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ABSTRACT

The Special Theory of Relativity takes us to two results that presently are considered “inexplicable” to many
renowned scientists, to know:

-The dilatation of time, and
-The contraction of the Lorentz Length.

The solution to these have driven the author to the development of the Undulating Relativity (UR) theory,
where the Temporal variation is due to the differences on the route of the light propagation and the lengths
are constants between two landmarks in uniform relative movement.

The Undulating Relativity provides transformations between the two landmarks that differs from the
transformations of Lorentz for: Space (x,y,z), Time (t), Speed (u ), Acceleration (a ), Energy (E), Momentum

— — — —

(p), Force (F), Electrical Field ( E'), Magnetic Field ( B ), Light Frequency ( y ), Electrical Current (J ) and
“Electrical Charge” ( p ).

From the analysis of the development of the Undulating Relativity, the following can be synthesized:

- ltis a theory with principles completely on physics;

- The transformations are linear;

- Keeps untouched the Euclidian principles;

- Considers the Galileo’s transformation distinct on each referential;

- Ties the Speed of Light and Time to a unique phenomenon;

- The Lorentz force can be attained by two distinct types of Filed Forces, and

- With the absence of the spatial contraction of Lorentz, to reach the same classical results of the special
relativity rounding is not necessary as concluded on the Doppler effect.

Both, the Undulating Relativity and the Special Relativity of Albert Einstein explain the experience of Michel-
Morley, the longitudinal and transversal Doppler effect, and supplies exactly identical formulation to:
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Along with the equations of transformations between two references of the UR, we get the invariance of
shape to Maxwell’s equations, such as:

— divE = - = divE = 0.
€0
= divB = 0.
~ roE="98
dt

— —

- - 0E ~ 0E
= RotB = po. j+ 80.,&0.8—;3 RotB = 80.,&0.8—.
t t

We also get the invariance of shape to the equation of wave and equation of continuity under differential
shape:
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Undulating Relativity
§ 1 Transformation to space and time

The Undulating Relativity (UR) keep the principle of the relativity and the principle of Constancy of light
speed, exactly like Albert Einstein’s Special Relativity Theory defined:

a) The laws, under which the state of physics systems are changed are the same, either when referred to a
determined system of coordinates or to any other that has uniform translation movement in relation to the
first.

b) Any ray of light moves in the resting coordinates system with a determined velocity c, that is the same,
whatever this ray is emitted by a resting body or by a body in movement (which explains the experience of
Michel-Morley).

Let's imagine first that two observers O and O’ (in vacuum), moving in uniform translation movement in
relation to each other, that is, the observer don’t rotate relatively to each other. In this way, the observer O
together with the axis x, y, and z of a system of a rectangle Cartesian coordinates, sees the observer O’
move with velocity v, on the positive axis x, with the respective parallel axis and sliding along with the x axis
while the O’, together with the x’, y’ and z’ axis of a system of a rectangle Cartesian coordinates sees O
moving with velocity —v’, in negative direction towards the x’ axis with the respective parallel axis and sliding
along with the x’ axis. The observer O measures the time t and the O’ observer measures the time t' (t # t).
Let’'s admit that both observers set their clocks in such a way that, when the coincidence of the origin of the
coordinated system happens t =1’ = zero.

In the instant that t = t" = 0, a ray of light is projected from the common origin to both observers. After the
time interval t the observer O will notice that his ray of light had simultaneously hit the coordinates point A (x,
y, z) with the ray of the O’ observer with velocity ¢ and that the origin of the system of the O’ observer has
run the distance v t along the positive way of the x axis, concluding that:
ey + 2Pt =0 1.1
X =x-vt. 1.2
The same way after the time interval t’ the O’ observer will notice that his ray of light simultaneously hit with
the observer O the coordinate point A (x’, y’, Z’) with velocity ¢ and that the origin of the system for the
observer O has run the distance v't’ on the negative way of the axis x’, concluding that:
x?+y?+z?-c*t?=0 1.3
X=X +VTt. 1.4
Making 1.1 equal to 1.3 we have
Cay e 2P =x? eyt 2% - P2 1.5
Because of the symmetry y =y’ end z = Z', that simplify 1.5 in
X2 -2t =x?-c?t2 1.6
To the observer O x’ = x — v t (1.2) that applied in 1.6 supplies
X2 —c?t = (x—=v t)2 —c? % from where
2

, v 2wx

t'=t,1+———- 1.7

2 2, "
c ct

To the observer O’ x = x’ + v' t’ (1.4) that applied in 1.6 supplies

2

(X" + V' t)2 = c® £ = x? = ¢® t** from where
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, Vi 2v'x!
t=t',1+—+ ) 1.8

2 2
c c’t
Table |, transformations to the space and time
X' =x—-vt 1.2 x=X+V 1 1.4
y =y 1.2.1 y=y 1.41
2=z 1.2.2 z=27 1.4.2
2 12 ()
v 2vx v 2v'x
=t |l+——-—- 1.7 t=11+—+=— 1.8
¢t it c ct
From the equation system formed by 1.2 and 1.4 we find
vi=vtor |v|t = |v'|t' (considering t>0 e t'>0) 1.9

what demonstrates the invariance of the space in the Undulatory Relatitivy.

From the equation system formed by 1.7 and 1.8 we find

vi o 2ux vi o'
I+——— 4 [1+—+ =1. 1.10

2 2 2 2
c ct c ct'

Ifin 1.2 x’ = 0 then x = v 1, that applied in 1.10 supplies,
2 12
v
== L 1+5 =1 1.11
c c
Ifin1.10 x =ctand x’ =c t’ then

N

To the observer O the principle of light speed constancy guarantees that the components ux, uy and uz of
the light speed are also constant along its axis, thus

=ux,—= =uy,— = =uz 1.13

x _dx y _dy z_dz
fodt o a U  a

and then we can write

vi o 2ux v 2vux
1+—2——2 = 1+—2— 7 - 1.14
c ct c c
With the use of 1.7 and 1.9 and 1.14 we can write
|V| v 2ux v 2vux
— = 1+—2——2 = 1+—2— 5 - 1.15
|v| t c c't c c

Differentiating 1.9 with constant v and v’, or else, only the time varying we have

Mt =i or 1 4 116

Ivl
f 2vux / 2vux
but from 1.15 -—; | then dt'=dt 1+——— 1.17
%
Being v and v’ constants, the reazons H and — in 1.15 must also be constant because fo this the
v t
2
. . v X x dx ,
differential of ,/1+— ——— must be equal to zero from where we conclude — =z =ux, that is exactly
c ct t t

the same as 1.13.
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To the observer O’ the principle of Constancy of velocity of light guarantees that the components u'x’, u’y’,
and u’z’ of velocity of light are also constant alongside its axis, thus

xdx oody 7 d7
_=_=u1x!,l=_y=ury!’_=_=u!Zr’ 118
' dr ¢ dr tdr

and with this we can write ,

Vi o2y Vi 2v'u'x
I+—+ =, 1+—+ . 1.19

2 2 2 2
c ct' c c

With the use of 1.8, 1.9, and 1.19 we can write

|V'| t Vi 2V X v 2v'u'x'
ﬂ_;= I+—+ =4 |1+—+ : 1.20
%

Differentiating 1.9 with v’ and v constant, that is, only the time varying we have

|v|dt —|v|dt or — | | 1.21

|v| dt
' 12 () | 12 [ |
V 2v'u V 2v'u
but from 1.20 | | \/1+—+ >— then dtzdt'\/1+—2+ — . 1.22
|v| c c c c
- Y - .
Being v’ and v constant the divisions H and — in 1.20 also have to be constant because of this the
% t
v|2 [ xl xl
differential of 1+—2+T must be equal to zero from where we conclude —:d—:u'x', that is
c ct' t' t'

exactly like to 1.18.

Replacing 1.14 and 1.19in 1.10 we have

| v Qvux | Vi 2v'u'x'
+—2— ;- +—2+ 3 =1. 1.23

C C C C

To the observer O the vector position of the point A of coordinates (x,y,z) is
R= xz+y]+zk 1.24

and the vector position of the origin of the system of the observer O’ is
Ro'=vti +0j +0k = Ro'=vii . 1.25

To the observer O’, the vector position of the point A of coordinates (x’,y’,Z’) is

R'= xz+y]+zk 1.26
and the vector position of the origin of the system of the observer O is

Ro=—v't'i +0j+0k = Ro=—v'1'T. 1.27
Due to 1.9, 1.25, and 1.27 we have, Ro'=—R'0. 1.28

As 1.24 is equal to 1.25 plus 1.26 we have
R=Ro+R' = R'=R-Ro'. 1.29

Applying 1.28 in 1.29 we have, R=R-Ro. 1.30
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To the observer O the vector velocity of the origin of the system of the observer O’ is

- dﬁol - - g _ -

v=7=v1+0]+0k:>v=vz. 1.31
1

To the observer O’ the vector velocity of the origin of the system of the observer O is

— dE'O + = - —~ -
V'= p =71 +0j+0k =>v'=—V"i . 1.32
tl
From 1.15, 1.20, 1.31, and 1.32 we find the following relations between v and V'
- -V
V= 1.33
v|2 zvvulxl
I+—+—
c c
- -V
v'= . 1.34
vi o 2vux
-
c c

Observation: in the table | the formulas 1.2, 1.2.1, and 1.2.2 are the components of the vector 1.29 and the
formulas 1.4, 1.4.1, and 1.4.2 are the components of the vector 1.30.

§2 Law of velocity transformations u and u'

Differentiating 1.29 and dividing it by 1.17 we have

<l

dR ' dR — dRo'
dr

/ 2vux

d ] bd ]

P i
= .
/ 2vux K
2_ 2
c

leferent|at|ng 1.30 and dividing it by 1.22 we have

1 -

dR_ dR'—dR'o e u'-y _u'-v
dt , v 2v'u'x' v 2wy VK
dr'y|[1+—+—— I+—+——
c c c c
Table 2, Law of velocity transformations # and 1’
=Y 2.1 i=t 2.2
JK ' JK' '
'y XY 03 = u'x'+v o4
JK ' JK' '
Coa_ Wy u'y'
uy=—— 2.3.1 uy = 2.4.1
JK JK'
W= 2.3.2 uz—ﬂ 2.4.2
v M s | vl 1.20
JK JK'
2 2
2vux o W'u'x'
N T PY 4/—Kv:J1+v_2+ CEPY
c c c c
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Multiplying 2.1 by itself we have

v: o 2vux
u.ll+ 5 )
u'= C— 2.7
v: o 2vux
I+ -—
c c
If in 2.7 we make u = c then U’ = ¢ as it is required by the principle of constancy of velocity of light.
Multiplying 2.2 by itself we have
' v|2 zvvulxl
u', 1+ e + e
u= 2.8
v 2v'u'x
I+—+——
c c

If in 2.8 we make U’ = c then u = ¢ as it is required by the principle of constancy of velocity of light.

c—v
If in 2.3 we make ux = ¢ then u'x'=
v: 2ve
I+
c c
velocity of light.
c+v'
If in 2.4 we make u'x’ = ¢ then ux =
Vi v'e
I+ +—
c c

velocity of light.

