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Abstract

Multiplicative coefficients of a series of Bessel functions of the first kind can be adjusted so as to match
desired values corresponding to a derivatives of a function to be expanded. In this way Neumann series of Bessel
functions is constructed. Text presents known results.

Important notice

This text presents already known results [1]. Learning about their existence at the time when the text was almost
finished, I refused to throw the text away. The ideas presented here maybe show the existing results from a somewhat
different point of view. The following text was written from the perspective of presenting new results.

1 Introduction
Derivative matching is a natural idea in the domain of function approximation and function expansion. Two well-
known realizations are Taylor series and Padé approximant[2]. The form of sum (of monomials) in the first case
allows for easy term-by-term differentiation providing unique link between the n-th derivative of a function and
the n-th monomial coefficient. For this reason the Taylor series is simple to construct. The procedure of derivative
matching is much more complex for a rational function, yet the resulting approximation (the Padé one) may have
in certain cases better convergence properties than Taylor series.

In this text I will apply the derivative matching procedure to the sum of Bessel functions of the first kind.
Because of summation the derivative matching is feasible and an explicit formula linking coefficients and derivatives
is found. Thus one gets an alternative expansion which might be a well suited alternative to Taylor polynomials
under some circumstances. A very distinct feature of the proposed expansion is the behavior at infinity for a finite
(i.e. cut-off) series: polynomials diverge whereas Bessel functions Jn converge to zero.

One should also notice that the series I introduce here are formally Neumann series [3, 1]. However, their con-
struction is usually performed in a completely different way: in [1] the coefficients of Neumann series are determined
as integrals of the function to be expanded weighted with Neumann polynomials. The approach presented in this
text is completely independent, novel and, I believe, much less complicated from the technical point of view1. The
full equivalence with Neumann series at the coefficient level seems to hold, yet it is not proven in this text.

Thanks to the formal resemblance of the presented expansion to the Neumann series one can borrow the motiva-
tion for the existence of such expansion: several useful applications of the Bessel function series with multiplicative
coefficients are given in the introduction of [4].

2 Expansion into Bessel function of the first kind
A function f (x) can be in the neighborhood of x = 0 approximated by a series of Bessel functions of the first kind
in the following way

f (x) ≈ f (0) J0 (x) +
∞∑
i=1

ciJi (x) ,

1No integration needed.
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where

ci =

2j≤i∑
j=0

2i−2j

[(
i− j − 1

j

)
+ 2

(
i− j − 1
j − 1

)]
di−2j (1)

with

di−2j =
di−2j

dxi−2j
f(x)|x=0.

Here the symbol ≈ is meant only to indicate the derivative matching validity at any order and brackets
(
i
j

)
stand

for binomial coefficients. The series can be, of course, shifted to any other expansion point

f (x− x0) ≈ f (x0) J0 (x0) +

∞∑
i=1

ciJi (x− x0) , ci = ci

(
di−2j

dxi−2j
f(x)|x=0

)
.

To prove the above statements one may start by examining the behavior of Jn functions when differentiated. One
has

d

dx
Jn (x) =

1

2
Jn−1 (x) +

1

2
Jn+1 (x) .

This pattern leads, for higher-order derivatives, to a Pascal-like triangle

Jn−3 Jn−2 Jn−1 Jn Jn+1 Jn+2 Jn+3

1
d
dx + 1

2 -12
d2

dx2 +
(
1
2

)2 −2
(
1
2

)2
+
(
1
2

)2
d3

dx3 +
(
1
2

)3 −3
(
1
2

)3
+3
(
1
2

)3 −
(
1
2

)3
and gives the following higher-order derivative formula

dm

dxm
Jn =

k=m∑
k=0

(−1)
k

(
m
k

)(
1

2

)m

Jn−m+2k.

The expansion I propose is done at x = 0 and for this value of x the only non-zero Bessel function is J0. After m
differentiations of the Jn function (m ≥ n) two outcomes are possible:

• the J0 function does not appear if m− n is odd.

• the J0 function appears at k = m−n
2 if m− n is even.

