 

and the inverse transformations 

(67) {
𝑥 = 𝑟 sin 𝜃 cos𝜑
𝑦 = 𝑟 sin 𝜃 sin𝜑
𝑧 = 𝑟 cos 𝜃
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where  

0 ≤ 𝜃 ≤ 𝜋, 𝜃 is the polar angle or colatitude, 

0 ≤ 𝜑 ≤ 2𝜋, 𝜑 is the azimuthal angle, 

𝑟 ≥ 0 is the radius, 

as shown in figure 2, it is possible write the Euler and Navier-Stokes equations in 

spherical coordinates.  

  

Fig. 2 - Spherical coordinates (r, 𝜃, φ) as commonly used in physics (ISO convention): radial 

distance r, polar angle 𝜃  (theta), and azimuthal angle φ (phi). The symbol ρ (rho) is often used 

instead of r. 

 

Based on Landau and Lifshitz[4], for viscous incompressible fluid we have for the 

three components the new form  

(68.1) 
𝜕𝑝

𝜕𝑟
+
𝜕𝑢𝑟

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝑟 −

𝑢𝜃
𝐿𝑢𝜃+𝑢𝜑

𝐿𝑢𝜑

𝑟
=  

𝜈 (∇2𝑢𝑟 −
2

𝑟2sin2𝜃

𝜕(𝑢𝜃 sin𝜃)

𝜕𝜃
−

2

𝑟2 sin𝜃

𝜕𝑢𝜑

𝜕𝜑
−
2𝑢𝑟

𝑟2
) + 𝑓𝑟   

(68.2) 
1

𝑟

𝜕𝑝

𝜕𝜃
+
𝜕𝑢𝜃

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝜃 +

𝑢𝜃
𝐿𝑢𝑟

𝑟
−
𝑢𝜑
𝐿 𝑢𝜑 cot 𝜃

𝑟
=  

𝜈 (∇2𝑢𝜃 −
2 cos𝜃

𝑟2sin2𝜃

𝜕𝑢𝜑

𝜕𝜑
+

2

𝑟2
𝜕𝑢𝑟

𝜕𝜃
−

𝑢𝜃

𝑟2sin2𝜃
) + 𝑓𝜃  

(68.3) 
1

𝑟 sin𝜃

𝜕𝑝

𝜕𝜑
+
𝜕𝑢𝜑

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝜑 +

𝑢𝜑
𝐿 𝑢𝑟

𝑟
+
𝑢𝜑
𝐿 𝑢𝜃 cot 𝜃

𝑟
=  

𝜈 (∇2𝑢𝜑 +
2

𝑟2 sin𝜃

𝜕𝑢𝑟

𝜕𝜑
+

2 cos𝜃

𝑟2sin2𝜃

𝜕𝑢𝜃

𝜕𝜑
−

𝑢𝜑

𝑟2sin2𝜃
) + 𝑓𝜑  

where the Lagrangian velocity is 

https://en.wikipedia.org/wiki/International_Organisation_for_Standardisation


15 
 

(69) 𝑢𝐿 = (𝑢𝑟
𝐿, 𝑢𝜃

𝐿 , 𝑢𝜑
𝐿 ), 

the Eulerian velocity is  

(70) 𝑢𝐸 = 𝑢 = (𝑢𝑟 , 𝑢𝜃 , 𝑢𝜑), 

and for 𝑣:ℝ3 × [0,∞) → ℝ smooth scalar function, 

(71) (𝑢𝐿 ∙ ∇)𝑣 = 𝑢𝑟
𝐿 𝜕𝑣

𝜕𝑟
+
𝑢𝜃
𝐿

𝑟

𝜕𝑣

𝜕𝜃
+

𝑢𝜑
𝐿

𝑟 sin𝜃

𝜕𝑣

𝜕𝜑
,  

(72) ∇2𝑣 =
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑣

𝜕𝑟
) +

1

𝑟2 sin𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑣

𝜕𝜃
) +

1

𝑟2sin2𝜃

𝜕2𝑣

𝜕𝜑2
.  

The incompressibility condition (equation of continuity) is 

(73) ∇ ∙ 𝑢 =
1

𝑟2
𝜕(𝑟2𝑢𝑟)

𝜕𝑟
+

1

𝑟 sin𝜃

𝜕(𝑢𝜃 sin𝜃)

𝜕𝜃
+

1

𝑟 sin𝜃

𝜕𝑢𝜑

𝜕𝜑
= 0.  