Remodeling 2.7 and 2.8 we have

1 u
v Qvux c?
I+ —— =
c c u|2
==
C
1 u|2
le ' Cz
1+ 2 .
c c u?
1——
C

=c as it is required by the principle of constancy of

= as it is required by the principle of constancy of

2.9

2.10

The direct relations between the times and velocities of two points in space can be obtained with the
equalities #'=0=u'x'=0 = ux=v coming from 2.1, that applied in 1.17, 1.22, 1.20, and 1.15 supply

2 [
dt':dt1/1+Z—2—%:>dt:d—tz,
v
C2
12 '
di=dr |1+2+ 20 S gp= A
c c V2
I+—
el
1+V'2+2V'O 1+V'2

2.11

212

2.13
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v|= I 2.14

1 LZ_M -V

Aberration of the zenith

To the observer O along with the star u'x’ = 0, Uy’ = ¢ and u’z’ = 0, and to the observer O along with the
Earth we have the conjunct 2.3

2
Ux—v u / y
0= :uxzv,c:—y:uyzc 1-—,uz=0,
v 2vux vio 2wy c
5= I+
c c c c
2

2
/ V
u= \/ux2 +uy2 +uz’ = v+ c 1——2 +0° =c¢ exactly as foreseen by the principle of relativity.
c

To the observer O the light propagates in a direction that makes an angle with the vertical axis y given by

ux % s
tango =— = = 2.15

uy V2 \/ V2
Cull—— 1——
\/ c? c?

that is the aberration formula of the zenith in the special relativity .
If we inverted the observers we would have the conjunct 2.4

u'x'+v' u'y' / v'?
0= =ux'=—v',c= Y =uy'=c ]——2,u'z'=0,
\/ v 2vu'x' \/1 v’ +2v'(—v’) c

I+—+ —
CZ CZ C2 C2
2
2 V'’ 2
" _ 112 .12 12 _ o _ —
u —\/ux +uy? +uz? = |(=v') +| eyl pEl +0° =c
x' -’ —v7c
tanga: = = 2.16

u’y’ V!Z er
c c
that is equal to 2.15, with the negative sign indicating the contrary direction of the angles.

Fresnel’s formula

Considering in 2.4, u'x'=c/n the velocity of light relativily to the water, v'=v the velocity of water in
relation to the apparatus then ux = c¢' will be the velocity of light relatively to the laboratory

1
, c/n+v c/n+v c v 2v) 2 c I1{v: 2v
c'= = =l—tv|l+—5+—| =|—+v|I-Z|F5+—
\/] v 2ve/n \/] v 2v n ¢ nc n 2\¢® nc

+
2 2
C

2

C C nc

Ignoring the term v?/c? we have

. (c v c v v
czl—+v|l-——|z2—+v-——F——
n nc) n n°~ nc

and ignoring the term v? /nc we have the Fresnel's formula

c v 1

\ c
C=—+V——F=—+V l——2 . 217
n n-n n
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Doppler effect

’ 2

12

Making r>=x>+y>+z° and r’=x"+y”+z”° in 15 we have r’—c’t’=r’-c’t"” or
’ ’ (r’+c ’) H ' ' H ! ’ V2 2V'x

(r—ct)= (r —ct ) replacing then r =ct, r=ct and 1.7 we find (r—ct)= (r —ct ) I+———-
(r+ct) c c't

w o w 1 1., ., . v 2vx . .
as ¢=—=— then —(kr=wt)==(k'r'—w't") I+— ——— where to attend the principle of relativity

k k k k' ¢t c't
2
vo o 2vx
we will define k'=k,|l+———— 2.18

¢ ct
Resulting in the expression (kr— wt) = (k' r’—w’t') symmetric and invariable between the observers.

To the observer O an expression in the formula of y/(r,1)= f (kr —wr) 2.19
represents a curve that propagates in the direction of R . To the observer O’ an expression in the formula of
y'(r't)=f k' r-w't) 2.20

represents a curve that propates in the direction of R'.

o 2r ., 2w
Applying in 2.18 k :7’ k =7, 1.14,1.19, 1.23, 2.5, and 2.6 we have
A A
AM=—— e l=——, 2.21
JK JK'
that applied in ¢ = yA=y' A" supply, y'= yx/E and y=y'vK". 2.22

Considering the relation of Planck-Einstein between energy (E) and frequency (y), we have to the
observer O E = hy and to the observer O’ E'= hy' that replaced in 2.22 supply

E'=EJK and E=E'JVK'. 223

If the observer O that sees the observer O’ moving with velocity v in a positive way to the axis x, emits
waves of frequency y and velocity ¢ in a positive way to the axis x then, according to 2.22 and ux = ¢ the

observer O’ will measure the waves with velocity ¢ and frequency y'= y(l—zj , 2.24
c
that is exactly the classic formula of the longitudinal Doppler effect.

If the observer O’ that sees the observer O moving with velocity —v’ in the negative way of the axis x’, emits
waves of frequency y' and velocity ¢, then the observer O according to 2.22 and u' x'=—Vv" will measure
waves of frequency y and velocity ¢ in a perpendicular plane to the movement of O’ given by

’ va
y:wal——z, 2.25
c
that is exactly the formula of the transversal Doppler effect in the Special Relativity.
§3 Transformations of the accelerations ¢ and a’

Differentiating 2.1 and dividing it by 1.17 we have
dﬁ’_dﬁ/\/E . #)v dux/K\/f:Q, . vV ax

a ~
—=——+(u-v —_— a=—+(u—v)——. 3.1
' diNK ¢’ dK K ¢’ K?
Differentiating 2.2 and dividing it by 1.22 we have
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di _di'/NK' . vV dux/KNK @V aX
= —(a—v")—- =d=——(i'"-V")—~

_— Vv . 3.2
dt  dr\JK' ¢’ dryJK K' ¢’ K’

Table 3, transformations of the accelerations a and a’

e R e e L
K K K’ ¢’ K
a'x’=ﬂ+(ux— )Lza_)g 3.3 axzi—(u'x%v’)%a,f 3.4
K c’ K K’ c’ K'
ay="ruy 2 3.3.1 ay:ﬂ—u'y'%’a'f 3.4.1
K c’ K K’ c’ K’
a7=24uz L2 3.3.2 az=ﬂ—u'z'ia'x, 342
K ¢’ K° K’ ¢’ K’
,_a _a
a_} 3.8 a—; 3.9
2 12 oo
K:1+V—2—2v?x 3.5 K':1+V—2+ZV# 3.6
C C C c

From the tables 2 and 3 we can conclude that if to the observer O ii.d = zero and ¢’ =ux’ +uy2 +uz’,

then it is also to the observer O’ u'd'= zero and ¢ =u'x"’+u' y”’+u'z'*, thus i is perpendicular to a
and u' is perpendicular to @' as the vectors theory requires.

Differentiating 1.9 with the velocities and the times changing we have, tdv+vdt=tdv'+v'dt’, but
considering 1.16 we have, vdt =v'dt' = tdv=t'dv' 3.7

. o dv' dv ,
Where replacing 1.15 and dividing it by 1.17 we have, — =—— or a'=

4. 38
dt'  dtK K

We can also replace 1.20 in 3.7 and divide it by 1.22 deducing

dv adv a'

—= ora= . 3.9
dt dt'K’

K

The direct relations between the modules of the accelerations a and a’ of two points in space can be
obtained with the u'=0 = u'x'=0=a'x'=0= 1 =V = ux=v coming from 2.1, that applied in 3.8 and
3.9 supply

! !

a a a a

a'= > = > and a = > = > 3.10

v: o 2wy v v'e 2v'0 V'

I+——-—— I-— I+—+— I+

c c c c c c
That can also be reduced from 3.1 and 3.2 if we use the same equalities
u=0=u'x=0=ax'=0=u=v = ux=v coming from 2.1.

§4 Transformations of the Moments p and p'

Definedas p=m(u)i and p'=m'(u')i', 4.1

where m(u) and m’ (u') symbolizes the function masses of the modules of velocities u =|ﬁ| and u'=|ﬁ’|.

We will have the relations between m(u) and m’(u') and the resting mass m,, analyzing the elastic

collision in a plane between the sphere s that for the observer o moves alongside the axis y with velocity uy
= w and the sphere s’ that for the observer O’ moves alongside the axis y’ with velocity u’y’ = -w. The
spheres while observed in relative resting are identical and have the mass m,. The considered collision is
symmetric in relation to a parallel line to the axis y and y’ passing by the center of the spheres in the moment
of. Collision.
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Before and after the collision the spheres have velocities observed by O and O’ according to the following
table gotten from table 2

Sphere | Observer O Observer O’

12
Before S UXS = Zero , uys =w wx's=—=v,uys=w ]_v_

2
vZ
Collision s uxs'=v, uys'=-w,/I-— | u'x's'=zero, u'y's'=-w
c

c
12
After s Uxs = zero, uys =—w u'x's=-v', u'y’sz—WW/I—v—2
c
vZ
Collision s’ uxs'=v, uys'=w /]——2 u'x's'=zero, u'y's'=w
c

To the observer O, the principle of conservation of moments establishes that the moments px = m(u)ux

and py= m(u)uy, of the spheres s and s’ in relation to the axis x and y, remain constant before and after
the collision thus for the axis x we have

m(w/uxs2+ uys’ )uxs-l— m(\/uxs'2+uys’2 )uxs'z m(w/uxs2+ uys’ )uxs-l— m(w/uxs'2+uys’2 )uxs' ,

where replacing the values of the table we have

2 2
2 2
m| v+ —w ]——2 v=m| |V +|W I——2 v from where we conclude that w =w,
c c

and for the axisy

m(w/uxs2+ uys’ )uys+ m(«/uxs'2+uys’2 )uys'z m(w/uxs2 +uys’ )uys+ m(\/uxs'2+uys’2 )uys' :

where replacing the values of the table we have

2 2
2 2 2 2
/ v v \— _ v _ v
m(w)w—m| [V +| —w I—— | |w 1——2:—m(w)w+m Vi w I—— | [Wyl-——,
c

C C C

simplifying we have

2 2
m(w)=m \/VZ"‘WZ(]—V—ZJ W/I—V—Z,where when w — 0 becomes
c C
2 2 2
m(0)=m \/v2+02(1—v—2] J1=2 = m(0) = m)[1 -2 = m(v)= m(O)Z ’
C C c v

but m(O) is equal to the resting mass m, thus

m(v) = Lz, with a relative velocity v =u = m(u) = 4.2
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myu

that applied in 4.1 supplies p = m(u)ﬁ = . 4.1
P
CZ
With the same procedures we would have for the O’ observer
m,
m' (u') = —2— 43
u!Z
==
c
- ~ myu'
and p'=m'(u')i'= —"—. 4.1
u!Z
==
c
L . . my,

Simplifying the simbology we will adopt m = m(u) = 4.2

e

c2

m,
and m'=m'(u') = 0 4.3
uv2
I=—
c

that simplify the moments in p =mu and p'=m'u’. 4.1

Applying 4.2 and 4.3 in 2.9 and 2.10 we have

12 P 2
% 2V'u'x / v 2vux

mzm’\/1+—2+ > =>m=m'vK' and m'=m ]+—2——2:>m'=m\/K. 4.4
c c c c

_ d* d - . d*r d [y
Defining force as Newton we have F = @ _ (mu) and F'= P _ M
dt dt dr dar'

, with this we can define then

kinetic energy (Ek,E'k)as

d(mii)
dt

dR =

E = d(mii).ii = (uzdm+mudu),

S ey

F.dR:j
0

S ey
S Ly =

and E', = Iﬁ’.dﬁ':I%.dﬁ':l’d(m'ﬁ’)ﬁ' zz(u’z dm'+m’u'du’).
2

2

Remodeling 4.2 and 4.3 and differentiating we have m’c’—m’u’ = m02c2 = u’dm+mudu = c*dm and

m?ci—m'?u'’ =m0202 =u'>dm'+m'u'du'=c’dm’, that applied in the formulas of kinetic energy

supplies E, = Ic2dm =mc’ —myc’ =E—E, and E', = Ic2dm’: m'c’ —myc’ =E'-E,, 4.5
ny ny

where E=mc’ and E'=m'c’ 4.6

are the total energies as in the special relativity and E, = moc2 4.7

the resting energy.
Applying 4.6 in 4.4 we have exactly 2.23.

