基于冗余紧框架的\ell2/l1极小化块稀疏压缩感知*

张枫; 王建军;

(西南大学数学与统计学院, 重庆 400715)

摘要: 压缩感知是(近似)稀疏信号处理的研究热点之一,它突破了Nyquist/Shannon采 样率,实现了信号的高效采集和鲁棒重构.本文采用 ℓ_2/ℓ_1 极小化方法和Block D-RIP理 论研究了在冗余紧框架下的块稀疏信号,所获结果表明,当Block D-RIP常数 $\delta_{2k|\tau}$ 满 足 $0 < \delta_{2k|\tau} < 0.2$ 时, ℓ_2/ℓ_1 极小化方法能够鲁棒重构原始信号,同时改进了已有的重构 条件和误差上界.基于离散傅里叶变换(DFT)字典,我们执行了一系列仿真实验充分地 证实了理论结果.

关键词: 压缩感知; ℓ₂/ℓ₁极小化方法; Block D-RIP; 冗余紧框架; 块稀疏信号 中图分类号: O29 文献标识码: A 文章编号: 0372-2112(20xx)xx-xxxx-xx DOI: 10.3969/j.issn.0372-2112.20xx.xx.xxx

1 引言

压缩感知^[1-3] (Compressed sensing)作为一种新的采样理论, 它利用信号的稀疏特性, 在远 小于Nyquist 采样率的条件下, 用随机采样获取信号的离散样本, 通过非线性重建算法完美的恢 复信号. 压缩感知理论一经提出, 就引起了学者广泛关注. 目前已在压缩成像^[4], 医学成像^[5], 模 式识别^[6], 图像处理^[7]等领域得到了广泛应用.

在压缩感知中,我们主要考虑以下模型:

y = Ax + w,

其中, $A \in \mathbb{R}^{m \times n}$ 是测量矩阵, $y \in \mathbb{R}^{m}$ 是已知的线性测量, $x \in \mathbb{R}^{n}$ 是待重构的未知信号, $w \in \mathbb{R}^{n}$ 是噪声($||w||_{2} \le \varepsilon$). 压缩感知的核心思想是依赖于信号是否是稀疏的或者近似稀疏的, 即信号x的非零元素的个数是否远小于x的长度. 然而, 在现实中常见的自然信号不一定都具有稀疏特性, 甚至这类信号在某些正交基上都不能够进行稀疏表示. 自然地, 上

^{*}基金项目:国家自然科学基金资助项目(NO. 61673015, 61273020),中央高校基本业务费专项(NO. XD-JK2015A007),科学计算与智能信息处理广西高校重点实验室(合同编号: GXSCIIP201702).

^{*}作者简介:张枫(1991-),男,博士生,研究方向:压缩感知、矩阵修补和鲁棒主成分分析研究.

述信号重构过程不能直接应用于自然信号的重构.研究表明,一些自然信号在某些紧框 $ext{W} D \in \mathbb{R}^{n \times N} (n \leq N, DD^* = I_n)^{[8, 9]}$ 上能够稀疏表示, $\mathbb{D} x = D\alpha$, 其中 $\alpha \in \mathbb{R}^N$ 是(近似)稀疏的. 从数学的角度讲,上述问题可以写成以下形式

$$\min_{x \in \mathbb{D}^n} \|D^*x\|_0 \quad s.t. \quad \|Ax - y\|_2 \le \varepsilon, \tag{1}$$

其中 D^* 表示矩阵D的共轭转置, $\|D^*x\|_0$ 表示向量 D^*x 中非零元素的个数, 若 $\|D^*x\|_0 \le k$, 那么 就称向量 D^*x 为k-稀疏信号.由于问题(1)是一个NP-hard问题, 即在多项式时间内, 计算机无法 有效求解.所以一种更为实际的和易于处理的凸优化方法被提出

$$\min_{x \in \mathbb{D}^n} \|D^*x\|_1 \quad s.t. \quad \|Ax - y\|_2 \le \varepsilon, \tag{2}$$

其中 $||D^*x||_1 = \sum_{i=1}^{N} |(D^*x)_i|$. 为了保证信号的重构效果, Candès等人在文献^[10]中提出了以下D-限制性等容条件(D-Restricted Isometry Property, D-RIP):

定义1.1 (D-RIP) 对于任意*k*-稀疏信号 $v(||v||_0 \le k)$, 若存在 $0 < \delta_k < 1$, 使得

$$(1 - \delta_k) \|Dv\|_2^2 \le \|ADv\|_2^2 \le (1 + \delta_k) \|Dv\|_2^2,$$

那么称矩阵A满足k阶D-限制性等容性质(D-RIP), 最小的 δ_k 称为D-限制性等容常数(D-RIC).