 You can also consult in internet for a brief comparison the links 

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations and 

https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates. In the 

first link the terms 
1

3
𝜈
𝜕

𝜕𝑟
∇ ∙ 𝑢,

1

3
𝜈
1

𝑟

𝜕

𝜕𝜃
∇ ∙ 𝑢 and 

1

3
𝜈

1

𝑟 sin𝜃

𝜕

𝜕𝜑
∇ ∙ 𝑢 are added respectively 

in right side of each one of equations (68) for viscous compressible fluid. 

 Using the substitutions 

(74) {

𝑥1, 𝑥 ↦ 𝑟
𝑥2, 𝑦 ↦ 𝜃
𝑥3, 𝑧 ↦ 𝜑

 

and, respectively, 

(75) {

𝑢1, 𝛼1, 𝐴1, 𝐵1, 𝐴1𝑗 ↦ 𝑢𝑟, 𝛼𝑟, 𝐴𝑟, 𝐵𝑟, 𝐴𝑟𝑗
𝑢2, 𝛼2, 𝐴2, 𝐵2, 𝐴2𝑗 ↦ 𝑢𝜃, 𝛼𝜃, 𝐴𝜃, 𝐵𝜃, 𝐴𝜃𝑗
𝑢3, 𝛼3, 𝐴3, 𝐵3, 𝐴3𝑗 ↦ 𝑢𝜑, 𝛼𝜑, 𝐴𝜑, 𝐵𝜑, 𝐴𝜑𝑗

 

in section 3, equations (17) to (22) and (27) to (31) for rectangular coordinates, it is 

possible obtain similar relations for spherical coordinates, such that 

(76) {

𝑟 = 𝐴𝑟(𝑡) 𝑟0 + 𝐵𝑟(𝑡)

𝜃 = 𝐴𝜃(𝑡) 𝜃0 + 𝐵𝜃(𝑡)

𝜑 = 𝐴𝜑(𝑡) 𝜑0 + 𝐵𝜑(𝑡)
 

supposing the time functions are smooth, with the initial conditions 

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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(77) {
𝐴𝑟(0) = 𝐴𝜃(0) = 𝐴𝜑(0) = 1

𝐵𝑟(0) = 𝐵𝜃(0) = 𝐵𝜑(0) = 0
  

 Differentiating in relation to time we have the velocity components in 

Lagrangian description 

(78) 

{
 
 

 
 �̇� =

𝑑

𝑑𝑡
𝑟 = 𝑢𝑟𝐿 = 𝛼𝑟 = 𝐴𝑟

′
(𝑡) 𝑟0+𝐵𝑟

′
(𝑡)

�̇� =
𝑑

𝑑𝑡
𝜃 = 𝑢𝜃

𝐿 = 𝛼𝜃 = 𝐴𝜃
′
(𝑡) 𝜃0+𝐵𝜃

′
(𝑡)

�̇� =
𝑑

𝑑𝑡
𝜑 = 𝑢𝜑𝐿 = 𝛼𝜑 = 𝐴𝜑

′
(𝑡) 𝜑0+𝐵𝜑

′
(𝑡)

 

and using the initial conditions parameters obtained from (76)  

(79) 

{
 
 

 
 𝑟0 =

𝑟−𝐵𝑟(𝑡)

𝐴𝑟(𝑡)

𝜃0 =
𝜃−𝐵𝜃(𝑡)

𝐴𝜃(𝑡)

𝜑0 =
𝜑−𝐵𝜑(𝑡)

𝐴𝜑(𝑡)

  

in the Lagrangian velocity components (78) we have the Eulerian velocity components  

(80) 

{
 
 

 
 𝑢𝑟 = 𝑢𝑟

𝐸 = 𝑢𝑟
𝐿|𝐸 =

𝐴𝑟
′ (𝑡)

𝐴𝑟(𝑡)
𝑟 −

𝐴𝑟
′ (𝑡)𝐵𝑟(𝑡)

𝐴𝑟(𝑡)
+ 𝐵𝑟

′(𝑡)

𝑢𝜃 = 𝑢𝜃
𝐸 = 𝑢𝜃

𝐿 |𝐸 =
𝐴𝜃
′ (𝑡)

𝐴𝜃(𝑡)
𝜃 −

𝐴𝜃
′ (𝑡)𝐵𝜃(𝑡)

𝐴𝜃(𝑡)
+ 𝐵𝜃

′ (𝑡)

𝑢𝜑 = 𝑢𝜑
𝐸 = 𝑢𝜑

𝐿 |𝐸 =
𝐴𝜑
′ (𝑡)