From 4.6, 4.2, 4.3, and 4.1 we find
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E =c\/m02c2 +p° and E'= c\/m02c2+ p”
identical relations to the Special Relativity.

Multiplying 2.1 and 2.2 by m, we get

mu' m u myv . . ., - E._
= — =S>mu'=mi-my= p'=p-—V

2 2 2 c?
\/1—”2 \/1—“2 \/1—“2
C C C

m u mu' my' _ - ., - ., E_
and £ = £ - £ > mu=mu'-mv'=p=p-—v'.
c

2 12 12
\/1—”2 \/1—”2 \/1—”2
C & C

Table 4, transformations of moments p and p’

-, - E_ - ., E_
pP=pP——7V 4.9 pP=p——7V 4.10
c c
’ ’ E ’ ’ E’ ’
PX=PX—C—ZV 4.11 px=p x+—v 4.12
c
p'y': py 4111 py:p’ y' 4121
p'z': pz 4.11.2 pzzp’z’ 412.2
E=EJK 223 E=EvJK 2.23
m m
m:m(u):—o2 4.2 m=m(u)=—02 4.3
u u'
= mJK 4.4 m=mJK 4.4
E =E-FE, 4.5 E' =LE-E, 4.5
E =mc’ 4.6 E'=m'c? 4.6
E =mc? 4.7 E =mc? 4.7
4.8 4.8
E =c1/m02c2 +p’ E'= c1/m02c2+ p’

Wave equation of Louis de Broglie

The observer O’ associates to a resting particle in its origin the following properties:

-Resting mass m,

-Time t'=t,

-Resting Energy E, =m0c2

E, moc2
-Frequency y,=——=

h h
-Wave function y,=asen2ry t, with a = constant.

The observer O associates to a particle with velocity v the following:

0

-Mass m = m(v) = (from 4.2 where u =v)

] ——
c2
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t
-Time t = = - (from 1.7 with ux =v and #'=1,)

c
E mc’
-Energy E = £ =2 (from 2.23 with ux=v and E'=E )
v’ v?
c c
Yo m,c’ /h . '
-Frequency y= = (from 2.22 with ux =v and y'=y,)

2 2
C C

-Distance x = vt (from 1.2 with X’ = 0)

, v? v? x) . c’
-Wave function y=asen2ny,t, =asen2my,|1——t,|I——=asen2my| t—— | with u =—
c c u v

2
E yh h o -
-Wave length u:y/lzc—z—:y—:»l:— (from 4.9 with p'= p, = 0)
v p p p

To go back to the O’ observer referential where 1u'=0 = u' x'= 0, we will consider the following variables:

-Distance x = v't’ (from 1.4 with x’ = 0)

12 ' 12
. , 1 2v'0 1 , .,
-Time 1t =1 |1+ —+—— =t",|[I+— (from 1.8 with ' x'=0)
c c c
2

v
-Frequency y=y' ]+—2 (from 2.22 with u' x'=0)
c

!

Velocity v = —>— (de 2.13)

12

1%
I+
c
that applied to the wave function supplies

!2 V2 !2 !

VX v v V't
t//’zasenZEy(t——zjzasenZWy’\/I+ > t'\/l+ > =asen2ny't',
c c 2

butas t'=t, and y'=y, then y' =y, .
§5 Transformations of the Forces F and F'

Differentiating 4.9 and dividing by 1.17 we have

dp_ _dp___dE lzﬁ':i[ﬁ—d—El}:ﬁ':i[ﬁ—(ﬁ.ﬁ)%] 5.1
K

dt diNK  diNK ¢ JK dr ¢?

Differentiating 4.10 and dividing by 1.22 we have

dp __dp €V _ § :L[ﬁf_div_} ~F :L[ﬁ'_(ﬁaﬁ')v—] 5.2

dt  arJK drJK ¢ JK'

From the system formed by 5.1 and 5.2 we have

d4E _dE

= ' 5.3
dt dt’

<)

or F.ii=F'

that is an invariant between the observers in the Undulating .Relativity.
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Table 5, transformations of the Forces F and F'

N o L p(p )
F :ﬁ{F_(F'u)c%} 51 F=W[F ‘( u )Cv_z} 5.2

F'y'=Fy/JK 541 | Fy=F'y'/JK' 5.5.1
F'7'=F/JK 542 | Fz=F'7'/JK' 5.5.2
dE' _dE o

a4t dr 5.3 F.u=F.u 5.3

§6 Transformations of the density of charge p, p’' and density of current J and J'

d
Multiplying 2.1 and 2.2 by the density of the resting electric charge defined as p, :—dq we have
v

o

=

pol/t — pou _ p()v jpyﬁy:pﬁ_p“}':j!:j_p‘j
u!Z uZ uz
S P
and Lot =Pl Pl = pii=pli'=p'v'= T =J=p'V’

2 12 h 12
u u u
Jl‘cz \/" ; \/1‘ 2

Table 6, transformations of the density of charges p, p’ and density of current J and J'

j/:j_p‘j 6.1 j:j/_pr‘jr 6.2
J' x'= Jx—pv 6.3 Jx=Jx"+p"' 6.4
J'7'=Jz 6.3.2 Jz=J"7 6.4.2
j:pﬁ 6.5 j/:p/ﬁr 6.6
__ P ' Po
p=——= p=—rt—
u 6.7 u' 6.8
- -
C C
o = K 6.9 b= p K 6.10

From the system formed by 6.1 and 6.2 we had 6.9 and 6.10.
§7 Transformation of the electric fields E, E' and magnetic fields B , B'

Applying the forces of Lorentz F= q(E i é) and F' = q(f?’ + ﬁ'xé') in 5.1 and 5.2 we have

C](E’ﬂ?’xé') \/%[q(E+uxB) [( )] }
and o4 x )= Ervao ) e )|

> } , that simplified become
c
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(Bvisch)=—L| (B ixB) (

where we get the invariance of E.u =

following components of each axis

aa){j

oy ©

[Ex+ uyBz—uzBy—

} and (E+ UXx E) =

%[( vixB)- ()

u' between the observers as a consequence of 5.3 and the

Exuxv  Eyuyv

2

1
E’y’+u'z’B'x'—u'x’B’z’:—[Ey+usz—usz]

1
E!xl+u/le!Z/_u!Z/B/y/:
JK
JK
1
ElZl+ulx!B!yl_u!lelx!=

JK

1
Ex+usz—usz:—_{E’x’+u'y’B’ 7'-u'z
KY

1
Ey+usz—usz=—[E'y'+u’z'B'x’

\/F

[Ez+uxBy—uyBx]

E'x'u’x'v' E’

14,

C C

Y 2
c

u/x/B/Z!]

1
Ez+uxBy—uyBx:—[E’z’+u’x’B'y'—u'y'B'x']

JK'

To the conjunct 7.1 and 7.2 we have two solutions described in the tables 7 and 8.

Table 7, transformations of the electric fields E

E' and magnetic fields BeB

|

c

o

7
—2} from

7.1

711

7.2

7.2.1

7.2.2

Ex vux E'x' viu'x'
E'x'=—|1-— 7.3 Ex = (1+ 7.4
\/f( c’ J VK’ c?
Ey v’ vux) VvBz E'y' '
E'vyv=2|]+———"|——= 731 Eyv=—=—|]+—+ 7.41
y \/E( JERNDY: j JK Y K [ e
E 2 B Er ' 12
Ez="| 1+ -0 2 1752 | Er=22 e s 7.4.2
\/f c c K VK’ c
B'x'= Bx 7.5 Bx=B'x' 7.6
v ! v, ! !
B'y'= By+— Ez 7.5.1 By=B'y—c—2E z 7.6.1
r r v r ! v r r
B'z'=Bz——Ey 752 | Bz=B'z + s E'y 7.6.2
c
E' 7= EzJK 771 | g —E oK 7.8.1
ux L, u'x'
By=—c—2Ez 7.9 B'y'= 7.10
ux u'x'
Bz=—Ey 7.9.1 B'z'=—+FE'"y' 7.10.1
c c
Table 8, transformations of the electric fields E, E' and magnetic fields BeB
1 ~ _\V 1 ~ _\V
E'x'=——| Ex—\E.u)— 711 Ex=——|E'"x'+\E'.u’ 712
il 7 )
1 1
E'y' = —(Ey—vBz) 7111 | Ey= —(E’y +v'B'z 7.12.1
JK JK'
E'Z'_L(EZ‘FVB)/) 7112 Ez=L(E'z'—v'B'y’) 7.12.2
JK JK'
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B'x'= Bx 7.13 Bx=B'x' 714

B'y'=By 7131 | By=B'"y' 7141

B'z'= Bz 7132 Bz =B'7’ 7142

Relation between the electric field and magnetic field

If an electric-magnetic field has to the observer O’ the naught magnetic component E'zzero and the

electric component E'. To the observer O this field is represented with both components, being the
magnetic field described by the conjunct 7.5 and has as components

vEZ vE
szzero,Byz——Z,Bzz—Zy, 7.15
c c
: = 1. =
that are equivalentto B=—VXE. 7.16
c

Formula of Biot-Savart

The observer O’ associates to a resting electric charge, uniformly distributed alongside its axis x' the
following electric-magnetic properties:

-Linear density of resting electric charge p, = d_q’
x

-Naught electric current I'= zero

-Naught magnetic field B’ = zero = ii'= zero

-Radial electrical field of module E'=+/E'y*+E'7"* = 2p—"R at any point of radius R =/ y'> +z'° with
e

o

the component E'x'= zero.