Let me now focus on the whole series

f (x) = a0J0 (x) + a1J1 (x) + a2J2 (x) + . . . =
∞∑
l=0

alJl (x)

at x = 0. From each term one wants to extract, after m differentiation, the J0 descendant. It is convenient to
separate two scenarios

• Number of differentiations is even: the nonzero terms will be those from even terms because m and n need to
have the same parity for m− n to be even.

dm

dxm
f (x)|x=0 =

m
2 +1∑
w=0

(−1)
m−2w

2

(
m

m−2w
2

)(
1

2

)m

a2wJ2w−m+2m−2w
2

(0)

=

m
2 +1∑
w=0

(−1)
m
2 −w

(
m

m
2 − w

)(
1

2

)m

a2w.

• Number of differentiations is odd: the nonzero terms will be those from odd terms because m and n need to
have the same parity for m− n to be even.

dm

dxm
f (x)|x=0 =

m−1
2∑

w=0

(−1)
m−(2w+1)

2

(
m

m−(2w+1)
2

)(
1

2

)m

a2w+1J2w+1−m+2
m−(2w+1)

2
(0)

=

m−1
2∑

w=0

(−1)
m−1

2 −w

(
m

m−1
2 − w

)(
1

2

)m

a2w+1.
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The both rules can be written in a simple matrix form

dm

dxm
f (x)|x=0 =

∑
n≤m

Dmnan

with

Dmn =

(−1)
m−n

2

(
m

m−n
2

)(
1
2

)m if n ≤ m and n−m is even

0 else

where the indexing starts at zero. By construction, D is a lower triangular matrix which looks like (mmax, nmax = 6)

1 0 0 0 0 0 0
0 1

2 0 0 0 0 0
−1

2 0 1
4 0 0 0 0

0 −3
8 0 1

8 0 0 0
3
8 0 − 1

4 0 1
16 0 0

0 5
16 0 − 5

32 0 1
32 0

− 5
16 0 15

64 0 − 3
32 0 1

64


where a simple rule applies

D00 = 1,

Dij = (Di−1,j−1 −Di−1,j+1) /2.

To compute coefficients from derivatives one has to invert the matrix C = D−1

ai =
∑
j

(
D−1

)
i,j

dj

dxj
f (x)|x=0

≡
∑
j

Ci,j
dj

dxj
f (x)|x=0 .

The matrix D can actually be inverted:

Cij =


1 if i = j = 0

2j

[(
i+j
2 − 1

j − 1

)
+ 2

(
i+j
2 − 1

j

)]
else if i ≥ j and i− j is even

0 else

, (2)

where cases with negative arguments inside binomial coefficients are treated in a fully consistent way as proposed
by Kronenburg [5] and this treatment is followed all along this text. The inverted matrix is lower triangular
(mmax, nmax = 6) 

1 0 0 0 0 0 0
0 2 0 0 0 0 0
2 0 4 0 0 0 0
0 6 0 8 0 0 0
2 0 16 0 16 0 0
0 10 0 40 0 32 0
2 0 36 0 96 0 64


with the recurrence rule

C00 = 1

Cij = 2Ci−1,j−1 + Ci−2,j .

From 2 the main result 1 can be deduced.
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In the proof of D and C being inverse one may write the latter in a different way

Cij =



1 if i = j = 0

2 else, if j = 0 and i is even

2j i
j

(
i+j
2 − 1

j − 1

)
else, if i ≥ j and i− j is even

0 else

.

The equation to prove
∞∑
γ=0

Dα,γCγ,β = δα,β

can be simplified, because D and C are lower triangular
∞∑
γ=0

Dα,γCγ,β =
α∑

γ=β

Dα,γCγ,β .

The proof can be done in five steps:

1. Case α < β. One has(D · C)α,β = 0 because a product of lower triangular matrices is a lower triangular
matrix.

2. Case α = β = 0. One has(D · C)0,0 = 1 by direct computation (single nonzero term).

3. Case α = β ̸= 0 . One nonzero term appears α∑
γ=β

Dα,γCγ,β


α=β

= Dα,αCα,α [α− β = 0 is even]

= (−1)
α−α

2

(
α

α−α
2

)(
1

2

)α

2α
α

α

(
α+α
2 − 1
α− 1

)
=

(
α
0

)(
α− 1
α− 1

)
= 1

4. Case α > β ̸= 0 .
α∑

γ=β

Dα,γCγ,β =

α−β∑
γ=0

Dα,(β+γ)C(β+γ),β

=

(α−β)/2∑
γ=0

Dα,(β+2γ)C(β+2γ),β +

(α−β)/2∑
γ=0

Dα,(β+2γ+1)C(β+2γ+1),β

=

(α−β)/2∑
γ=0

Dα,(β+2γ)C(β+2γ),β

where the second term vanishes because its C matrix has indices with different parity (β + 2γ + 1 and β).
Further, if α and β have different parity, then the result is zero, because indices of the D matrix of the first
term have different parity. Thus two sub-cases appear