𝐴𝜑(𝑡)
𝜑 −

𝐴𝜑
′ (𝑡)𝐵𝜑(𝑡)

𝐴𝜑(𝑡)
+ 𝐵𝜑

′ (𝑡)

  

 Differentiating (78) in relation to time we have the Lagrangian acceleration 

components   

 (81) 

{
 
 

 
 �̈� =

𝑑

𝑑𝑡
�̇� =

𝐷

𝐷𝑡
𝑢𝑟𝐿 =

𝐷

𝐷𝑡
𝛼𝑟 = 𝐴𝑟

′′
(𝑡) 𝑟0+𝐵𝑟

′′
(𝑡)

�̈� =
𝑑

𝑑𝑡
�̇� =

𝐷

𝐷𝑡
𝑢𝜃
𝐿 =

𝐷

𝐷𝑡
𝛼𝜃 = 𝐴𝜃

′′
(𝑡) 𝜃0+𝐵𝜃

′′
(𝑡)

�̈� =
𝑑

𝑑𝑡
�̇� =

𝐷

𝐷𝑡
𝑢𝜑𝐿 =

𝐷

𝐷𝑡
𝛼𝜑 = 𝐴𝜑

′′
(𝑡) 𝜑0+𝐵𝜑

′′
(𝑡)

 

and using again the initial conditions parameters (79) now in (81) we have the Eulerian 

acceleration components 

(82) 

{
  
 

  
 
𝐷𝑢𝑟

𝐸

𝐷𝑡
=

𝐷𝑢𝑟
𝐿

𝐷𝑡
|𝐸 =

𝐴𝑟
′′
(𝑡)

𝐴𝑟(𝑡)
𝑟−

𝐴𝑟
′′
(𝑡)𝐵𝑟(𝑡)

𝐴𝑟(𝑡)
+𝐵𝑟

′′
(𝑡)

𝐷𝑢𝜃
𝐸

𝐷𝑡
=

𝐷𝑢𝜃
𝐿

𝐷𝑡
|𝐸 =

𝐴𝜃
′′
(𝑡)

𝐴𝜃(𝑡)
𝜃−

𝐴𝜃
′′
(𝑡)𝐵𝜃(𝑡)

𝐴𝜃(𝑡)
+𝐵𝜃

′′
(𝑡)

𝐷𝑢𝜑
𝐸

𝐷𝑡
=

𝐷𝑢𝜑
𝐿

𝐷𝑡
|𝐸 =

𝐴𝜑
′′
(𝑡)

𝐴𝜑(𝑡)
𝜑−

𝐴𝜑
′′
(𝑡)𝐵𝜑(𝑡)

𝐴𝜑(𝑡)
+𝐵𝜑

′′
(𝑡)
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 Being true that numerically we have 

(83) 

{
 
 

 
 

𝐷𝑢𝑟

𝐷𝑡
=

𝜕𝑢𝑟

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝑟 −

𝑢𝜃
𝐿𝑢𝜃+𝑢𝜑

𝐿𝑢𝜑

𝑟

𝐷𝑢𝜃

𝐷𝑡
=

𝜕𝑢𝜃

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝜃 +

𝑢𝜃
𝐿𝑢𝑟

𝑟
−
𝑢𝜑
𝐿 𝑢𝜑 cot 𝜃

𝑟

𝐷𝑢𝜑

𝐷𝑡
=

𝜕𝑢𝜑

𝜕𝑡
+ (𝑢𝐿 ∙ ∇)𝑢𝜑 +

𝑢𝜑
𝐿𝑢𝑟

𝑟
+
𝑢𝜑
𝐿 𝑢𝜃 cot 𝜃

𝑟

 

when all functions are converted into time functions, where 

(84) 

{
 
 

 
 (𝑢𝐿 ∙ ∇)𝑢𝑟 = 𝑢𝑟

𝐿 𝜕𝑢𝑟

𝜕𝑟

(𝑢𝐿 ∙ ∇)𝑢𝜃 =
𝑢𝜃
𝐿

𝑟

𝜕𝑢𝜃

𝜕𝜃

(𝑢𝐿 ∙ ∇)𝑢𝜑 =
𝑢𝜑
𝐿

𝑟 sin𝜃

𝜕𝑢𝜑

𝜕𝜑

 

for  

(85) 
𝜕𝑢𝑟

𝜕𝜃
=

𝜕𝑢𝑟

𝜕𝜑
=

𝜕𝑢𝜃

𝜕𝑟
=

𝜕𝑢𝜃

𝜕𝜑
=

𝜕𝑢𝜑

𝜕𝑟
=

𝜕𝑢𝜑

𝜕𝜃
= 0, 

according (80), we write the Navier-Stokes equations (68) in spherical coordinates as 