To the observer O it relates to an electric charge uniformly distributed alongside its axis with velocity ux =v
to which it associates the following electric-magnetic properties:

-Linear density of the electric charge p = LZ (from 6.7 with u = v)
v
1=
c
v
-Electric current I = pv = LZ
v
==
c
-Radial electrical field of module E = — (according to the conjuncts 7.3 and 7.5 with
v
==
c
B'=zero=ii'=zero and ux=v)
. . vEZ vEy
-Magnetic  field of components  Bx= zero, By =——-, Bz =— and  module
c c
E E' 1 1 1
B :V_ZZLZ :lz Po_ _ H, where U, = >, being in the vectorial form
¢ < v:ooc v: 2me,R  2TR €,C
I-— I-—
c c
- I
B= K, u 717
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where u is a unitary vector perpendicular to the electrical field E and tangent to the circumference that

passes by the point of radius R =4/ y2 +z° because from the conjunct 7.4 and 7.6 E.B=zero.

§8 Transformations of the differential operators

Table 9, differential operators

80, va .o v .
dx' dx ¢’ ot ' dx dx' ¢’ ot '

0 0 0 0

a_y,:5 8.1.1 a_y:a_y’ 8.2.1
0 0 0 0

a_z’:a_z 8.1.2 a_zza_z’ 8.2.2
Jd v d 1 ( v? vxj 0 Jd v d 1 ( v'? v’x'j o |894
— =t It |— |83 | —=- + I+—+—|—

' JK ox K > c’t)ot ot JK' 0x' K ¢’ 't )ot

From the system formed by 8.1, 8.2, 8.3, and 8.4 and with 1.15 and 1.20 we only find the solutions

S P R &/ 8.5
ox ¢ dt ox' ¢ at '

From where we conclude that only the functions y (2.19) and ' (2.20) that supply the conditions

0 x/t 0 oy’ x'/t' dy'

—W+—2—W:0 and W+ 3 l//zo, 8.6
ox «c¢° ot dx'  ¢° dt

can represent the propagation with velocity ¢ in the Undulating Relativity indicating that the field propagates
with definite velocity and without distortion being applied to 1.13 and 1.18. Because of symmetry we can also

write to the other axis

a—l'//+y—fa—l/j=0, Iy +yf oy =0 an L Zfal’”:m Iy +Z§t W =o0. 8.7
dy ¢ dt ay' ¢ dt dz ¢ dt 7 ¢ dt

From the transformations of space and time of the Undulatory Relativity we get to Jacob’s theorem

! ! !

vux vux

I+
LG ) DS RN €5 1) T S 68

(x, y,2,1) JK ox,y,zt)  JK

variables with ux and u’x’ as a consequence of the principle of contancy of the light velocity but are equal ais
J =J" and will be equaltoone J =J'=1 when ux=u'x'=c.

Invariance of the wave equation

The wave equation to the observer O’ is

az + az + az _i az = Zero
axrz ay;Z aZIZ cZ atVZ
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where applying to the formulas of tables 9 and 1.13 we get
2
(14_ v aJ + az + az _i v i+ / ]+ﬁ_w i = zero
ox ¢’ ot oy’ 09z2 ’|JK Ix K ¢t ¢? ot

from where we find

0’ 0’ 0° 19° 2va* 2 9° Hux d® vioP vioP 2vux 9’
Ko+ K S+K S-S+t oo+t - t St sy T 5 a2
ox’ dy’ 0z c¢® ot ¢’ oxdr ¢’ oxdr ¢* oxdr ¢’ ot® ° ot c® ot

vi ol 2v 9t vV 9% 2vux 97 2v? 97 2vux 9° 2viux 92 viux? 9% v* 97

— + - —+ — —————————=2zer0
2 ox? coxdt ¢ awor o wor o of < o ¢’ ot c® ot ¢ or’

that simplifying supplies

Ki+K82 +K82 10 2vux 0’ _ﬁi_v_82+2vux8 vzuxzi_zem
ox’ dy’ a7 ¢’ or’ ¢t oxot cPox? cfor’ & o c® o

where reordering the terms we find
9’ 0’ 9’ vi 2vux)1 9° v(9° 2ux 9° ux’ 9’

Kot Kot K |1+ -2 2 P @ 20 D e ero 8.9
ox’ dy’ 9z’ c’ 2 et ot lox® ¢f oxor c¢f or?

but from 8.5 and 1.13 we have +X/t J 0= J +ux J 2— o’ +2ux o’ +ux2 o’ = zero

dx ¢’ ot ox ¢ ot ox> ¢ oxor ¢ o

0> 9> 9 1 9°
that applied in 8.9 supplies the wave equation to the observer O 8_ +— 5 +a—2 __28_2 =zero. 8.10
x y z° ¢° ot

To return to the referential of the observer O’ we will apply 8.10 to the formulas of tables 9 and 1.18, getting
2
i_v_’i 2+i+i_i — v’ a + ! ].,.ﬁ_,_M i = zero
ox' ¢’ ot oy’ 977 | JKk ox' JK' c’ > )or

from where we find

K 0’ LK d° LK 0° 197 2v 97 27 97 4wy 0 +ﬁi+ﬁ 0’ N
ox'"’ dy”’ 972 ¢’ o’ ¢F ax'or ¢! ox'or ¢t oxar ot ¢ o’
2v7u'x 9 v? 97 2v 97 +2v'3 0’ +2v’2u'x’ 0°  2v? 97 2v'u'x 97
c® o7 cFox? cfoxadr ¢! ox'or ¢ oxor ¢ or? ¢t o’
viu'x 97 viu'x? 97 v? 97
TSt ¢ at ot
that simplifying supplies
& 9° LR 9’ LR 0’ s 9’ _2v’2u'x’ 0’ _ﬁ 0’ _ﬁ 9’ 2wy 9’ v ‘u'x? 9’ — zero
ox'’’ oy’ 7% ¢’ or’ ¢t oxor ¢f ox? ¢t o’ ct ot c® o’

where reordering the terms we find
aZ aZ aZ vr2 ZV' ' / ] aZ vr2 aZ ZM'X' aZ u/va aZ
K’ +K' +K' —1+—+ - + + = zero
ax/Z ay/Z aZvZ CZ CZ c at/Z 2 aer CZ ax! at/ C4 atrZ
but from 8.5 and 1.18 we have
o x'/t' d 0 wx dY 9 2ux 9 wx? 9’
St T T ot s Tyt PSR 2
ox' ¢° ot dx' ¢° ot ox' ¢ ox'ar' ' ot
that replaced in the reordered equation supplies the wave equation to the observer O'.

= Zero

Invariance of the Continuity equation

The continuity equation in the differential form to the observer O’ is

ap +VJ'—zer0:>ai+aJx +8Jy +8Jz = zero 8.11
ot' o' ox' dy' 07
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where replacing the formulas of tables 6, 9, and 1.13 we get

v 0 1 v’ vux) o o v d dJy dJz
Yt —| I+ —— | [pVK +| —+ = — |(Jx—py)+ =+ = =
(Rax JE( 2 2)3JN_ [ax czatj(x A TR R

c c
making the operations we find
2 2
vap+a_p+v_28_p_vzxa_p+ajx+%8]x_vap_v_za_p_i_a.ly_'_a.]z:Z
ox dt ¢ dt «¢® dt dx c¢° dt dx ¢ dt dy 0z

ero

that simplifying supplies
a_p_v_uzxa_p_l_ajx_l_%a.lx_i_ajy_i_alz:
ot ¢ dt dx ¢ dtr dy 9z

ero

where applying Jx = pux with ux constant we get
9p_vuxdp Ofx v olpwx) ly dJe_ .. 0p 9Jx dly dJe_,

8.12
ot & ot ax & ar ay a9z ot ox  dy a9z ¢

that is the continuity equation in the differential form to the observer O.

To get again the continuity equation in the differential form to the observer O’ we will replace the formulas of
tables 6, 9, and 1.18 in 8.12 getting

' 12 [ ' rr "o
v 9 + ! I+v—2+# 9 p' K’+(i—v—ij(fx'+p’v')+a] Y +8J = zero
JK'ox' JKk' c c at’ a9y’ 0z’

making the operations we find
_v'ap’+ap’ ﬁap' v'u'x’ap'+aJ'x’_v_'aJ'x’+v’ap’_ﬁap’_i_a.]'y'_i_a]'z'
dx'  dt' ¢’ ot c© a9t dx' & or ox' ¢’ a9y 27

= Zero

that simplifying supplies

ar vrrar aJvr vaJvr aJvr aJrr
P +v u2x p 4 X _v_2 X + y 4 Z
ot' c¢c© dtr  dx' ¢ 9dt 2y’ 07’

= Zero

where applying J'x'= p'u’x" with u'’x’ constant we get

a/ !//a/ aJ/! !a!/! aJ/! aJ/! a/ aJ/! aJ/! aJ/!
p+vu2x Py x—v—z (pux)+ Y 9L ero 2L O ON) (0T C
ot' ¢© dr  Jdx' ¢ ot' 0y’ 07’ o'  Jdx' dy' 07’

= Zero

that is the continuity equation in the differential form to the observer O’.
Invariance of Maxwell’s equations
That in the differential form are written this way

With electrical charge

To the observer O To the observer O’
OEx OEy OE OE'x’ OE'Yy OJE'7 p
e b g1g | S+ L+ .14
ox dy Jdz g, ox’ ay’ daz g,
an+aBy+aBz=0 615 an+aBy +aBZ —0 816
ox dy 0z ox' 9y’ o7’
OEy OJEx 0Bz OE'y' OE'X  OB'7Z
- =- 8.17 - =- 8.18
ox  dy ot ox’' 9y’ or’
OEz OEy  0Bx OE'7 OE'y’ JdB'X
— =— 8.19 - =- 8.20
dy 0z ot oy’ o7’ or’
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OEx OJEz  dBy OE'x' OE'7’  JdB'Yy
- == 8.21 - =- 8.22
dz  ox ot dz' ox’ or'
0By 0Bx o0Ez OB'y" OB'x OE' 7'
————=p Jz+e N, — |8.23 - =u,J T+E N, 8.24
ox gy TRy o oy ¢ M o
0Bz OJBy O0Ex 0B'7 0By OE' x'
———=W,Jx+€,N,— | 8.25 — =u,J'x'+e U, 8.26
o o " o o o "o
0Bx 0Bz y OB'x'" 0B'Z7 OE'y'
—— -5 =M, Jytepn, — | 827 - =u,J y+e u, —— | 82
% o n,Jy H 3 8 o oW H,J y+€ N o 8.28
Without electrical charge p =p’'= zero and J=1J'=zero
To the observer O To the observer O’
aEx+8Ey+aEz=0 629 OE' x +8 y +BEZ —0 8 30
ox dy 0z ox’' oy’ o7’
an+aBy+aBz=0 631 0B’ x +aBy +aBZ —0 8 30
ox dy 0z ox' 9y’ o7’
OEy OJEx 0Bz OE'y' OE'X  OB'Z
- =_ 8.33 — =— 8.34
ox dy ot ox’' 9y’ or’
OEz OEy  0Bx OE'7 OE'y’ JdB'X
- == 8.35 - == 8.36
dy 0z ot dy' o7’ or’
OEx OJEz  dBy OE'x' OE'7’  JdB'Yy
- =- 8.37 - == 8.38
dz  ox ot dz' ox' or'
@_@_gu% 639 8B’y'_8B’x'_((zu oE' 7 840
ox dy 77 ot ' ox’ dy' o '
@_aBy_EM@ 641 0B’z 9 ,y,—el«l OE' x' o
dy odz 7 ot ' dy' 07’ 0o '
%—%—Eu dEy 643 oB'x' dB'7 _ OE'y' 6.44
dz ox 77 ot ' o7’ ox’' o '
1
E N, = — 8.45
c