进一步,他们指出当测量矩阵A满足D-限制性等容性质且 $\delta_{2k} < 0.08$ 时通过求解有约束优化问题(2)可以实现信号的鲁棒重构.之后,2011年,Li等人^[11]将上述条件作了进一步改善,得到 $\delta_{2k} < 0.4931$.我们知道,问题(2)等价于以下转换为以下无约束优化问题

$$\min_{x \in \mathbb{R}^n} \lambda \|D^*x\|_1 + \frac{1}{2} \|Ax - y\|_2^2.$$
(3)

2014年, Zhao Tan等人在文献^[8]中提出, 若A满足D-限制性等容性质(D-RIP), D是一个紧框架, 当D-RIP常数 $\delta_{2k} < 0.1907$ 并且 $\|D^*A^*w\|_{\infty} \leq \frac{\lambda}{2}$ 时, 问题(3)的解 \hat{x} 满足

$$\|\hat{x} - x\|_2 \le V_1 \sqrt{k\lambda} + V_2 \frac{\|D^*x - (D^*x)_k\|_1}{\sqrt{k}},$$

其中 $\|D^*x - (D^*x)_k\|_1$ 是最佳k-项 ℓ_1 逼近误差. C_1, C_2 是两个数值型常数并且 C_1 由D-RIP常数 和 $\|D^*D\|_{1,1}$ ($\|D^*D\|_{1,1} := \sup\{\|D^*Dv\|_1 : v \in \mathbb{R}^N, \|v\|_1 \le 1\}$)共同量化, C_2 仅取决于D-RIP常数.

然而现实世界中的自然信号其结构千变万化,一种常见的结构方式是自然信号在某些冗余 字典下是块稀疏的,即其非零元素以块的形式出现,例如彩色图像处理^[7]和DNA-微列阵^[12]等. 从数学的角度看,给定分块 $\tau = \{\tau_1, \tau_2, \tau_3, \cdots, \tau_d\},$ 对于任意向量 $\alpha \in \mathbb{R}^N$ 都可以被描述为

$$\alpha = [\underbrace{\alpha_1, \cdots, \alpha_{\tau_1}}_{\alpha[1]}, \underbrace{\alpha_{\tau_1+1}, \cdots, \alpha_{\tau_1+\tau_2}}_{\alpha[2]}, \cdots, \underbrace{\alpha_{N-\tau_d+1}, \cdots, \alpha_N}_{\alpha[d]}]^*,$$

其中 $\alpha[i]$ 表示向量 α 的第i个子块, 而 α_i 则表示向量 α 的第i个分量元素. 如果向量 α 最多有k个非零 块, 即 $\|\alpha\|_{2,0} \leq k$, 则称向量 α 为块k-稀疏信号. 特别地, 当d = 1 时, 等价于传统的带字典的压缩 感知问题. 相应地, 测量矩阵 $A \in \mathbb{R}^{m \times n}$ 和冗余字典 $D \in \mathbb{R}^{n \times N}$ 也可以分别被描述为

$$A = [\underbrace{A_1, \cdots, A_{\tau_1}}_{A[1]}, \underbrace{A_{\tau_1+1}, \cdots, A_{\tau_1+\tau_2}}_{A[2]}, \cdots, \underbrace{A_{N-\tau_d+1}, \cdots, A_n}_{A[d]}],$$
$$D = [\underbrace{D_1, \cdots, D_{\tau_1}}_{D[1]}, \underbrace{D_{\tau_1+1}, \cdots, D_{\tau_1+\tau_2}}_{D[2]}, \cdots, \underbrace{D_{N-\tau_d+1}, \cdots, D_N}_{D[d]}].$$

其中A[i], D[i]分别表示矩阵A和D的第i个子块(矩阵), 而A_i, D_i则分别表示矩阵A和D的第i个列向量.

然而使用原始的 ℓ_1 极小化方法来恢复此类块稀疏信号不能充分利用信号的结构性特征,即 非零元素是以块的形式出现的这一特性.为此,一些学者对传统的压缩感知方法进行了针对性 的改进.在文献^[13]中,Wang等人提出并研究了如下的 ℓ_2/ℓ_1 问题

$$\min_{x \in \mathbb{R}^n} \|D^*x\|_{2,1} \quad s.t. \quad \|Ax - y\|_2 \le \varepsilon, \tag{4}$$

其中 $\|D^*x\|_{2,1} = \sum_{i=1}^{N} \|(D[i])^*x[i]\|_2$. 此外借鉴D-RIP概念, 他们引入了Block D-RIP, 定义如下:

定义1.2 (Block D-RIP) 对于任意块*k*-稀疏信号 $v(||v||_{2,0} \le k)$, 若存在 $0 < \delta_{k|\tau} < 1$, 使得

$$(1 - \delta_{k|\tau}) \|Dv\|_2^2 \le \|ADv\|_2^2 \le (1 + \delta_{k|\tau}) \|Dv\|_2^2,$$

那么称矩阵A满足k阶Block D-限制性等容性质(Block D-RIP), 最小的 $\delta_{k|\tau}$ 称为Block D-限制性等容常数(Block D-RIC).

