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Abstract

From the exponential function of Euler’s equation to the geometry of a fundamental
form, a calculation of the fine-structure constant and its relationship to the proton-
electron mass ratio is given. Equations are found for the fundamental constants of the
four forces of nature: electromagnetism, the weak force, the strong force and the force of
gravitation. Symmetry principles are then associated with traditional physical measures.

1. Introduction

Leonhard Euler was one of the greatest mathematicians of the eighteenth century. In
The Legacy of Leonhard Euler mathematician Lokenath Debnath says, “It is remarkable
that Euler discovered two elegant and most beautiful formulas in mathematics.” [1].

eiπ + 1 = 0 and e2πi − 1 = 0. (1)

William Eisen’s description and interpretation of Euler’s equation eiπ + 1 = 0 in
relation to the Great Pyramid design shows four curves of ex from x = 0 to x = π,
one curve on each side. Dividing the sides by π lengths results in a small square in the
center called the Golden Apex A, the geometry and symmetry thought to generate the
four fundamental forces of nature [2]. Eisen then asks the obvious question about the
exponential function and Golden Apex interpretation, “Just how could the builders of
the Great Pyramid have been so knowledgeable of the mathematics of the universe ...?”

A = eπ − 7π − 1 ≃
√
2/3π ≃ 0.1495. (2)

A is the side of the Golden Apex square.
√
A ≃ e/7 and A+ 1 = eπ − 7π ≃ R ≃ 1.152,

radius of the regular heptagon with side one. The sin(2πA) ≃ ϕ/2, where ϕ is the golden
ratio, 1/2ϕ ≃ ϕ

√
A. The tan(2πA) ≃ 1 +

√
A ≃ K/2π, see Eq. (7) [3]. The polygon

circumscribing constant is K ≃ 2 tan(3π/7) ≃ ϕ2/2A, see Eq. (7) and discussion [3]. A
is also the reciprocal harmonic of the gravitational constant. Also, A ≃ tan2 e−1 and
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A−1 ≃ cosh2(
√

7/e) ≃ ϕ
√
2πe. ln(A−1) ≃ π/

√
e ≃ 6/π, with the cube-sphere proportion.

The regular heptagon radius, R = csc(π/7)/2 ≃ ϕ/
√
2 ≃ cot2 α−1 and 2πR ≃ 1/ϕ

√
α.

Also, RA ≃ 2
√
α, where alpha α is the fine-structure constant, see the Eq. (7) discussion.

RA ≃
√

ϕ/e2 ≃ ln(π/
√
7) ≃

√
7/π/K. (3)

R−1 ≃
√
ϕ sinα−1 with eπ−πe ≃ sinα−1 [3]. The cosh2(

√
A) ≃ eA−Ae ≃ π/e. The silver

constant from the heptagon is S ≃
√

π/2A ≃ 2
√
2R ≃ 3.247.

√
S = 2 cos(π/7) ≃ 7ϕ/2π,

2πA ≃ S/2
√
3 and S/

√
π ≃

√
11/S ≃

√
1/2A ≃ ln(2π). Again, with a Golden Apex A:

A ≃
√
11/7π ≃

√
e/11 ≃

√
πα ≃ 2παS. (4)

With the fine-structure constant, 2πα is equal to the electron Compton wavelength
divided by the Bohr radius and πα is the percentage of light absorbed by graphene [4].
4/π ≃

√
A/2A ≃

√
S/2, with Eq. (8) discussion. K + 2R ≃ 11 and

√
e/ϕ ≃ 1 + αϕ2 [3].

2. The Nature of the Fine-Structure Constant

Introduced by Arnold Sommerfeld, the fine-structure constant determines the strength
of the electromagnetic interaction. Alpha, the fine-structure constant is α = e2/~c in cgs
units [3]. The fine-structure constant related to the Golden Apex of the Great Pyramid:

2A ≃ 2
√
πα ≃ 4me/mpα ≃ ϕ2/K. (5)

Also, 2A ≃ tanhS−1 ≃ tan2(1/2) ≃
√
K/π2 and

√
2A ≃

√
π/S. When substituting the

fine-structure constant value and approximate value for the proton-electron mass ratio
αmp/4me ≃ ϕ+

√
3 and ln(mp/me)/ ln(α−1) ≃ 2πϕA, see the discussion of Eq. (14) [3].