We demonstrate the invariance of the Law of Gauss in the differential form that for the observer O’ is
OE'x' OE'y' OE'Z '
oY o P

ox' dy’ 7 ¢

8.14

o

where replacing the formulas from the tables 6, 7, 9, and 1.18, and considering u’x’ constant, we get

[iJrLi}ﬂ(]_M}ri_ﬂ pa ) _vBe |,
ox ¢ or|JK c’ ay_\/? & ) JK

) i
+i£ J v vux +vBy :p\/f
oz| VK ¢’ \/E_ €,

making the products, summing and subtracting the term

2

V25X e find
———_ wefin
¢’ ox

0Ex
dx ¢

N 0Ez
oz ¢

v 0Ex vux JEx _ v ux 0Ex N OEy +ﬁaEy _vuxdEy vdBz N
29t ¢ ox ¢ ot oy dy
ﬁaEz_vuxaEz_'_vaBy_i_ﬁaEx_ﬁaEx:pK

>0z ¢ oz dz ¢® ox ¢’ ox €

c© dy & oy

o
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that reordering results

v’ (aEx ux aExj 0Bz 0By 1 OEx 0Ex OEy OJEz
- === |~V - - + "+ 1
c“ox ¢ ot dy dz ¢’ ot dx dy 0oz

2
1%

2

c

vux

2

c

|

_rk

where the first parentheses is 8.5 and because of this equal to zero , the second blank is equal to

- v(qux) =—VU pux =— vpu;c gotten from 8.25 and 8.45 resulting in
€ cC

o

2 2
aEx+aEy+aEz p o _vux) _pf, v vux _ﬁvzx+£vzx
dx dy 0z €, ¢ g, ¢

J0Ex OEy OE
Loy 0 _ P
ox dy Jdz €,
that is the Law of Gauss in the differential form to the observer O.

from where we get

8.13

To make the inverse we will replace in 8.13 the formulas of the tables 6, 7, 9, and 1.13, and considering ux

constant, we get
[i_ii}Erxr[]-i_vrurxrj-'-i Eryr ]+ﬁ+vrurxr +vrBrZr N
ox' ¢’ ot |JK' c’ 9y'| VK’ c’ c’ VK’
a E!Z! le V'l/l,x' v!Bly! pl /K!
| | I+ —— |- =
7’| VK’ VK’ e
12 a ror

c c Y
. . , E' x
making the products, adding and subtracting the term —-

c? o

, we get

OE'x V' 0E'X v'u'x'0E'x v7u'x'0E'x’ OE'y v’ OE'Y vu'x'oE'Y
- + - + +— + +

ox'  ¢* at ¢’ ox c* ot ) &

' Br ' aEr ' 12 E! ' ror raEr ' !aB! ' 12 aEr ' 12 aEr ' rK!
+v8 ', z+v_8 Z vu'x 7 y' VT OE'X U OE'X_p

c

2

9y’

ay' 7 ¢ o7 ¢ 97 07’ ¢ o
that reordering results in
vZ2(0E'x u'x'OE'xX (0B'z dB'y 1 JE'X
Y ' + 2 ’ v ’ - ’ __2 ' +
ox ¢’ dt dy 07 ¢ dt

aEr ' aEr ' aEr r 12 ot rK!
+( Ty Bl J[1+v—+vuxsz

ox' ay’ oz’ c’ c’ £,

2
C

where the first blank is 8.5 and because of this equals to zero, the second blank is

vvp/uvx/ . .
———— gotten from 8.26 and 8.45 resulting in
€ c

o

V(R )=y, X =

ox’'

!

€

o

’

pviu'x

2 2

2 2
C C

C C

E' % E' ' E' ' 12 "o ' 12 [ [
(8 x+a y+a ZJ(1+V—+VMxj=£(]+v—+vuxj+£vux—

ox' 9y’ o7
OE'" x +8E y +8E P

€

o

€

o

from where we get

ox' 0y’ 07 €

o

observer.

Proceeding this way we can prove the invariance of form for all the other equations of Maxwell.

2
C

€

§9 Explaining the Sagnac Effect with the Undulating Relativity

o

c

equal to

= — that is the Law of Gauss in the differential form to the O’

We must transform the straight movement of the two observers O and O’ used in the deduction of the
Undulating Relativity in a plain circular movement with a constant radius. Let’s imagine that the observer O
sees the observer O’ turning around with a tangential speed v in a clockwise way (C) equals to the positive
course of the axis x of UR and that the observer O’ sees the observer O turning around with a tangecial
speed Vv’ in a unclockwise way (U) equals to the negative course of the axis x of the UR.
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In the moment t =t = zero, the observer O emits two rays of light from the common origin to both
observers, one in a unclockwise way of arc cty and another in a clockwise way of arc ctg, therefore cty = ctc
and t, = tc, because c is the speed of the constant light, and t, and t; the time.

In the moment t = t' = zero the observer O’ also emits two rays of light from the common origin to both
observers, one in a unclockwise way (useless) of arc ct’y and another one in a clockwise way of arc ct’c, thus
ct'y = ct’'c and t'y = t'c because c is the speed of the constant light, and t'y, and t'¢ the time.

Rewriting the equations 1.15 and 1.20 of the Undulating Relativity (UR):

|V| t v 2vux

ﬂ:7= 1+ -2 1.15
% c c

|V'| t v 20'u'x

el — = 1.20
|v| t' c c

Making ux = u’x’ = ¢ ( ray of light projected alongside the positive axis x ) and splitting the equations we
have:

t'=t(]—KJ 9.1 t:t’(1+1j 9.2
(6 C

’

, v v
V=0t 9.3 V=0T 9.4

v V'

1—— 1+—

c c
When the origin of the observer O’ detects the unclockwise ray of the observer O, will be at the distance
vt =V't", of the observer O and simultaneously will detect its clockwise ray of light at the same point of

the observer O, in a symmetric position to the diameter that goes through the observer O because
cty, =ct, =>t, =t. and ct', =ct'. =1, =1, following the four equations above we have:

27R
c+v

9.5

cty +vt, =2TR =1, =

27R
c+2v

9.6

ct' AN, =2TR =1 =

When the origin of the observer O’ detects the clockwise ray of the observer O, simultaneously will detect its
own clockwise ray and will be at the distance vz, = v't', . of the observer O, then following the equations
1,2,3 and 4 above we have:

2U

2mR
Cltye =2TR+Vt,. =t =—— 9.7
c—V
2mR
ct)e=2TR=>1t, . =—— 9.8
c

The time difference to the observer O is:

2TR 2TR 4TRy
At=t,. —t, = — =— 3 9.9
c—v c+v ¢ —-vy

The time difference to the observer O’ is:
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. , 2nR  2mR 4RV
Af'=t,.—1.= - = 9.10
¢ c+2v (c+2v)

Replacing the equations 5 to 10 in 1 to 4 we prove that they confirm the transformations of the Undulating
Relativity.

§10 Explaining the experience of lves-Stilwell with the Undulating Relativity

We should rewrite the equations (2.21) to the wave length in the Undulating Relativity:

A A
A= and A= , 2.21
v 2vux v 2v'u'x
I+———7— I+—+——
c c c c

Making ux = u’x’ = ¢ ( Ray of light projected alongside the positive axis x ), we have the equations:

K'z—}h and Kz—k 10.1

EE

If the observer O, who sees the observer O’ going away with the velocity v in the positive way of the axis x,
emits waves, provenient of a resting source in its origin with velocity ¢ and wave length A . in the positive
way of the axis x, then according to the equation 10.1 the observer O’ will measure the waves with velocity ¢
and the wave length 7L'D according to the formulas:

X'D:—}LF and A, __ Mo £,
() ()
c c
If the observer O’, who sees the obsesrver O going away with velocity v’ in the negative way of the axis x,
emits waves, provenient of a resting source in its origin with velocity ¢ and the wave length h'F in the

positive way of the axis x, then according to the equation 10.1 the observer O will measure waves with
velocity ¢ and wave lenght A, according to the formulas:

X’Fz—k“ and kAz—kF',
()
c

-]

The resting sources in the origin of the observers O and O’ are identical thus A, =A',..

10.2

10.3

We calculate the average wave length A of the measured waves (XA,X'D) using the equations 10.2 and
10.3, the left side in each equation:

’ ! 2
T Noth 1| +M(1_2) L Myt A, []_,_(]_Lj}
2 2(1—") ¢ 2 Z(I—Vj ¢
C C

We calculate the diffrence between the average wave length A and the emited wave length by the sources

AL=A—A,:

_ A 2
AR=2-1, =—F{I+(1—1) }-xF
z(z—v) ¢

c
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e ol 4

c
— B 2
A :——&i——1+1—21+¥;—2+21}
2 ]_K L c C C
c
— 2
Ah=—1 }“—F"—Z 10.4
( _vj 2 c
c
Reference

http://www.wbabin.net/physics/faraj7.htm

§10 Ives-Stilwell (continuation)
The Doppler’s effect transversal to the Undulating Relativity was obtained in the §2 as follows:

If the observer O, that sees the observer O, moves with the speed —v’ in a negative way to the axis x’, emits
waves with the frequency y' and the speed c then the observer O according to 2.22 and u'x'=—v" will
measure waves of frequency y and speed c in a perpendicular plane to the movement of O’ given by

y=y' J1-Y— 2.25
C

12 2
For u'x'=—v" we will have ux=_zero and ,{]—V—Z , {]+V—2 =] with this we can write the relation between
c c

the transversal frequency y=1y, and the source frequency y'=y', like this

y, :y_F2 10.5

1+
CZ

With c=y,A, =y A, we have the relation between the length of the transversal wave A, and the length of

the source wave A,

2
A =N, /1+£—2 10.6

The variation of the length of the transversal wave in the relation to the length of the source wave is:

2 2 2 o
AN =h, =Ny =N \/]"'V_z_?vF :xF(V]-FV_?_]jE?UF (1+V_Z_JJEK_FV_2 o
c c 2c 2 ¢

that is the same value gotten in the Theory of Special Relativity.