在文献^[14]中, Eldar和Mishaliz指出当测量矩阵A满足Block D-限制性等容性质(Block D-RIP)且 $\delta_{2k|\tau} < 0.4142$ 时, 块稀疏信号能够通过求解有约束优化问题(4)进行鲁棒重构. 其后, 2013年, Lin等人^[15]将上述条件作了进一步改善, 得到了 $\delta_{2k|\tau} < 0.4931$. 类似地, 问题(4)可以转化为以下块无约束优化问题

$$\min_{x \in \mathbb{R}^n} \lambda \|D^*x\|_{2,1} + \frac{1}{2} \|Ax - y\|_2^2.$$
(5)

假设A满足Block D-限制性等容性质(Block D-RIP), D是一个紧框架, 本文研究表明, 当Block D-RIP常数 $\delta_{2k|\tau} < 0.2$ 并且 $\|D^*A^*w\|_{2,\infty} \leq \frac{\lambda}{2}$ 时,问题(5)的解 \hat{x} 满足

$$\|\hat{x} - x\|_2 \le C_1 \sqrt{k\lambda} + C_2 \frac{\|D^*x - (D^*x)_k\|_{2,1}}{\sqrt{k}},$$

其中 C_1, C_2 是两个数值型常数并且 C_1 由D-RIP常数和 $||D^*D||_{(2,1),(2,1)}$ ($||D^*D||_{(2,1),(2,1)}$:= sup{ $||D^*Dv||_{2,1}$: $v \in \mathbb{R}^N, ||v||_{2,1} \leq 1$)共同量化, C_2 仅取决于D-RIP常数.

2 预备知识

为了方便介绍后文,我们首先给出以下记号.

- 给定正整数*d*, 记索引集 $T \subset \{1, 2, \dots, d\}$ 且 $|T| = k, T^c$ 表示T在 $\{1, 2, \dots, d\}$ 中的补集.
- $D_T \in \mathbb{R}^{n \times |T|}$ 表示从D中取出索引集T对应的列所组成的矩阵, $\partial D_T = (D_T)^*$.
- iT_1 为包含 $D_{T^c}^*h$ 的k个最大2范数块的索引集, T_2 为包含 $D_{(T \cup T_1)^c}^*h$ 的k个最大2范数块的索引集, 等.
- 接下来,为了证明主要定理,我们需要以下引理.

引理2.1 $\|D_{T^c}^*h\|_2 \le \|D_{T_1}^*h\|_2 + \frac{\|D_{T^c}^*h\|_{2,1}}{2\sqrt{k}}.$ *Proof.* 由 T_j 的构造, 我们有

$$\left\| D_{T_{j+1}}^*[i]h[i] \right\|_2 \le \frac{\left\| D_{T_j}^*h \right\|_{2,1}}{k},$$

上式两边取2范数,得

$$\left\| D_{T_{j+1}}^* h \right\|_2 \le \frac{\left\| D_{T_j}^* h \right\|_{2,1}}{\sqrt{k}},$$

所以,我们有

$$\sum_{j\geq 2}^{l} \left\| D_{T_{j}}^{*}h \right\|_{2} \leq \frac{\sum_{j\geq 1}^{l} \left\| D_{T_{j}}^{*}h \right\|_{2,1}}{\sqrt{k}} = \frac{\left\| D_{T^{c}}^{*}h \right\|_{2,1}}{\sqrt{k}}.$$
(6)

我们注意到 $\left\{ \left\| D_{T_j}^* h \right\|_2 \right\}_{j=1}^l$ 是一个单调不增序列. 下面的不等式可以通过两边平方得证

$$\|D_{T^c}^*h\|_2 \le \|D_{T_1}^*h\|_2 + (\sqrt{2} - 1)\sum_{j=2}^l \|D_{T_j}^*h\|_2.$$
⁽⁷⁾

又因 $\sqrt{2} - 1 < \frac{1}{2}$,结合(6)式和(7)式,引理得证.

引理2.2 令测量 $y = Ax + w, h = \hat{x} - x, 若 \|D^*A^*w\|_{2,\infty} \le \frac{\lambda}{2},$ 则问题(5)的解 \hat{x} 满足

$$\|D^*A^*Ah\|_{2,\infty} \leq (\frac{1}{2} + \|D^*D\|_{(2,1),(2,1)})\lambda.$$

Proof. 由实值凸的低阶半连续函数的次微分的定义和*x*是问题(5)的解可知, *x*满足问题(5)的子 梯度最优化条件, 即

$$A^*(A\hat{x} - y) + \lambda Dv = 0,$$

其中 $v \in \mathbb{R}^N$, 若 $\|D_i^* x\|_2 \neq 0$, 则 $v_i = \operatorname{sgn}(\|D_i^* x\|_2)$, 否则 $\|v_i\|_2 \leq 1$. 因此存在 $v \in \mathbb{R}^N$ 使 得 $\|v\|_{2,\infty} \leq 1$, 进一步, 我们有

$$\|D^*A^*(A\hat{x}-y)\|_{2,\infty} = \lambda \|D^*Dv\|_{2,\infty} \le \lambda \|D^*D\|_{(2,\infty),(2,\infty)} = \lambda \|D^*D\|_{(2,1),(2,1)}.$$

于是

 $\|D^*A^*Ah\|_{2,\infty} \le \|D^*A^*(A\hat{x}-y)\|_{2,\infty} + \|D^*A^*(Ax-y)\|_{2,\infty} \le (\frac{1}{2} + \|D^*D\|_{(2,1),(2,1)})\lambda.$ *引*理得证.