The Wilbraham-Gibbs constant is Gw and the sinc function is the sincx = sinx/x [5]:

Gw =

ˆ π

0
sincx dx ≃ e sinα−1 ≃ K/

√
7π. (6)

The Wilbraham-Gibbs constant Gw ≃ ϕ lnπ ≃ ϕ2/
√
2 ≃ 1.852. The Wilbraham-Gibbs

constant is related to the overshoot of Fourier sums in the Gibbs phenomena [5] and
other approximations: Gw ≃ sec(1) ≃ exp(ϕ−1) ≃ 7A

√
π ≃ 5/7

√
A, Eq. (17) discussion.

The inverse Kepler-Bouwkamp constant is the polygon circumscribing constant K [3]:

K =
π

2

∞∏
n=1

sinc
(

2π

2n+ 1

)
=

∞∏
n=3

sec
(π
n

)
. (7)

Also, the polygon circumscribing constant K ≃ 2π(1 +
√
A) ≃

√
7/4πα ≃

√
11ϕ2 and

K ≃ ϕ2/2A ≃ 5A/
√
α ≃ 4π

√
SA ≃ 3/2RA ≃ 2 tan(3π/7) ≃ 8.7. KA ≃

√
e/ϕ ≃ R+A.

Half the face apex angle of the Great Pyramid plus half the apex angle is approximately
70◦ and sinα−1 ≃ 2 cos 70◦ [3]. cscα−1 ≃ R

√
ϕ ≃

√
7/S ≃

√
85/2π ≃ ln(372/85), see

below. 528/504 ≃ 7A, see discussion of Eq. (17) [3]. First level sum of Teleois proportions
is 85, foundational in Great Pyramid design [3]. 85/11 ≃ R/A and 528/85 ≃ 2π,
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see Eq. (17). The latest value for the inverse fine-structure constant by Aoyama et al,
α−1 ≃ 137.035 999 157 (41), from the most recent experimental results and quantum
electrodynamics [6]. Eq. (8) derives the approximate value for α−1 ≃ 137.035 999 168 [7]:

sinα−1 ≃ 504/85K = 7!/(713 + 137)K. (8)

Sum of the eight main resonant nodes on the Turenne Rule is 372 ≃ e/α, part of a
spectrum analysis also related to crystallographic groups [8]. K ≃ ϕ ln(372 − 137),
ln 372 ≃ 1+ ln 137 ≃

√
π/2A and ln(137×372) ≃ ϕ/A. 1372+3722 ≃ 3962 and from the

harmonic radii of the Cosmological Circle, 108+396 = 504 [3]. 504/396 = 14/11 ≃ 4/π.
Pyramid base angle θB ≃ tan−1(4/π). The ln(4/π) ≃ Aϕ and π/4 ≃ cscα−1 − sinα−1 ≃
sin θB. The pyramid apex angle θA, sinα−1 ≃ θB/θA ≃

√
2 tan(π/7) ≃

√
S/7 ≃ 2π/

√
85

[3]. 528/396 = 4/3 and 396/85 ≃
√

S/A. The quartz crystal harmonic is Qc = 786432
and 1/

√
α ≃ ln(AQc). Base octave harmonic of Qc, 192 ≃ 7πK and ϕ/π ≃ 192/372 [7].

3. The Four Fundamental Forces of Nature

The heptagon is a feature of the Cosmological Circle, geometric template for many
ancient architectural designs; related to the cycloid curve and history of the least action
principle [7]. Golden Apex A, silver constant S and fine-structure constant, see Eq. (4)
discussion.

αE ≃ exp(−2/Ae) ≃ A/2πS ≃ 7.29× 10−3. (9)
The electromagnetic coupling constant is αE = α = e2/~c in cgs units [7]. Together with
Eq. (12) the ratio αW/αE ≃ Aπ3 ≃

√
πϕ2.

√
α ≃ Ae/ϕ

√
K ≃

√
R/4π and 2πϕR ≃ 1/

√
α.

Gravitational constant G = ~c/m2
Pl ≃ 6.67191(99)×10−11m3kg−1s−2 and Planck mass

mP [9, 10]. Gravitational coupling αG = Gm2
e/~c = (me/mP )

2 and the Golden Apex A:

αG ≃ exp(−K
√
π/A) ≃ 1.752× 10−45. (10)

Also, − ln(αG) ≃ 2R/A2 ≃ exp(Aπ3) ≃ 2πRd/
√
α, where dodecahedron circumradius

Rd = ϕ
√
3/2. Aπ3 ≃ K sin θC, where θC ≃ 32◦, half the Great Pyramid face apex angle.