Applying 10.7 in 10.4 we have
= A\
AL = :

(=)
c
With the equations 10.2 and 10.3 we can get the relations 10.9, 10.10, and 10.11 described as follows

2
A=A (1—1) 10.9

c

10.8
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A
And from this we have the formula of speed Y=o1- ﬁ 10.10
¢ D

A =N, =JA N, 10.11

Applying 10.10 and 10.11 in 10.6 we have

2
A, =AM, \/1{1— )”—Aj 10.12

Ay
From 10.8 and 10.12 we conclude that A , <A, <A, <A<A, . 10.13

So that we the values of A, and A',, obtained from the Ives-Stiwell experience we can evaluate A,, A,

Y and conclude whether there is or not the space deformation predicted in the Theory of Special Relativity.
c

§11 Transformation of the power of a luminous ray between two referencials in the Special Theory of
Relativity

The relationship within the power developed by the forces between two referencials is written in the Special
Theory of the Relativity in the following way:

. Fii—VF
Friir=""""% 11.1

vux
J Pl
)

The definition of the component of the force along the axis x is:
dpx d\mux) dm dux
Fx=L=(—)=—ux+m—
dt dt dt dt
For a luminous ray, the principle of light speed constancy guarantees that the component ux of the light
speed is also constant along its axis, thus

11.2

x dx _ _ dux dm
— =— =ux = constant, demonstrating that in two —— = zero and Fx =—ux 11.3
t dt dt dt
) 5 dm 1 dE
The formula of energy is £ =mc” from where we have 7 = —27 11.4
r c t

I dE - . o . ux
From the definition of energy we have 7 = F.u that applying in 4 and 3 we have Fx=F.u— 11.5
t c

Applying 5 in 1 we heve:

dE' _dE

P AE 4t 11.6
dt' dt

From where we find that F'ii'= F.i o

A result equal to 5.3 of the Undulating Relativity that can be experimentally proven, considering the ‘Sun’ as
the source.

§12 Linearity

The Theory of Undulating Relativity has as its fundamental axiom the necessity that inertial referentials be
named exclusively as those ones in which a ray of light emitted in any direction from its origin spreads in a
straight line, what is mathematically described by the formulae (1.13, 1.18, 8.6 e 8.7) of the Undulating
Relativity:
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— Wy, —=——=u'y,~=—"=u'zg 1.18

Woldemar Voigt wrote in 1.887 the linear transformation between the referentials os the observers O e O’ in
the following way:

x = Ax'+Bt' 12.1
t=Ex'+Ft 12.2

With the respective inverted equations:
. -B

X = X+ t 12.3
AF — BE AF — BE

. -E A
t= X+ t
AF—BE~  AF-BE

12.4

Where A, B, E and F are constants and because of the symmetry we don’t consider the terms with y, z and
y,Z.

We know that x and x’ are projections of the two rays of lights ct and ct’ that spread with Constant speed c
(due to the constancy principle of the Ray of light), emited in any direction from the origin of the respective
inertials referential at the moment in which the origins are coincident and at the moment where:

t=t =zero 12.5

because of this in the equation 12.2 at the moment where t' = zero we must have E = zero so that we also
have t = zero, we can’t assume that when t' = zero, x’ also be equal to zero, because if the spreading

happens in the plane y'z’ we will have x’ = zero plus t'# zero.

We should rewrite the corrected equations (E = zero):
x=Ax'+Bt' 12.6
t=Fr 12.7

With the respective corrected inverted equations:

., x Bt
X=——-— 12.8
A AF
.t
f'=— 12.9
F
If the spreading happens in the plane y’ zZ’ we have x’ = zero and dividing 12.6 by 12.7 we have:
x B
T="—y 12.10
t F

where v is the module of the speed in which the observer O sees the referential of the observer O’ moving
alongside the x axis in the positive way because the sign of the equation is positive.

If the spreading happens in the plane y z we have x = zero and dividing 12.8 by 12.9 we have:

x' B B
X 2 a2y 12.11

where v’ is the module of the speed in which the observer O’ sees the referential of the observer O moving
alongside the x’ axis in the negative way because the signal of the equation is negative.

The equation 1.6 describes the constancy principle of the speed of light that must be assumed by the
equations 12.6 to 12.9:
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12 2.2 16

2 2,2
X" —ctT=x"—ct

Applying 12.6 and 12.7 in 1.6 we have:
(Ax'JrBzf’)2 ~CFt?=x"=ct’

From where we have:

B® 2ABY
where making A% = 1 in the brackets in arc and {FZ -

2

3 } =1 in the straight brackets we have
c c’t

the equality between both sides of the equal signal of the equation.

B® 2ABY B® 2Bx
Appllying A =1 in {FZ - x}:] we have F° =l+—+ 2x 12.12
c c’t c c’t
. . B B ,
Appllying A =1 in 12.11 we have X=7=B=v 12.11

That applied in 12.12 suplies:

12 ror
/ v 2v' x

F = ]+—2+T:F(.X',t') 12.12
c ct

as F(x’, t') is equal to the function F depending of the variables x’ and t.

Applying 12.8 and 12.9 in 1.6 we have:
2 2

x Bt t
x*=c’t? =(———j N

From where we have:

2 2
2 2.2 X 5.0 1 B 2Bx
X =ct'=|—|-ct|—— +
(AZJ {FZ A’C’F?  A’C’Fr

o, , 1 B’ 2Bx , ,
where making A = 1 in the bracket in arc and | —5 ——5——5+—5— =1 in the straight bracket we
F° A°cF A‘c Ft
have the equality between both sides of the equal signal of the equation.
Applying A= 1and 124010 | =B 2BX |, oy
pplying A=1an A0in | —— =1 we have:
F? A’C’F’  A’C’Ft
1
F=——— =F(x1) 12.13
v 2wx
I+ =—5
c ct

as F(x, t) is equal to the function F depending on the variables x and t.

We must make the following naming according to 2.5 and 2.6:
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12 ot
% 2v'x

K'=l+—+——=F=JK' 12.14
c ct

2
K=1+1 2 S p_ 12.15

¢’ VK
As the equation to F(x’, t') from 12.12 and F(x, t) from 12.13 must be equal, we have:

12 o
% V' x 1
F = ]+—2 —— =
c c't v 2vx
S

2
c c't

12.16

Thus:

2 12 rr
\/1+V——ﬂ-\/1+v—2+z” Ior VK NK =1 1217

2 2 2 =
c c't c c’t

Exactly equal to 1.10.

Rewriting the equations 12.6, 12.7, 12.8 and 12.9 according to the function of v, v’ and F we have:
x=x+'r 12.6
t=Ft 12.7

With the respective inverted corrected equations:

X'=x—-vt 12.8
, I
t'=— 12.9
F
We have the equations 12.6, 12.7, 12.8 and 12.9 finals replacing F by the corresponding formulae
x=x+'t 12.6
. 12 2vvx/
t=t1+—5+—; 12.7
c ct
With the respective inverted final equations:
X'=x—-vt 12.8
, v: o 2ux
t=t ] +—2 -5 12.9
c c't
That are exactly the equations of the table |
vl
As v= F and v'= B then the relations between v and v’ are v = F or vV'=v.F 12.18

We will transform F (12.12) function of the elements v’, X’, and t’ for F (12.13) function of the elements v, x
and t, replacing in 12.12 the equations 12.8, 12.9 and 12.18:
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12 I 2 _
F = ]+V_2+2V2X — I+(VF;) +2VF(X Vl)
c c’t c o2

r
F

22 2 22 2 22
F=\/I+VF +2vxF _2vF _\/I+2vxF v'F

c’ c’t c’ c’t c’
2vxF? V'F? v:F? 2vxF°* 1
FP=l+"—F——— > F’'+——-~"——=I=>F=
c't c c c't v: o 2wx
L
¢’ ¢t

That is exactly the equation 12.13.

We will transform F (12.13) function of the elements v, x, and t for F (12.12) function of the elements V', x
and t, replacing in 12.13 the equations 12.6, 12.7 and 12.18:

1 1 1
F: 2 - 2 - 2 2
2 ' ' ' rgr ! 2 Iy 2 '
\/]+"2_‘2’)C ]-i'iL —72V(X+VI) \/]+ ‘2) 2 2vx2_ 2v2
c® 't A\ F c’FFt c’F° c¢ctF° c°F
] 12 2 rt 12 2 rr
F= = Fl-—— - ol F= 1+
V'3 2 x' c’F2 c't'F c c't
1= 22 2 2
c’F'” ct'F
That is exactly the equation 12.12.
We have to calculate the total diferential of F(x’, t') (12.12):
oF oF
dF = —dx'+—dt'
ox' ot'
as:
ox' JK' c’t or' K' ¢t t '
we have:
] ! I ! !
dF = ————d¥'————"dr
K' c’t K ctt
where applying 1.18 we find:
1 v 1 Vv dx
dF = dx'— dt'=o0 12.20

K' c’t JK' At dr
From where we conclude that F function of x’ and t’ is a constant.

We have to calculate the total diferential of F(x, t) (12.13):

dF Za—Fdx+a—th
ox ot

as:
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- = g —=—— "~ = 12.21
ox 3t ot St
2 2
we have:
1 1 v x
dF ———dx——j——dt 12.22
c't Sctt
K? K?
where applying 1.13 we find:
1 v 1 v dx
dF = —5 ——dx——5—-——dit =
St 2ot dt
K? K?

From where we conclude that F function of x and t is a constant.

The equations 1.13 and 1.18 represent to the observers O and O’ the principle of constancy of the light
speed valid from infinitely small to the infinitely big and mean that in the Undulating Relativity the space and
time are measure simultaneously. They shouldn’t be interpreted with a dependency between space and
time.

The time has its own interpretation that can be understood if we analyze to a determined observer the
emission of two rays of light from the instant t=zero. If we add the times we get, for each ray of light, we will
get a result without any use for the physics.

If in the instant t = t' = zero, the observer O’ emits two rays of light, one alongside the axis x and the other
alongside the axis y, after the interval of time t’, the rays hit for the observer O’, simultaneously, the points A,
and A, to the distance ct’ from the origin, although for the observer O, the points won'’t be hit simultaneously.
For both rays of lights be simultaneous to both observers, they must hit the points that have the same radius
in relation to the axis x and that provide the same time for both observers (t; = t; and t'y = t';), which means
that only one ray of light is necessary to check the time between the referentials.

According to § 1, both referentials of the observers O and O’ are inertial, thus the light spreads in a straight
line according to what is demanded by the fundamental axiom of the Undulating Relativity § 12, because of
this, the difference in velocities v and v’ is due to only a difference in time between the referentials.

y=2=% 1.2 y=2=% ,x 1.4

t t
We can also relate na inertial referential for which the light spread in a straight line according to what is
demanded by the fundamental axiom of the Undulating Relativity, with an accelerated moving referential for
which the light spread in a curve line, considering that in this case the difference v and v’ isn’t due to only the

difference of time between the referentials.

According to § 1, if the observer O at the instant t = t' = zero, emits a ray of light from the origin of its
referential, after an interval of time ty, the ray of light hits the point A; with coordinates (x4, y1, 21, t1) to the
distance ct; of the origin of the observer O, then we have:

2
t,=t, |[1+-—~—

After hitting the point A; the ray of light still spread in the same direction and in the same way, after an
interval of time t,, the ray of light hits the point A, with coordinates (xy + Xo, Y1 + Va2, Z1 + Zp, 11 + o) tO the
distance ct, to the point A4, then we have:

X _dx
t dt

2

X 2 2wx 2vx
. B BN ]+v—2—— 1+ v 2 2vux
t1 t ¢’y

and with this we get:
2VX2 / 2vux
c I
2vx V2 2v X, +x
1 +__2vux t +t 2vux t +t ( LV TX,) 2)
c’r, hI* (1, +1,)
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The geometry of space and time in the Undulating Relativity is summarized in the figure below that can be
expanded to A, points and several observers.