引理2.3 令 $D \in \mathbb{R}^{n \times N}$ 为满足 $DD^* = I_n$ 的矩阵, $A \in \mathbb{R}^{m \times n}$ 为满足Block D-RIP(0 < $\delta_{2k|\tau} < \frac{1}{2}$)条件的矩阵. 令索引集 $T \subseteq \{1, 2, \dots, d\}$ 恰有k个块, 测量 $y = Ax + w, h = \hat{x} - x,$ 若 $\|D^*A^*w\|_{2,\infty} \leq \frac{\lambda}{2}$,则问题(5)的解 \hat{x} 满足

$$\|D_T^*h\|_2 \le \beta_1 \sqrt{k}\lambda + \beta_2 \frac{\|D_{T^c}^*h\|_{2,1}}{\sqrt{k}},\tag{8}$$

其中

$$\beta_1 = \frac{1+2\|D^*D\|_{(2,1),(2,1)}}{2-4\delta_{2k|\tau}}, \ \beta_2 = \frac{\delta_{2k|\tau}}{1-2\delta_{2k|\tau}}.$$

Proof. 令 T_0 为包含 D^*h 的k个最大2范数块的索引集,因为 $\|D_T^*h\|_2 \leq \|D_{T_0}^*h\|_2$, $\|D_{T_0}^*h\|_{2,1} \leq \|D_{T_0}^*h\|_{2,1}$,所以我们取 $T = T_0$ 就能充分证明该引理.

因为A满足Block D-RIP($0 < \delta_{2k|\tau} < \frac{1}{2}$)条件,不失一般性,我们假设存在 $u, v \in \sum_k := \{Dc : c \in \mathbb{R}^N, \|c\|_{2,0} \le k\}, 使得 \|u\|_2 = \|c\|_2 = 1, 因此我们有$

$$\begin{aligned} \langle Au, Av \rangle &= \frac{1}{4} (\|A(u+v)\|_2^2 - \|A(u-v)\|_2^2) \\ &\geq \frac{1}{4} (1-\delta_{2k|\tau}) \|u+v\|_2^2 - \frac{1}{4} (1+\delta_{2k|\tau}) \|u-v\|_2^2 \\ &= \langle u, v \rangle - \delta_{2k|\tau}. \end{aligned}$$

对任意的 $u, v \in \sum_k$, 我们有

$$\langle Au, Av \rangle \ge \langle u, v \rangle - \delta_{2k|\tau} \|u\|_2 \|v\|_2.$$

于是

$$\begin{split} \left\langle Ah, ADD_{T_{0}}^{*}h \right\rangle &= \left\langle ADD_{T_{0}}^{*}h, ADD_{T_{0}}^{*}h \right\rangle + \sum_{j\geq 1}^{l} \left\langle ADD_{T_{j}}^{*}h, ADD_{T_{0}}^{*}h \right\rangle \\ &\geq (1 - \delta_{2k|\tau}) \left\| DD_{T_{0}}^{*}h \right\|_{2}^{2} + \sum_{j\geq 1}^{l} \left\langle DD_{T_{j}}^{*}h, DD_{T_{0}}^{*}h \right\rangle - \delta_{2k|\tau} \left\| DD_{T_{0}}^{*}h \right\|_{2} \sum_{j\geq 1}^{l} \left\| DD_{T_{j}}^{*}h \right\|_{2} \\ &= (1 - \delta_{2k|\tau}) \left\| DD_{T_{0}}^{*}h \right\|_{2}^{2} + \left\langle h - DD_{T_{0}}^{*}h, DD_{T_{0}}^{*}h \right\rangle - \delta_{2k|\tau} \left\| DD_{T_{0}}^{*}h \right\|_{2} \sum_{j\geq 1}^{l} \left\| DD_{T_{j}}^{*}h \right\|_{2} \\ &= (1 - \delta_{2k|\tau}) \left\| DD_{T_{0}}^{*}h \right\|_{2}^{2} + \left\| D_{T_{0}}^{*}h \right\|_{2}^{2} - \left\| DD_{T_{0}}^{*}h \right\|_{2}^{2} - \delta_{2k|\tau} \left\| DD_{T_{0}}^{*}h \right\|_{2} \sum_{j\geq 1}^{l} \left\| DD_{T_{j}}^{*}h \right\|_{2} \end{split}$$

我们注意到D是一个紧框架, 即 $DD^* = I_n$, 故

$$\left\| DD_{T_{0}}^{*}h \right\|_{2} \leq \left\| D \right\|_{2} \left\| D_{T_{0}}^{*}h \right\|_{2} \leq \left\| D_{T_{0}}^{*}h \right\|_{2},$$