An approximation with the Golden Apex A for the strong force coupling constant [11]:

αS ≃ exp(A−
√
2ϕ) ≃ A/

√
ϕ ≃ 1.177× 10−1. (11)

The tetrahedral angle θt ≃ 109.5◦, csc2(θt) = 9/8, the whole tone. αS ≃ ln(9/8) ≃√
α tan(2πA) ≃

√
2/A/π3 ≃ K

√
α/2π,

√
2ϕ−A ≃ e/

√
ϕ and α−1

S ≃ 7π
√
A ≃ π2/R [7].

Approximation with the Golden Apex for the coupling constant of the weak force [12]:

αW ≃ exp(−1/2A) ≃ 2A/K ≃ 3.4× 10−2. (12)

Also, αW/αE ≃ Aπ3 ≃
√
πϕ2. Coupling constant αW = g2w/4π ≃ A/

√
2π, where gw is

the coupling constant mediating the weak interaction. The Fermi coupling constant GF

determines the strength of Fermi’s interaction that explains the beta decay caused by
the weak nuclear force. GF = g2w/4

√
2m2

W = αWπ/
√
2m2

W [13], mW is the mass of the
W boson. The weak interaction is mediated by the exchange of W and Z gauge bosons.
Weinberg angle θW , sin2 θW ≃

√
αϕ2 ≃ 3A/2 [12, 14], Eq. (17); cos θW = mW/mZ ≃√

2/ϕ. K2 ≃ cos(2θW )/α ≃ A
√

6/π. The pyramid base angle θB, θW/θB ≃
√
2A ≃

√
π/S.
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4. Symmetry Principles and Physical Measures
Steven Weinberg is often quoted, “... there are symmetry principles that dictate the
very existence of all the known forces of nature.” [15]. Saul-Paul Sirag says, “By far the
deepest theoretical advance afforded by the group-theory approach is the set of ADE
Coxeter graphs, .... It is plausible to think of the ADE graphs as the ultimate Platonic
archetypes.” [16]. The discovery of symmetry principles and their application [17, 18] has
advanced to the monster group and the modular j-function (referred to as “monstrous
moonshine”) [19], the umbral moonshines and string theory; along with vertex operator
algebras in related physical approaches with conformal field theory [20]. For a half-period
ratio of τ, the modular function j(τ) with q = exp(2πiτ) has the Fourier expansion [21]:

j(τ) = q−1 + 744 + 196884q + 21493760q2 + .... (13)

The ln(21493760/196884) ≃
√
7π ≃

√
2/2A. The ln 196884 ≃

√
2/A/2A ≃ KRd and

Rd = ϕ
√
3/2 is the circumradius of the regular dodecahedron with the side equal to

one. From Grumiller et al, the chiral half of the monster group conformal field theory
originally proposed by Ed Witten has a partition function given by the j-function. “The
number 196884 is interpreted as one Virasoro descendant of the vacuum plus 196883
primary fields corresponding to flat space cosmology horizon microstates.” The quantum
correction in the respective low-energy entropy is then proportional to the ln 196883 [22].
G.f. is a Fourier series which is the convolution square root of j(τ), see Eq. (13) [23].

G.f. = q−1 + 372q + 29250q3 − 134120q5 + .... (14)

The ln(29250/372) ≃ ϕ2/4A ≃ K/2 and the ln(2× 372) ≃ A−1. The ln 372 ≃ ϕ
√

2/A ≃√
π/2A ≃ 2K cos 70◦ and sin 70◦ ≃ 372/396 ≃ 2πA, with the hieroglyphic geometry for

gold. An application in a special case of umbral moonshine is the Mathieu moonshine
work of Eguchi, Ooguri and Tachikawa [24] and followed by others, includes the q-series
e(q) whose coefficients are then “ ... twice the dimension of some irreducible represen-
tation of the Mathieu group M24.” Pierre-Philippe Dechant continues, “Modularity is
therefore very topical, also in other areas and a Clifford perspective on holomorphic and
modular functions could have profound consequences.” [25]. A normalized q-series e(q):

e(q) = 90q + 462q2 + 1540q3 + 4554q4 + 11592q5 + .... (15)

The ln(462/90) ≃
√
7/ϕ ≃

√
Aϕ3 with the ln 90 ≃

√
3ϕ2 ≃ 2/3A ≃ U

√
K, see Eq. (16).