-

0, 0=0 0, X

*
t=t = zEro
In the figure the angles have a relation Yy=¢'—-¢ and are equal to the following segments:

[l
i

Osto O=0" isequalto 0=0" to Oy (0,>0',=vt,=V't',))

Opt0 Ojisequalto O t0 O, (0, >0, =v(t, +1,)=V'(¢',+t',)—>vi,=v't',=0, < 0,+0',<0',)
And are parallel to the following segments:

O, to A is parallel to O to A,

O’> to A, is parallel to O’y to A4
X=X'"isparallelto X,=X",

The cosine of the angles of inclination ¢ and ¢’ to the rays for the observers O and O’ according to 2.3 and
2.4 are:

ux_v
cosO—v/c
ux v = cosd'= 2¢
/ 2vux / 2vux \/ V—Z—&cosq)
¢ <
, cosq)—v/c
cos)=——"—— 12.23
VK
sen
And with this we have: sen('= L 12.24
VK
wx v
X4y cos¢'+v'/c
ux= U x+v =X = ¢ =cosd=
\/ 42V L; X« \/1++2V : \/]++2V cos'
c’ c c c c c
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_cosd'+v'/c

co = 12.25
50= VK’
sen¢’
And with this we have senQ= 12.26
¢ ra
The cosine of the angle ¥ with intersection of rays equal to:
VUx viu'x' 1 V' '
]—7 ]+672 ]—;COS(I) ]+;COS(I)
cosy= = = = 12.27
M vK VK’ VK VK’

y send ' send

= 12.28
c x/? c vK'

The invariance of the cosy shows the harmony of all adopted hypotheses for space and time in the
Undulating Relativity.

And with this we have: sen\y =

The cosVy is equal to the Jacobians of the transformations for the space and time of the picture I, where the
radicals

\/?z +——M nd vK'= +—+ 2V'x are considered variables and are derived.

& c’t c? 2t
1 00 -y
ri N A ) 0 10 0 _vVXx ]_LMX
cosy=J =9 _OWyLE) g g 0 __ct ¢’ 8.8
1 00 V' ,
J+ VX jpvux
cos —J’—axk— ox.y.2t) _ 8 ég 8 ct c’
\Il_ - 'l_ ! ’ 14t - ; = ) 88
W Awnyhar) /el 001 (]+ﬁ+ﬂj VK JK'
VK’ \/E'k 2t

§13 Richard C. Tolman

The §4 Transformations of the Momenta of Undulating Relativity was developed based on the experience
conducted by Lewis and Tolman, according to the reference [3]. Where the collision of two spheres

preserving the principle of conservation of energy and the principle of conservation of momenta, shows that
the mass is a function of the velocity according to:

where m, is the mass of the sphere when in resting position and u = |b7| =+/uu the module of its speed.

Analyzing the collision between two identical spheres when in relative resting position, that for the observer

O’ are named S’y and S’, are moving along the axis x’ in the contrary way with the following velocities before
the collision:

Table 1

Esphere S'4 Esphere S’,
u'x';=v' u'x,'=—v'
u'y',=zero u'y',=zero
u'z',=zero u'z',=zero
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For the observer O the same spheres are named S; and S, and have the velocities
(ux], Ux,, uy, =uz; = zero) before the collision calculated according to the table 2 as follows:

The velocity ux, of the sphere S, is equals to:

i, = ux,;+v' _ V4 _ 2
1 - - - .
12 Zv'u'x’ 12 o 12
\/]+V2+ X ]+v2 +2v2v ]+3v2
c c c c c

The transformation from v’ to v according to 1.20 from Table 2 is:

! ! !

v= 1 _ v _ 1
12 2v'u'x' 12 o 12
\/1+V + 1 \/]+\/’2+2V2V ]+3V2
c? c? c c c
That applied in ux,; supplies:
vl
Ux; =2| —=———=|=2v
3’
1+
c
The velocity ux, of the sphere S; is equal to:
u'x',+v' —y'a
I/l)CZ: 2 22 P = 2v+2v!( ;) =zero
' viu'x ' V=V
\/]+V2 +—=-% \/1+"2+2
c c c c
Table 2
Sphere S; Sphere S,
ux, =2—V3=2v
V' Ux, =zero
/]+—2 2
c
uy, =zero uy, =zero
Uz, =zero uz, =zero

For the observers O and O’ the two spheres have the same mass when in relative resting position. And for
the observer O’ the two spheres collide with velocities of equal module and opposite direction because of

this the momenta (p’lzp’z) null themselves during the collision, forming for a brief time (At') only one
body of mass

_ ' '
my=m',+m',.

According to the principle of conservation of momenta for the observer O we will have to impose that the
momenta before the collision are equal to the momenta after the collision, thus:

mux, +myux, =(m, +m, )w

Where for the observer O, w is the arbitrary velocity that supposedly for a brief time (At) will also see the

masses united (mzm, +m2) moving. As the masses m; have different velocities and the masses vary

according to their own velocities, this equation cannot be simplified algebraically, having this variation of
masses:

To the left side of the equal sign in the equation we have:
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U=Ux, =2zero

m,= 0 = = 9 = = 0 = =m,
() (e, ) (zero)
]——2 1- > ]—72
c c c
To the right side of the equal sign in the equation we have:
u=w
_ mo _ mo _ mo
;= 2 2 2
S0 P (L0 I
1 2 1 2 2
c c ¢
m() m() m()
m2 = = =

Applying in the equation of conservation of momenta we have:

m,ux, +myux, =(m, +m, )w=m,w+m,w

m m m
—2 > 2 > w+ 2 > w
N S

C C C

From where we have:

2v+m,.0=

Zlevz _ 2m0w2 - v4 _- w :
1-*Y- \/]—W \/I— ¥ \/I—W
\/ c’? ¢’ c’? c’?
w=—=L— =
3v
]=2v"
CZ

As w#v for the observer O the masses united (m=m1 +m2) wouldn’t move momentarily alongside to the

observer O’ which is conceivable if we consider that the instants Af+At' are different where supposedly the
masses would be in a resting position from the point of view of each observer and that the mass acting with
velocity 2v is bigger than the mass in resting position.

If we operate with these variables in line we would have:

m,ux, +mux, =(m, +m, )w=m,w+m,w

T - v =+m,.0= T —w+ e —w= 2m0w2
\/1+3§ \/]_WZ \/1_w2 -
1 2y ¢ c c c
2 '
¢ I+3—‘2’
c
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(1+3fj e P
c c (]+3\;)

c
2m,v' _ 2myw
v _ v’ \/ w’

1+=—-""= 1=
\/ ¢ c’
2myv'  2m,w

iz
C2 C2

From where we conclude that w=v" which must be equal to the previous value of w, that is:

W:V':%
;3

2
C

A relation between v and v’ that is obtained from Table 2 when ux, =2v that corresponds for the observer O
to the velocity acting over the sphere in resting position.

§14 Velocities composition
Reference — Millennium Relativity

URL: http://www.mrelativity.net/MBriefs/VComp Sci Estab Way.htm

Let’s write the transformations of Hendrik A. Lorentz for space and time in the Special Theory of Relativity:

=XVt o= Xtvt'
P 14.1a v’ 14.3a

7 )

C C
Y=y 14.1b y=y 14.3b
7=z 14.1c =7 14.3c

= '+

' C
r=—==~— | 12 | 1=/ | 144

V2 VZ

1= 1=

From them we obtain the equations of velocity transformation:

U= _UX=V =4 x-i:vl
] yux 14.5a Jyvux 14.6a
2 2
C C
2 V2
uy I—V—Z u'y'\[1——
u'y’:—c 14.5b uy=—————— 14.6b
]_vuzx I+ VM2X
C C
V2 V2
uz 1—72 M'Z' 1—72
u’z':—c 14.5¢ uz=————— 14.6¢
I_vuzx I+ VMZX
C C

Let’s consider that in relation to the observer O’ an object moves with velocity:

u'x'=1,5.10" km/ s(=0,50c).
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And that the velocity of the observer O’ in relation to the observer O is:
v=1,5.10"km/ s(=0,50c).

The velocity ux of the object in relation to the observer O must be calculated by the formula 14.6a:

[ 5 5
M.X'i:V,: ],5.]0 ‘l;],5.]0 - :2,4.]05km/s(:0,80c).
evx ) 15.10°.15.10

(30.10°Y

ux=

Where we use ¢=3,0.10" km/s(=1,00c).

Considering that the object has moved during one second in relation to the observer O (t=1,00s) we can
then with 14.2 calculate the time passed to the observer O’:

_15.10°.24.10°

_vXx _vux) 1,001
o e :t(] c2j: ( (30.10°) j: 0,60

\/J—Vj \/]—"j ]_(1,5.105)2 V075
¢ ¢ (30.10°)
To the observer O the observer O’ is away the distance d given by the formula:

=1'=0,693s .

d=vt=15.10".100=15.10"km.
To the observer O’ the observer O is away the distance d’ given by the formula:

060 _

V075

To the distance of the object (do, d’o) in relation to the observers O and O’ is given by the formulae:

d'=vt'=15.10" 1,03923.10° km .

d,=uxt=2,4.10".100=2,4.10° km.

0,60

\NO75

To the observer O the distance between the object and the observer O’ is given by the formula:

=1,03923.10° km .

d',=u'x't'=15.10".

Ad=d, ~d=24.10°-15.10° =0,90.10° km .
To the observer O the velocity of the object in relation to the observer O’ is given by:

Ad _0,90.10° km

=0,90.10° km/ s (=0,30c)
t 1,00s

2
Relating the times t and t’ using the formula t'=t, /]—V—Z is only possible and exclusively when ux=v and
c

u' x'=zero what isn’t the case above, to make it possible to understand this we write the equations 14.2 and
14.4 in the formula below:

t(]—vcos(bj t'(]+vc0s¢')
t=—"E— 2| 142 |t=—""uAL | 144
2 2
1-V -V
2 2
C C
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Where cos¢=-% and cosd'=>*-
ct

The equations above can be written as:
=f(t,0) e t=f'(¢,0) 14.7

In each referential of the observers O and O’ the light propagation creates a sphere with radius ¢t and ct’
that intercept each other forming a circumference that propagates with velocity ¢. The radius ¢t and ct’'
and the positive way of the axis x and x' form the angles ¢ and ¢' constant between the referentials. If for
the same pair of referentials te angles were variable the time would be alleatory and would become useless
for the Physics. In the equation #'= f(z,0) we have t identical function of t and ¢, if we have in it ¢
constant and t’ varies according to t we get the common relation between the times t and t’ between two
referentials, however if we have t constant and t’ varies according to ¢ we will have for each value of ¢

one value of t and t between two different referentials, and this analysis is also valid for t=f’(t',¢’).