因此

$$\left\langle Ah, ADD_{T_{0}}^{*}h \right\rangle \ge (1 - \delta_{2k|\tau}) \left\| D_{T_{0}}^{*}h \right\|_{2}^{2} - \delta_{2k|\tau} \left\| D_{T_{0}}^{*}h \right\|_{2} \sum_{j\ge 1}^{l} \left\| D_{T_{j}}^{*}h \right\|_{2}.$$

$$\tag{9}$$

另一方面,由引理2.2,
$$\|D_{T_0}^*h\|_{2,1} \leq \sqrt{k} \|D_{T_0}^*h\|_2$$
,我们有
 $\langle Ah, ADD_{T_0}^*h \rangle = \langle D^*A^*Ah, D_{T_0}^*h \rangle$
 $\leq \|D^*A^*Ah\|_{2,\infty} \|D_{T_0}^*h\|_{2,1}$
 $\leq (\frac{1}{2} + \|D^*D\|_{(2,1),(2,1)})\lambda\sqrt{k} \|D_{T_0}^*h\|_2.$ (10)

结合(6), (9), (10)式, 我们有

$$\|D_T^*h\|_2 \le \frac{1+2\|D^*D\|_{(2,1),(2,1)}}{2-4\delta_{2k|\tau}}\sqrt{k}\lambda + \frac{\delta_{2k|\tau}}{1-2\delta_{2k|\tau}}\frac{\|D_{T^c}^*x\|_{2,1}}{\sqrt{k}}.$$

引理得证.

引理2.4 令 $D \in \mathbb{R}^{n \times N}$ 为满足 $DD^* = I_n$ 的矩阵, 测量 $y = Ax + w, h = \hat{x} - x$, 若 $\|D^*A^*w\|_{2,\infty} \leq \frac{\lambda}{2}$, 则问题(5)的解 \hat{x} 满足

$$\|D_{T^c}^*h\|_{2,1} \le 3\|D_T^*h\|_{2,1} + 4\|D_{T^c}^*x\|_{2,1}.$$
(11)

Proof. 由于 \hat{x} 是问题(5)的解, 故

$$\lambda \|D^* \hat{x}\|_{2,1} + \frac{1}{2} \|A \hat{x} - y\|_2^2 \le \lambda \|D^* x\|_{2,1} + \frac{1}{2} \|A x - y\|_2^2.$$

将 h = $\hat{x} - x, y = Ax + w$ 代入上式,由D是一个紧框架可知

$$\begin{split} \lambda \|D^* \hat{x}\|_{2,1} + \frac{1}{2} \|Ah\|_2^2 &\leq \lambda \|D^* x\|_{2,1} + \langle Ah, w \rangle \\ &\leq \lambda \|D^* x\|_{2,1} + \langle D^* h, D^* A^* w \rangle \\ &\leq \lambda \|D^* x\|_{2,1} + \|D^* h\|_{2,1} \|D^* A^* w\|_{2,\infty} \\ &\leq \lambda \|D^* x\|_{2,1} + \frac{\lambda}{2} \|D^* h\|_{2,1}, \end{split}$$

于是

$$||D^*x||_{2,1} \le ||D^*x||_{2,1} + \frac{1}{2}||D^*h||_{2,1}.$$

进一步,我们有

$$\begin{split} \|D_T^*h + D_T^*x\|_{2,1} + \|D_{T^c}^*h + D_{T^c}^*x\|_{2,1} &\leq \|D_T^*x\|_{2,1} + \|D_{T^c}^*x\|_{2,1} + \frac{1}{2}\|D_T^*h\|_{2,1} + \frac{1}{2}\|D_{T^c}^*h\|_{2,1}, \\ &\text{h} \equiv \text{fr} \, \texttt{K} \texttt{S}, \\ \|D_T^*x\|_{2,1} - \|D_T^*h\|_{2,1} + \|D_{T^c}^*h\|_{2,1} - \|D_{T^c}^*x\|_{2,1} &\leq \|D_T^*x\|_{2,1} + \|D_{T^c}^*x\|_{2,1} + \frac{1}{2}\|D_T^*h\|_{2,1} + \frac{1}{2}\|D_{T^c}^*h\|_{2,1}, \\ &\text{S} \texttt{H} \texttt{E} \texttt{B} \texttt{G} \texttt{G}(11) \texttt{T}, \ \texttt{G} \texttt{H} \texttt{G} \texttt{H} \texttt{C}. \end{split}$$

3 主要结果

定理3.1 令 $D \in \mathbb{R}^{n \times N}$ 为满足 $DD^* = I_n$ 的矩阵, $A \in \mathbb{R}^{m \times n}$ 为满足Block D-RIP($0 < \delta_{2k|\tau} < 0.2$)条件的矩阵, $(D^*x)_k$ 为由 D^*x 的k个最大2范数块组成的向量, 测量 $y = Ax + w, h = \hat{x} - x,$ 若 $\|D^*A^*w\|_{2,\infty} \leq \frac{\lambda}{2}$,则问题(5)的解 \hat{x} 满足

$$\|\hat{x} - x\|_2 \le C_1 \sqrt{k\lambda} + C_2 \frac{\|D^*x - (D^*x)_k\|_{2,1}}{\sqrt{k}},\tag{12}$$