(86) 

{
 
 

 
 
𝜕𝑝

𝜕𝑟
+
𝐷𝑢𝑟
𝐷𝑡
= 𝜈 (∇2𝑢𝑟 −

2

𝑟2sin2𝜃

𝜕(𝑢𝜃 sin 𝜃)

𝜕𝜃
−

2

𝑟2 sin𝜃

𝜕𝑢𝜑
𝜕𝜑
−
2𝑢𝑟
𝑟2
)+𝑓

𝑟

1

𝑟

𝜕𝑝

𝜕𝜃
+
𝐷𝑢𝜃
𝐷𝑡
= 𝜈 (∇2𝑢𝜃 −

2cos𝜃

𝑟2sin2𝜃

𝜕𝑢𝜑
𝜕𝜑
−

𝑢𝜃

𝑟2sin2𝜃
)+𝑓

𝜃

1

𝑟 sin𝜃

𝜕𝑝

𝜕𝜑
+
𝐷𝑢𝜑
𝐷𝑡
= 𝜈 (∇2𝑢𝜑 −

𝑢𝜑

𝑟2sin2𝜃
)+𝑓

𝜑

 

 From (72) and (80) we have 

(87) 

{
 
 

 
 ∇

2𝑢𝑟 =
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑢𝑟

𝜕𝑟
) =

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝐴𝑟
′ (𝑡)

𝐴𝑟(𝑡)
) =

2

𝑟

𝐴𝑟
′ (𝑡)

𝐴𝑟(𝑡)

∇2𝑢𝜃 =
1

𝑟2 sin𝜃

𝜕

𝜕𝜃
(sin 𝜃

𝜕𝑢𝜃

𝜕𝜃
) =

1

𝑟2
 
𝐴𝜃
′ (𝑡)

𝐴𝜃(𝑡)
cot 𝜃 

 ∇2𝑢𝜑 =
1

𝑟2sin2𝜃

𝜕2𝑢𝜑

𝜕𝜑2
= 0 

 

and then in this case the Navier-Stokes equations are 

(88) 

{
  
 

  
 𝜕𝑝
𝜕𝑟
+
𝐷𝑢𝑟
𝐷𝑡
= 𝜈(

2

𝑟

𝐴𝑟
′ (𝑡)

𝐴𝑟(𝑡)
−

2

𝑟2sin2𝜃

𝜕(𝑢𝜃 sin𝜃)

𝜕𝜃
−

2

𝑟2 sin𝜃

𝐴𝜑
′
(𝑡)

𝐴𝜑(𝑡)
−
2𝑢𝑟
𝑟2
)+𝑓

𝑟

1

𝑟

𝜕𝑝

𝜕𝜃
+
𝐷𝑢𝜃
𝐷𝑡
= 𝜈(

1

𝑟2
 
𝐴𝜃
′
(𝑡)

𝐴𝜃(𝑡)
cot𝜃 −

2cos𝜃

𝑟2sin2𝜃

𝐴𝜑
′
(𝑡)

𝐴𝜑(𝑡)
−

𝑢𝜃

𝑟2sin2𝜃
)+𝑓

𝜃

1

𝑟 sin𝜃

𝜕𝑝

𝜕𝜑
+
𝐷𝑢𝜑
𝐷𝑡
= 𝜈 (−

𝑢𝜑

𝑟2sin2𝜃
)+𝑓

𝜑
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 Defining 

(89) 

{
  
 

  
 𝑆𝑟 = −

𝐷𝑢𝑟
𝐷𝑡
+𝜈(

2

𝑟

𝐴𝑟
′ (𝑡)

𝐴𝑟(𝑡)
−

2

𝑟2sin2𝜃

𝜕(𝑢𝜃 sin𝜃)

𝜕𝜃
−

2

𝑟2 sin𝜃

𝐴𝜑
′
(𝑡)

𝐴𝜑(𝑡)
−
2𝑢𝑟
𝑟2
)+𝑓

𝑟

𝑆𝜃 = −𝑟
𝐷𝑢𝜃
𝐷𝑡
− 𝜈

1

𝑟
( 
𝐴𝜃
′
(𝑡)

𝐴𝜃(𝑡)
cot𝜃 −

2cos𝜃

sin2𝜃

𝐴𝜑
′
(𝑡)