(a) α, β are both even, α = 2a, β = 2b.
α∑

γ=β

Dα,γCγ,β =

(2a−2b)/2∑
γ=0

D2a,(2b+2γ)C(2b+2γ),2b + 0

=

(
1

2

)2(a−b)

(−1)
a−b

a−b∑
γ=0

(−1)
γ b+ γ

b

(
2a

a− b− γ

)(
2b− 1 + γ
2b− 1

)

=

(
1

2

)2(a−b)

(−1)
a−b

Ω1
a,b
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where one looks to prove the last combinatorial expression to be equal to zero. This proof, which follows,
was provided by Markus Scheuer [6]

Ω1
a,b =

a−b∑
γ=0

(−1)
γ b+ γ

b

(
2a

a− b− γ

)(
2b− 1 + γ
2b− 1

)
[(

p

q

)
=

(
p

p− q

)
, p = 2b− 1 + γ, q = 2b− 1

]
=

a−b∑
γ=0

(−1)
γ b+ γ

b

(
2a

a− b− γ

)(
2b− 1 + γ

γ

)
[
(−1)

q

(
p+ q − 1

q

)
=

(
−p

q

)
, p = 2b, q = γ

]
=

a−b∑
γ=0

b+ γ

b

(
2a

a− b− γ

)(
−2b
γ

)

=

a−b∑
γ=0

(
2a

a− b− γ

)(
−2b
γ

)
− 2

a−b∑
γ=0

γ

−2b

(
−2b
γ

)(
2a

a− b− γ

)
[
q

p

(
p

q

)
=

(
p− 1

q − 1

)
, p = −2b, q = γ

]
=

a−b∑
γ=0

(
−2b
γ

)(
2a

a− b− γ

)
− 2

a−b∑
γ=0

(
−2b− 1
γ − 1

)(
2a

a− b− γ

)
[(

s+ t

n

)
=

n∑
k=0

(
s

k

)(
t

n− k

)
, k = γ, n = a− b ≥ 0, s = −2b, t = 2a

]
[δ = γ − 1]

=

(
2a− 2b
a− b

)
− 2

a−b−1∑
δ=−1

(
−2b− 1

δ

)(
2a

a− b− 1− δ

)
[(

s+ t

n

)
=

n∑
k=0

(
s

k

)(
t

n− k

)
, k = δ, n = a− b− 1 ≥ 0, s = −2b− 1, t = 2a

]

=

(
2a− 2b
a− b

)
− 2

(
2a− 2b− 1
a− b− 1

)
[(

p− 1

q − 1

)
=

q

p

(
p

q

)
, p = 2a− 2b, q = a− b

]
=

(
2a− 2b
a− b

)
− 2

a− b

2a− 2b

(
2a− 2b
a− b

)
= 0

where Chu–Vandermonde identity was used twice.

(b) α, β are both odd, α = 2a+ 1, β = 2b+ 1.

α∑
γ=β

Dα,γCγ,β =

a−b∑
γ=0

D2a+1,(2b+1+2γ)C(2b+1+2γ),2b+1

=

(
1

2

)2(a−b)

(−1)
a−b

a−b∑
γ=0

(−1)
γ

(
2a+ 1

a− b− γ

)
2b+ 1 + 2γ

2b+ 1

(
2b+ γ
2b

)

=

(
1

2

)2(a−b)

(−1)
a−b

Ω2
a,b
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Ω2
a,b =

a−b∑
γ=0

2b+ 1 + 2γ

2b+ 1

(
2a+ 1

a− b− γ

)
(−1)

γ

(
2b+ 1 + γ − 1

γ

)

=
a−b∑
γ=0

2b+ 1 + 2γ

2b+ 1

(
2a+ 1

a− b− γ

)(
−2b− 1

γ

)

=
a−b∑
γ=0

(
2a+ 1

a− b− γ

)(
−2b− 1

γ

)
− 2

a−b∑
γ=0

γ

−2b− 1

(
−2b− 1

γ

)(
2a+ 1

a− b− γ

)