其中

$$C_1 = \frac{(1+2\|D^*D\|_{(2,1),(2,1)})(\frac{7}{4}-3\delta_{2k|\tau})}{(1-2\delta_{2k|\tau})(1-5\delta_{2k|\tau})}, \ C_2 = \frac{2-4\delta_{2k|\tau}^2}{(1-2\delta_{2k|\tau})(1-5\delta_{2k|\tau})}$$

Proof. 由引理2.1和引理2.4, 我们有

$$\begin{aligned} \|\hat{x} - x\|_{2} &= \|h\|_{2} &= \|D^{*}h\|_{2} \\ &\leq \|D^{*}_{T}h\|_{2} + \|D^{*}_{T^{c}}h\|_{2} \\ &\leq \|D^{*}_{T}h\|_{2} + \|D^{*}_{T_{1}}h\|_{2} + \frac{\|D^{*}_{T^{c}}h\|_{2,1}}{2\sqrt{k}} \\ &\leq \|D^{*}_{T}h\|_{2} + \|D^{*}_{T_{1}}h\|_{2} + \frac{3\|D^{*}_{T}h\|_{2,1} + 4\|D^{*}_{T^{c}}x\|_{2,1}}{2\sqrt{k}} \\ &\leq \frac{5}{2}\|D^{*}_{T}h\|_{2} + \|D^{*}_{T_{1}}h\|_{2} + \frac{2\|D^{*}_{T^{c}}x\|_{2,1}}{\sqrt{k}}. \end{aligned}$$
(13)

下面我们分别估计 $\|D_T^*h\|_2$ 和 $\|D_{T_1}^*h\|_2$,由(8)式知

$$\begin{split} \|D_T^*h\|_2 &\leq \beta_1 \sqrt{k}\lambda + \beta_2 \frac{\|D_{T^c}^*h\|_{2,1}}{\sqrt{k}} \\ &\leq \beta_1 \sqrt{k}\lambda + \beta_2 \frac{3\|D_T^*h\|_{2,1} + 4\|D_{T^c}^*x\|_{2,1}}{\sqrt{k}} \\ &\leq \beta_1 \sqrt{k}\lambda + 3\beta_2 \|D_T^*h\|_2 + 4\beta_2 \frac{\|D_{T^c}^*x\|_{2,1}}{\sqrt{k}}, \end{split}$$

由于 $1 - 3\beta_2 > 0(0 < \delta_{2k|\tau} < 0.2),$ 故

$$\|D_T^*h\|_2 \le \frac{\beta_1}{1 - 3\beta_2} \sqrt{k\lambda} + \frac{4\beta_2}{1 - 3\beta_2} \frac{\|D_{T^c}^*x\|_{2,1}}{\sqrt{k}}.$$
(14)

由(8)式和(14)式,我们有

$$\begin{aligned} \|D_{T_{1}}^{*}h\|_{2} &\leq \beta_{1}\sqrt{k}\lambda + \beta_{2}\frac{\left\|D_{T_{1}}^{*}h\right\|_{2,1}}{\sqrt{k}} \\ &\leq \beta_{1}\sqrt{k}\lambda + \beta_{2}\frac{\|D_{T}^{*}h\|_{2,1} + \|D_{T^{c}}^{*}h\|_{2,1}}{\sqrt{k}} \\ &\leq \beta_{1}\sqrt{k}\lambda + \beta_{2}\frac{\|D_{T}^{*}h\|_{2,1} + \frac{3\beta_{2}}{\sqrt{k}}\|D_{T}^{*}h\|_{2,1} + 4\beta_{2}\frac{\|D_{T^{c}}^{*}x\|_{2,1}}{\sqrt{k}} \\ &\leq \beta_{1}\sqrt{k}\lambda + 4\beta_{2}\|D_{T}^{*}h\|_{2} + 4\beta_{2}\frac{\|D_{T^{c}}^{*}x\|_{2,1}}{\sqrt{k}} \\ &\leq \beta_{1}\sqrt{k}\lambda + 4\beta_{2}(\frac{\beta_{1}}{1 - 3\beta_{2}}\sqrt{k}\lambda + \frac{4\beta_{2}}{1 - 3\beta_{2}}\frac{\|D_{T^{c}}^{*}x\|_{2,1}}{\sqrt{k}}) + 4\beta_{2}\frac{\|D_{T^{c}}^{*}x\|_{2,1}}{\sqrt{k}} \\ &= \frac{\beta_{1} + \beta_{1}\beta_{2}}{1 - 3\beta_{2}}\sqrt{k}\lambda + \frac{4\beta_{2} + 4\beta_{2}^{2}}{1 - 3\beta_{2}}\frac{\|D_{T^{c}}^{*}x\|_{2,1}}{\sqrt{k}}. \end{aligned}$$

$$(15)$$

由(13), (14), (15)式知, (12)式成立.