Also correlated, 90/372 ≃ ϕA and 462/372 ≃ ϕA+ 1 ≃ 2/ϕ, recall discussion of Eq. (8).
A gold pyramid at the tip of the Great Pyramid, with octahedral and icosahedral

symmetry [26], was the “Golden Tip” described by John Michell with the support of
Algernon Berriman’s metrology [27]. This was represented by the height of a pyramid
with 5 cubic inches, 0.152 ≃ 11.7/(7 × 11),

√
137 ≃ 11.7 and 0.152 is the tenth part

of the Greek cubit of 1.52′
. This pyramidion might have been similar to the legendary

Golden Sun Disc of Mu. Apex angle of the regular heptagon triangle is 3π/7 and an
approximation to the apex angle of the Great Pyramid [7]. The “Golden Tip” harmonic
of U ≃ ϕ sin 70◦ ≃ 2πϕA ≃ ln(mp/me)/ ln(α−1) ≃ 1.52 [3]. From the heptagon geometry
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found in the Cosmological Circle, AU ≃ R/πϕ ≃ 5/7π ≃ cot(3π/7) ≃ 0.227 and the
tan(3π/7) ≃ eϕ ≃ 4.4. The ratio 7/5 ≃ ϕ/R ≃ Rd, the circumradius of the regular
dodecahedron having the side equal to one, see the discussion following Eq. (13) and [7].

AU ≃ 85/372 ≃ ϕ
√
eα ≃ exp(−ARK) ≃ 2/3

√
K. (16)

The sum of A+U ≃ 1/4A, A/U ≃ R
√
α and the ARK ≃

√
7/π ≃ coth2R ≃ 3/2 ≃ 10A.

Interesting parallels can be found between William Eisen’s Golden Apex of the Great
Pyramid design, the torus topology of Einstein’s relativity and Wolfgang Pauli’s World
Clock Vision; with his i ring imaginal geometry of the unit circle on the complex plane
and also symbolic of the unus mundus as the natural ontology of quantum theory [28].

Pauli’s World Clock also has the golden ratio geometry related to the fine-structure
constant together with four men swinging pendulums [28]. Ancient Egyptian architects
converted celestial time periods into lengths that are equivalent to those of the pendulum
measures as rediscovered by Galileo and explained by Sir Isaac Newton. Roger Newton
states that “ ... speculations concerning a long-awaited reconciliation between Einstein’s
general theory of relativity and the quantum, known in their various guises as superstring
theory, employ as their basic element the properties of Galileo’s simple pendulum ....”
[29]. Flinders Petrie found the harmonic of the standard day when converted by the
pendulum formula results in the length of the Royal Cubit, “... basis of the Egyptian
land measures .... This value for the cubit is 20.617

′′ while the best examples in stone
are 20.620

′′ ± 0.005
′′ .” The Egyptian Royal Cubit is the traditionally known measure

basis of the Great Pyramid “... and its base measures 440 Royal Cubits in length.” [30].

R.C. ≃ 144/7 ≃ A/α ≃ ϕ+ ϕ/
√
α ≃

√
7π/AU ≃ 7

√
K. (17)

The canonical Royal Cubit of 20.736′′ is the harmonic of 1442 and the standard harmonic
Royal Cubit R.C. ≃ 20.618 [27]. Also, R.C. ≃

√
7π tan(3π/7). Basic square perimeter

of the Cosmological Circle is 44 and 442 + 1372 ≃ 1442 [28]. 22 =
√
44 + 440 ≃ 7π

and A ≃ π/
√
440 [3]. 372/440 ≃ 4

√
2A, 144/372 ≃

√
A and 504/144 = 7/2. Also,

144/85 ≃ e/ϕ ≃ A + U [3]. Plato’s “fusion number” 1746, described by John Michell,
represented the apex of the Great Pyramid [27]. Fusion number 1746 ≃ 144

√
7π/A,

372/1746 ≃
√
2A and AU ≃ 396/1746. 528/372 ≃

√
2, 528/1746 ≃ 2A, 528/504 ≃ 7A,

1746/504 ≃ 2
√
3 and R.C. ≃ 1746/85. The Great Pyramid Key is 528 ≃ ln(7/A)/α [3].

5. Conclusion

From the exponential function of Euler’s equation to the geometry of a fundamental
form, the Golden Apex of the Great Pyramid was described, leading to a calculation of
the fine-structure constant and its close relationship with the proton-electron mass ratio.
Golden Apex related equations were then found for four fundamental forces of nature.

Juan Maldacena restates it, “The forces of nature are based on symmetry principles.”
[31]. These symmetry principles were then associated with traditional physical measures.
And finally, here is William Eisen’s quotation again, “Just how could the builders of the
Great Pyramid have been so knowledgeable of the mathematics of the universe ...?” [2].
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