=

a−b∑
γ=0

(
−2b− 1

γ

)(
2a+ 1

a− b− γ

)
− 2

a−b∑
γ=0

(
−2b− 2
γ − 1

)(
2a+ 1

a− b− γ

)

=

(
2a− 2b
a− b

)
− 2

a−b−1∑
δ=−1

(
−2b− 2

δ

)(
2a+ 1

a− b− 1− δ

)
=

(
2 (a− b)
a− b

)
− 2

(
2a− 2b− 1

a− b− 1

)
=

(
2 (a− b)
a− b

)
− 2

a− b

2a− 2b

(
2a− 2b

a− b

)
= 0

5. Case α > β = 0 . In this situation we use formula 2, which works also for β = 0. The reasoning from Case 4
remains valid and thus we need to study only the same-parity scenarios. By assumption β is even (equal to
zero) therefore only one option remains, i.e. α has to be even also, α = 2a

α∑
γ=β

Dα,γCγ,β =

(α−β)/2∑
γ=0

Dα,(β+2γ)C(β+2γ),β

=

a∑
γ=0

D2a,2γC2γ,0

= D2a,0C0,0 +
a∑

γ=1

D2a,2γC2γ,0

= D2a,0 +
a∑

γ=1

D2a,2γC2γ,0

= (−1)
a

(
2a
a

)(
1

2

)2a

+ (−1)
a

(
1

2

)2a a∑
γ=1

(−1)
γ

(
2a

a− γ

)[(
γ − 1
−1

)
+ 2

(
γ − 1
0

)]

= (−1)
a

(
1

2

)2a
[(

2a
a

)
+ 2

a∑
γ=1

(−1)
γ

(
2a

a− γ

)]

= (−1)
a

(
1

2

)2a

Ω3
a

6



Ω3
a =

(
2a
a

)
+ 2

a∑
γ=1

(−1)
γ

(
2a

a− γ

)
[δ = a− γ]

=

(
2a
a

)
+ 2

0∑
δ=a−1

(−1)
a−δ

(
2a
δ

)

=

(
2a
a

)
+ 2 (−1)

a
a−1∑
δ=0

(−1)
δ

(
2a
δ

)
=

(
2a
a

)
+ 2 (−1)

a
(−1)

a−1

(
2a− 1
a− 1

)
=

(
2a
a

)
− 2

(
2a− 1
a− 1

)
=

(
2a
a

)
− 2

a

2a

(
2a
a

)
= 0

The five cases cover all possibilities and therefore the proof is complete.

3 Examples
In Figure 1 I present approximations of four common elementary functions by derivative-matching series of Bessel
functions together with the Taylor polynomial with 11 terms matched in both cases (function value and 10 deriva-
tives). From what is seen on the picture, the Taylor polynomial perform somewhat better for the exponential
function, the both series provide very similar results for the logarithm and the Bessel-function series outperform
Taylor series in case of the cosine function.

It is known that Neumann series converge in the same domain as Taylor polynomials [1].

References
[1] G. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1922.

[2] H. Padé, Sur la représentation approchée d’une fonction par des fractions rationnelles, Annales scientifiques de
l’École Normale Supérieure 9 (1892) 3–93.

[3] C. G. Neumann, Die theorie der Besselschen funktionen, B.G. Teubner Verlag, Leipzig, 1867.

[4] D. Jankov, T. K. Pogány, E. Süli, On the coefficients of neumann series of bessel functions, Journal of Mathe-
matical Analysis and Applications 380 (2) (2011) 628 – 631. doi:https://doi.org/10.1016/j.jmaa.2011.02.065.

[5] M. J. Kronenburg, The Binomial Coefficient for Negative Arguments, ArXiv e-printsarXiv:1105.3689.

[6] M. Scheuer (https://math.stackexchange.com/users/132007/markus scheuer), Prove an equation with summa-
tion and binomial coefficients, Mathematics Stack Exchange, uRL:https://math.stackexchange.com/q/2425782
(version: 2017-09-11). arXiv:https://math.stackexchange.com/q/2425782.
URL https://math.stackexchange.com/q/2425782

7



Figure 1: Approximation of selected elementary functions [y = x2, y = exp (x), y = cos (x) and y = ln (x+ 1)]
by series of Bessel functions and by Taylor series with the value of the function and value of first ten derivatives
matched.
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