4 数值实验

为了验证理论结果,本文分别做了两组实验: (1)设计满足定理3.1条件的算法; (2)理论 误差上界对比实验. 实验在CPU为Inter (R)Core (TM)i3,内存为2GB的台式电脑上进行,运行软件为MATLAB (R2014a).实验中,测量矩阵 $A \in \mathbb{R}^{128 \times 256}$ 服从标准高斯分布,字典 $D \in \mathbb{R}^{256 \times 1024}$ 由傅里叶变换矩阵和单位阵合并而成,并且满足 $DD^* = I_n$,测量误差 $w \in \mathbb{R}^{128}$ 服从正态分布,取正则化参数 $\lambda = 1e - 3$,从而满足 $\|D^*A^*w\|_{2,\infty} \leq \frac{\lambda}{2}$,待重构的信号为 $x \in \mathbb{R}^{256}$,在字典D下的块稀疏信号 $\alpha \in \mathbb{R}^{1024}$ 中的非零块位置随机产生.为了克服实验结果的偶然性,所有实验将独立重复地进行100次.

在本文中,我们将冗余字典和Block-IRLS算法^[16-18]相结合提出D-Block-IRLS算法,参见算法1.

首先针对D-Block-IRLS算法, 我们采用两种分块形式, 均分256块和非均分256块. 图2分别研究了均匀分块和非均匀分块的情况下通过D-Block-IRLS算法得到的误差 $||\hat{x} - x||_2$ 以及理论误差上界 $C_1\sqrt{k}\lambda + C_2 \frac{||D^*x - (D^*x)_k||_{2,1}}{\sqrt{k}}$ 与块稀疏度k的关系. 由图可知, 无论是均匀分块还是非均匀分块通过D-Block-IRLS算法得到的误差都远小于理论误差上界, 换言之, 利用D-Block-IRLS算法来重构块稀疏信号可以满足实验设计的需要并且从侧面印证了我们理论分析的正确性.

由文献^[8]知, 当 $D \in \mathbb{R}^{n \times N}$ 为满足 $DD^* = I_n$ 的矩阵, $A \in \mathbb{R}^{m \times n}$ 为满足D-RIP($0 < \delta_{2k} < 0.1907$)条件的矩阵, $(D^*x)_k$ 为由 D^*x 的k个最大元素组成的向量, 测量 $y = Ax + w, h = \hat{x} - x,$

算法 1 D-Block-IRLS算法

输入: 分块 $\tau = \{\tau_1, \tau_2, \cdots, \tau_d\}$, 测量矩阵A, 字典D, 观测信号Y, 块稀疏度估计k.

输出: 重构信号x.

- 1: 选择适当的惩罚参数 $\lambda(0 < \lambda < 1)$.
- 2: 初始化迭代向量 $\alpha^{(0)}$,使其满足 $AD\alpha^{(0)} = y$.设置 $\epsilon_0 = 1$.
- 3: 开始迭代*j* = 0.
- 4: 通过α^(j)解决下面的线性问题

$$\left((AD)^T AD + Diag \left[\frac{\lambda I_{\tau_l}}{(\epsilon_j^2 + \|\alpha^{(j)}[i]\|_2^2)^{\frac{1}{2}}} \right]_{1 \le l \le d} \right) \alpha^{(j+1)} = (AD)^T y.$$

- 5: 当*α*^(j)满足停机条件, 将*Dα*^(j)作为输出赋值给*x*, 同时结束算法, 否则执行下一步.
- 6: 取定一个常数 $c(0 < c < \frac{1}{d})$ 并更新 $\epsilon_{j+1} = \min \{\epsilon_j, c \cdot r(\alpha^{(j+1)})_{k+1}/d\}$. 其中, $r(\alpha)$ 表示将向 量 α 的分块取 ℓ_2 范数后, 再由大到小依次排列形成的向量. 而 $r(\alpha)_{k+1}$ 表示向量 $r(\alpha)$ 的第k+1个分量值.
- 7: *j* = *j* + 1, 并返回到第4步继续执行.

图 1: D-Block-IRLS算法误差与理论误差上界对比.

$$\|\hat{x} - x\|_{2} \le V_{1}\sqrt{k\lambda} + V_{2}\frac{\|D^{*}x - (D^{*}x)_{k}\|_{1}}{\sqrt{k}},\tag{16}$$

其中

$$V_1 = \frac{4\sqrt{2}(\frac{1}{2} + \|D^*D\|_{1,1})}{1 - (1 + 3\sqrt{2})\delta_{2k}}, \ V_2 = \frac{4((\sqrt{2} - 1)\delta_{2k} + 1)}{1 - (1 + 3\sqrt{2})\delta_{2k}}$$

现在分别用块和非块的方式来处理块稀疏信号 α ,取 $\|D^*D\|_{(2,1),(2,1)} = \frac{1+\sqrt{256}}{2}$, $\|D^*D\|_{1,1} = \frac{1+\sqrt{1024}}{2}$ (参见文献[9]),其他参数保持一致.图3表明,无论是均匀分块还是非均匀分块,我们所获理论误差上界都明显优于(16)式的误差上限.