𝐴𝜑(𝑡)
−

𝑢𝜃

sin2𝜃
)+ 𝑟𝑓

𝜃

𝑆𝜑 = −𝑟sin𝜃
𝐷𝑢𝜑
𝐷𝑡
−𝜈

𝑢𝜑
𝑟 sin𝜃

+ 𝑟sin𝜃𝑓
𝜑

 

to have some solution to the system (88) it is necessary that 

(90)  

{
 
 

 
 
𝜕𝑆𝑟

𝜕𝜃
=

𝜕𝑆𝜃

𝜕𝑟
⇒ −𝜈

2

𝑟2
𝜕

𝜕𝜃
(

1

sin2𝜃

𝜕(𝑢𝜃 sin𝜃)

𝜕𝜃
+

1

sin𝜃

𝐴𝜑
′ (𝑡)

𝐴𝜑(𝑡)
) +

𝜕𝑓𝑟

𝜕𝜃
= −

𝐷𝑢𝜃

𝐷𝑡
+ 𝜈

1

𝑟2
𝜎 + 𝑓𝜃 + 𝑟

𝜕𝑓𝜃

𝜕𝑟

𝜕𝑆𝑟

𝜕𝜑
=

𝜕𝑆𝜑

𝜕𝑟
⇒

𝜕𝑓𝑟

𝜕𝜑
= −sin 𝜃

𝐷𝑢𝜑

𝐷𝑡
+ 𝜈

𝑢𝜑

𝑟2 sin𝜃
+ sin 𝜃 (𝑓𝜑 + 𝑟

𝜕𝑓𝜑

𝜕𝑟
)

𝜕𝑆𝜃

𝜕𝜑
=

𝜕𝑆𝜑

𝜕𝜃
⇒ 𝑟

𝜕𝑓𝜃

𝜕𝜑
= −𝑟 cos 𝜃

𝐷𝑢𝜑

𝐷𝑡
+ 𝜈

𝑢𝜑

𝑟

cos𝜃

sin2𝜃
+ 𝑟 (cos 𝜃 𝑓𝜑 + sin 𝜃

𝜕𝑓𝜑

𝜕𝜃
)

  

where 

(91) 𝜎 = ( 
𝐴𝜃
′ (𝑡)

𝐴𝜃(𝑡)
cot 𝜃 −

2 cos𝜃

sin2𝜃

𝐴𝜑
′ (𝑡)

𝐴𝜑(𝑡)
−

𝑢𝜃

sin2𝜃
),  

so there is not always a solution to the Euler and Navier-Stokes equations in spherical 

coordinates, according to the above system, as too occurs in the cases of rectangular 

and cylindrical coordinates. 

 When there is some solution for the system (88), given the velocity and 

external force, a solution for pressure is then as in the rectangular and cylindrical 

coordinates cases, 

(92) 𝑝 = ∫ 𝑆 ∙ 𝑑𝑙
𝐴

𝐴0
+ 𝑞(𝑡), 

where 𝐴 = (𝑟, 𝜃, 𝜑),  𝐴0 = (𝑟0, 𝜃0, 𝜑0), (
𝜕𝑝

𝜕𝑟
,
𝜕𝑝

𝜕𝜃
,
𝜕𝑝

𝜕𝜑
) = (𝑆𝑟 , 𝑆𝜃, 𝑆𝜑) = 𝑆  and the line 

differential element is 𝑑𝑙 = (𝑑𝑟, 𝑟 𝑑𝜃, 𝑟 sin 𝜃 𝑑𝜑). It is also possible the use of the 

vector 𝑆 transformed as time function only, the Lagrangian description. The value of 

line integral is independent of path. 𝑞(𝑡) is any smooth and limited time function, a 

physically reasonable time function. 

 

 

 



19 
 

6 – Conclusion 

 Essentially the present conclusion has already been obtained in [1], using only 

rectangular coordinates, and here we are only updating it with the three coordinate 

systems we have seen. 

From equation (16) in rectangular coordinates, 

(93) 
𝜕𝑝

𝜕𝑥𝑖
+
𝐷𝛼𝑖

𝐷𝑡
= 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖, 

we realize that if 𝜈 = 0 and 𝑓 is not conservative then there is no solution for Euler 

equations, as well as if 𝑢 is conservative and 𝑓 is not conservative there is no solution 

for Navier-Stokes equations, which now it is very clear to see and it is complementing 

[5]. More specifically, if 𝑢0, the initial velocity, is conservative (irrotational or potential 

flow) and 𝑓 is not conservative then there is no solution for Navier-Stokes equations, 

because it is impossible to obtain the pressure. This then solve [6] for the cases (C) and 

(D), the breakdown of solutions, for both 𝑢0 and 𝑓 belonging to Schwartz Space in case 

(C), and smooth functions with period 1 in the three orthogonal directions 𝑒1, 𝑒2, 𝑒3 in 

case (D). As 𝑢0  need obey to the incompressibility condition, ∇ ∙ 𝑢0 = 0 , with 

∇ × 𝑢0 = 0 and 𝑢0 = ∇𝜑0, where 𝜑0 is the potential of 𝑢0, we have ∇2𝑢0 = 0 and 

∇2𝜑0 = 0, i.e., 𝑢0  and 𝜑0  are harmonic functions, unlimited functions except the 

constants, including zero. As 𝑢0 need be limited, we choose 𝑢0 = 0 for case (C) (where 

it is necessary that ∫ |𝑢0|2𝑑𝑥 𝑑𝑦 𝑑𝑧
ℝ3

 is finite) and any constant for case (D), of 

spatially periodic solutions. In case (D) the external force need belonging to Schwartz 

Space with relation to time.  

 The conditions (64) for cylindrical coordinates and (90) for spherical 

coordinates also show that there is not always a solution to the Euler and Navier-

Stokes equations, with even more difficult equations to be obeyed. 

 Note that the application of a non conservative force in fluid is naturally 

possible and there will always be some movement, even starting from rest. So that this 

is not a paradoxical situation it seems certain that the pressure in this case cannot be 

scalar, but rather vector, and thus the equation returns to solution in all cases 

(assuming all derivatives are possible, etc.). It is as indicated in (2), or substituting 𝑝 by 

𝑝𝑖 in (16) and 𝑝𝑟 , 𝑝𝜑 , 𝑝𝑧 , 𝑝𝜃 in the others correspondent coordinates. 

 According to what we saw in this article, solve the Navier-Stokes equations can 

be synonymous to solve the Euler equations, at least in rectangular coordinates, and 

we can take advantage of this facility. For the time being, specifically in rectangular 

coordinates case, section 3, I do not know any reason for having to a more 

complicated solution than the those described here, when the use of ∇2𝑢 ≠ 0 is 

necessary, except if the compromise with the motion of particles is forgotten or we 
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intend to describe a spatially periodic solution in Fourier series or the pressure is given 

and is not ∇𝑝 = 𝑓 or yet, the worst, the velocity is not smooth (𝐶∞) and there are 

boundary conditions. Nevertheless, even in the most complicated cases, the 

movement of particles can be transformed into functions exclusively of time and 

parameters as initial position and others. Perhaps naval or aeronautical engineers have 

other motives, but with a greater rigor, involving temperature and the collision of 

particles (between them and on rigid surfaces), other equations must be constructed.   

 So that there are no contradictions between the three reference systems, if in 

rectangular coordinates the solution is independent of the coefficient of viscosity, then 

the same movement in the cylindrical and spherical coordinates will also be, taking 

into account the additional terms that appear after ∇2𝑢𝑟 , ∇
2𝑢𝜑 and ∇2𝑢𝜃 in (42) and 

(68) and the terms related to the partial derivatives of ∇ ∙ 𝑢 (equation of continuity).    

 We deduce all these equations thinking about a generic particle of fluid, hence 

with a single initial position, as (𝑥0, 𝑦0, 𝑧0)  in rectangular coordinates. We can 

generalize all these results also for several particles and its respective initial positions, 

(𝑥0𝑚, 𝑦0𝑚, 𝑧0𝑚), (𝑟0𝑚, 𝜑0𝑚, 𝑧0𝑚), (𝑟0𝑚, 𝜃0𝑚, 𝜑0𝑚), using for example an identification 

index for the various functions and variables, as 𝐴𝑖𝑚, 𝐵𝑖𝑚, 𝐴𝑟𝑚, 𝐴𝜃𝑚, 𝐴𝜑𝑚, 𝐴𝑧𝑚, 𝑝𝑚, 

etc., 1 ≤ 𝑚 ≤ 𝑛, with 𝑛 the total number of particles (ideally 𝑛 → ∞) and 𝑚 indicating 

the specific particle. An interesting study is to calculate the time instants of the various 

collisions between particles, and the consequences of these collisions. A statistical 

treatment seems to be the most appropriate. 

 October-01-2017 

December-28-2017 
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