图 2: 理论误差上界对比.

5 小结

本文采用ℓ₂/ℓ₁极小化方法研究了基于冗余紧框架下的块稀疏信号的恢复,获得了该方法 鲁棒重构原始信号的充分条件和误差上界估计,所获结果表明,误差上界可以通过正则化参 数λ,k-项逼近和块稀疏度来控制.仿真实验证明了我们理论结果的准确性,该结果对于推动压缩 感知的进一步发展具有一定的理论价值和借鉴作用.

参考文献:

- Nyquist H. Certain topics in telegraph transmission theory[J]. American Institute of Electrical Engineers, 1928, 47 (2): 617-644.
- [2] Candès E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52 (2): 489-509.
- [3] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52 (4): 1289-1306.
- Baraniuk R G. Single-pixel imaging via compressive sampling[J]. IEEE Siganl Processing Magazine, 2008, 25 (2): 83-91.
- [5] Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic resonance in medicine, 2007, 58 (6): 1182-1195.
- [6] Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattren Analysis and Machine Intelligence, 2009, 31 (2): 210-227.
- [7] Majumdar A, Ward R. Compressed sensing of color images[J]. Signal Processing, 2010, 90 (12): 3122-3127.
- [8] Z Tan, Y C Eldar, A. Beck, A. Nehorai. Smoothing and decomposition for analysis sparse recovery. IEEE Trans. Signal Process, 2014 62 (7): 1762 - 1774.
- Y Shen, B Han, E Braverman. Stable recovery of analysis based approaches. Appl. Comput. Harmon. Anal, 2015 39 (1): 162-163.
- [10] E J Candès, Y C Eldar, D. Needell, P. Randall. Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal, 2011 31 (1): 59 - 73.
- [11] Mo Q, Li S. New bounds on the restricted isometry constant δ_{2k} . Appl. Comput. Harmon. Anal, 2011 31 (3): 460 - 468.
- [12] Parvaresh F, Vikalo H, Misra H, et al. Recovering sparse signals using sparse measurement matrices in compressed DNA microarrays. IEEE Journal of Selected Topics in Signal Processing, 2008, 2 (3): 275-285.
- [13] Wang Y, Wang J J, Xu Z B. A Note on Block-sparse Signals Recovery with Coherent Tight Frames. Discrete Dynamics in Nature and Society, 2013 2013 (1): 1-8.
- [14] Eldar Y C, Mishali M. Robust recovery of signals from a structured union of subspaces[J].
 IEEE Transactions on Information Theory, 2009, 55 (11): 5302-5316.
- [15] Lin J H, Li S. Block Sparse Recovery via Mixed ℓ_2/ℓ_1 -Minimization[J]. Acta Mathematica Sinica, 2013, 29 (7): 1401-1412.
- [16] 王文东, 王尧, 王建军. 基于迭代重赋权最小二乘算法的块稀疏压缩感知. 电子学报, 2015, 45 (5): 923-928 (Wang W D, Wang Y, Wang J J. Iterative Reweighed Least Squares Algorithm for Block-Sparse Compressed Sensing. Chinese Journal of Electronics, 2015, 45 (5): 923-928.

- [17] Wang J, Zhang J, Wang W, et al. A perturbation analysis of nonconvex block-sparse compressed sensing[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 29(1 - 3):416-426.
- [18] Liu C, Wang J, Wang W, et al. Non-convex block-sparse compressed sensing with redundant dictionaries[J]. Iet Signal Processing, 2017, 11 (2): 171-180.

Block-sparse Compressed Sensing with Redundant Tight Frames via ℓ_2/ℓ_1 -Minimization

Zhang Feng, Wang Jianjun

(School of Mathematics and Statistic, Southwest University, Chongqing 400715, China)

Abstract: Compressed sensing is one of the hot research theories for (approximately) sparse signal processing which breaks through Nyquist/Shannon sampling theory, and makes it into reality that one can efficiently acquire and exactly reconstruct a signal. This paper mainly investigated the signals which are block-sparse under redundant tight frames based on ℓ_2/ℓ_1 -minimization method and Block D-RIP theory. Under the condition $0 < \delta_{2k|\tau} < 0.2$, the obtained results show that ℓ_2/ℓ_1 -minimization method can robustly reconstruct the original signal, meanwhile, improve the existing reconstruction condition and error upper bound.Using the discrete Fourier transform dictionary, we conducted a series of simulation experiments which sufficiently verified the theoretical results.

Keywords: Compressed sensing; ℓ_2/ℓ_1 -Minimization method; Block D-RIP; Redundant tight frames; Block-sparse signals **2010** MSC: 94A12, 94A15