Dividing 14.5a by ¢ we have:

o coso="
WX _ € € yipeg= c s
¢ I—Luzx 1-Ycoso
c c
Where cos¢p=2=4X and cosd/=2-=4X
ct ¢ ct' ¢
Isolating the velocity we have:
cosO—cosQ’ ux—u'x'
v_ (coso=cos®) p=—28T 14.9
¢ (I-cosdcosd’) | ' x
2
c

From where we conclude that we must have angles ¢ and ¢’ constant so that we have the same velocity
between the referentials.

This demand of constant angles between the referentials must solve the controversies of Herbert Dingle.
§15 Invariance

The transformations to the space and time of table I, group 1.2 plus 1.7, in the matrix form is written like this:

X 100 —v | x
y1 010 0 |y
2 [Floor o |z 15.1
] 1000VK |1
That written in the form below represents the same coordinate transformations:
X' 100—v/c| x
Yy [_|010 O y
ct’' 000 \/_ ct
We call as
x' X" 100-v/c X x!
. ' 2 . 2
x=x=[Y 1= ¥, |, a= o= 8(1)(1) 8 , x=xl= V|2 ¥, 15.3
Z X Z X
ot | |ex 000 VK ct| | ext



That are the functions x"=x" (xj )= x" (xl,x2 ,x3ex? )=x'i (x,y,z,ct) 15.4
That in the symbolic form is written:

4
x'=a . x orin the indexed form x”=Z(xijx’ :>x”:(xl.jx’ 15.5
j=1

Where we use Einstein’s sum convention.

The transformations to the space and time of table I, group 1.4 plus 1.8, in the matrix form is written:

X 100 v || X
yl 010 O |y
t| loooVk | 7
That written in the form below represents the same coordinate transformations:
X 100v/c| x'
y|[_|010 O |y
ct] [000VK | ct
That we call as:
x| |« 100v/c x| | x!
2 ’ 12
P R A R b A AT P 15.8
z| | x z x
ct| |ext 000VK' ct'| |ex'®
That are the functions x* =x* (x" )=x" (x'1 X2 x"3 ex™ ):x" (x',y",2',ct') 15.9
That in the symbolic form is written:
4
x=a'.x' orinthe indexed form x* :Za’kl ' =xt=al, 1! 15.10
=1
2 1 12 1l
Being VK =,[1+--22 (1.7), VK = 1+ +2YX (1.8) and VKK’ =1 (1.10).
c” c’x c” c’x
The transformation matrices & = &; and &'= &';, have the properties:
4 100=v/c||100Vv/c 1000
- . , (010 O |010 O | [0100|_, «i
a—a',-ja'kl—za',-ja'ﬂ— 001 0 001 0 = 0010 —1—51 1511
J= 000 VK |000vK'| [0001
4 1 00 0O 1 00 O 1000
ot , . 0 100 010 0 0100 j
oo =0(jia’lk=zgﬁ0(ik= O 01 O 0 01 0 200102125](1 1512
=l —v/c00K | v/c004K'| [0001

Where ' = &, is the transposed matrix of @ = @, and " = &, is the transpose matrix of &'= &', and

O is the Kronecker’s delta.

A 100v/c100=v/c] 1000

.~ . _|010 0 [010 O | |0100]| ,

““—“kl%—zakl“lj— 001 0 |001 0 [Floo1o[F=9; 1513
= 000vK' | 000 VK | [0001
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4 1 00 O 1 00 0 1000
, , , 0 10 0 0 10 0 0100 1
ata't:alka'ji=2a'lkaki: 0 01 O 0 01 0 2001021251 15.14
k=l Vv/c00NK | -v/c00K | 0001

Where ' = ', is the transposed matrix of @'=a',, and @' = & ; is the transposed matrix of & =@

and O is the Kronecker’s delta.
Observation: the matrices o; and o, are inverse of one another but are not orthogonal, that is: & ; #&',
and o; #') .

The partial derivatives % of the total differential dx'iz%dxjof the coordinate components that
b X

correlate according to x"=x" (xf), where in the transformation matrix & =¢,; the radical VK is

considered constant and equal to:

Table 10, partial derivatives of the coordinate components:

ox'" = ox'! = ox'’ —7 ox'’ =0 ox'’ -0 o __v
ox’  oIx’ ox! ox? ox’ oxt ¢
ax/i _ava _ axr2 :0 axr2 :] aXIZ _0 axr2 :0
ox’  ox’ ox’ ox’ o | ox?
axri _axr3 _ axr3 :0 axr.? :0 axr3 :] axr.? :0
ox’  ox’ ox’ ox? ox’ ox*

ri 14 a 4 14 4 a 14
o (2 [

The total differential of the coordinates in the matrix form is equal to:

dx'! 100—v/c| dx!
dx'2 _010 0 dxz
a3 171001 0 dx’ 15.15
cdx* | 1000 \/E cdx*
That we call as:
dx'! o 100—-v/c dx!
. 2 . ' _ 2
d=dvi=| P azal 22 0100 = Y 15.16
dx J=3.7 001 0 dx
cdx'* 000 VK cdx*
NS - T
Then we have dx'= Adx= dx" =ZA;dxf =dx" :Fdxf 15.17
: -

Jj=1

k k
The partial derivatives 9t of the total differential dx* —aidx” of the coordinate components that

ox"

~ox!

correlate according to x"zxk(x"), where in the transformation matrix o'=a',, the radical vK'is

considered constant and equal to:
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Table 11 partial derivatives of the coordinate components:

ox* _ ox’ _ ox! —J ox’ ox’ ox' _v'

ax'l axll axrl axyZ = axd = ox'* ¢

ox* _ox’ _ | ox’ —0 ox’ .y ox’ —0 ox’ _
ox''  ox' ox'"’ ox"’ ox"”’ ox'’

ox* _dx’ _ | ox’ —0 ox’ —0 ox’ .y ox’ _
ox''  ox' ox'"’ ox'"’ ox”’ ox'?

ox* _ox’ _ |ox* _ ox* _ | ox? _, | oxt _
axll _ax/l - ax'l O axyZ _0 ax!3 _0 ax'4 \/?

The total differential of the coordinates in the matrix form is equal to:

dx' 100v/c| dx'
dx2 _ 010 O dx’2
4 171001 0 PNE 15.18
cdx* | |000VK' || cdx'*

That we call as:

dx' ok 100vV/c dx'!
k| dx? _ok_0x 1010 0 | dx'?
dx=dx" = dx3 y A—Al —y— 001 0 y dx'=dx'" = d_xd 15.19
cdx? 000VK' cdx'*
N ox*
Then we have: dx=A'dx'= dx* =ZA'§‘ dx'" = dx* :Fdx" 15.20
/=1 X

The Jacobians of the transformations 15.15 and 15.18 are:

i 8( A2 3 ,4) 100-v/¢
) L S =8(1)(1) 8 =JK 15.21
ox’ aixl,xz,x3,x4 ’
000 VK
. a(' . 4 4) 100v'/c
J':aiz—(—)x X X ) 0100 VK 15.22
ax,l axll’xl2’x!3’xl4
000 VK|

2 1 12 ool
Where vK = [1+2 -2 (55) k= [1+1+ 24X (5 6) and VK VK =1 (1.23).
C C C

CZ

The matrices of the transformation A and A' also have the properties 15.11, 15.12, 15.13 and 15.14 of the
matrices @ and &'.

From the function ¢=g(x* )=¢'=¢'[x*(x"!)] where the coordinates correlate in the form x* =x*(x") we

09 _ 99 ox*
ox'  ox* ox"

have described as:
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0¢ _ 9¢ axt _9¢ ox' 99 ox2  9¢ ox* 99 ox*
ox'l  oxk ox''  odx! dx' ox2 dx'' ox3odx' oJx* dx'l
d¢ _ 99 oxk _ 99 ox! + 9¢ o2 + 9¢ 3 + 0@ x4
0x'2  Oxk dx'2 ox! 0x'2 0x29dx> 0x3dx'2 Ox* ox
0¢' _ 99 oxk _ 99 9x! + 9¢ x> + 9¢ 93 + 9@ x4
0x'3  Oxk ox'3  oOx!' odx'3 Ox2 ox' OJx3 ox'3 oJx* odx3
d0f _ 0@ gxt _ 04 9x! 0P 9x2 0P 9x3 99" gx*

ox'4  Oxk ox't  Ox' ox'  ox2 ox'*  ox3 ox'  ox* ox'*

That in the matrix form and without presenting the function ¢ becomes:

_axl ] ! 0 o’ _ o ., |
= v
ox'! ox'? o’ o’
Jox? _, o’ o’ o
9 | 9 9 9 9 || 9 3 9 9 | w? o aw? aw?
ox'! Low! ox? ox® ox'? ox! 9x? ax® ax* | izo o -0 o’ -7 o’ -0
ox'! ox'? o’ o’
ox? _ Vv ox? -0 ox? _ ox? _ 1 (“ V2 I v'u’x’lj
_ax'l 2K ax'? o’ o x/EL c? c? |

Where replacing the items below:

'

axt v

y
o'l VK ¢?

ot _ 1 (1+v’2+v’u’x’1]=ax’4= 1 (Hvz vule
k c ox* \/?k ¢t 2

2 2
C
Observation: this last relation shows that the time varies in an equal form between the referentials.

We get:

ox! ox! ox! -0 ! v

ox'! ! ox'? o w’  awt VK
ox? -0 ox? _ x> _ x> -0
9 | 9 9 9 9 || 2 @ 9 9 |o! w?  ow? !
oxt Lax! ax'? ax3 ax? ox’ ax? ax® ax? | u’ -0 o’ -0 o’ -7 o’ 0

ax/] ax/Z ax,j’ ax/4 -
_ ox* ox* -0 ox* _ 1 (II v vuxIJ
P ox'> ox'* \/Ek 2 P |

That is the group 8.1 plus 8.3 of the table 9, differential operators, in the matrix form.

From the function ¢'=¢'(x'")=¢=g[x" (x/)] where the coordinates correlate in the form x"=x"(x/) we

9¢' _ 9¢' o'
ox’/  ox" dx’

have described as:
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09" _ 04 9x'i _ 9¢' 9x' | 94" 9x"2

d¢' 9x'3 | 94" 9x'4

ox!  oOx' dx! ox'l dx! o0x'2 dx!

ox'3 ox!  ox'4 ox!

09" _0¢' 9x'i _ 99' 9x't | 99" gx'2 | 94’ 9x'3 94’ 9x'4

ox2  ox' ox2  ox' ox2  ox2 ox2  0x'3 ox2 x4 ox2

d¢' _ 04 gx'i _ 94" 9x't | 94" 9x'2 |

0¢' 9x'3 99" gx'4

ox3  ox' ox? ox' ox® ox2 ox3

ox' 0x3  ox'4 ox3

09" _0¢' 9x'i _ 99' 9x't | 99" 9x'2 94" 9x'3 94’ 9x'4

ox4  ox' ox*  ox' ox*  ox'2 ox*  ox'3 ox* ox'4 ox*

That in the matrix form and without presenting the function ¢ becomes:

ox/

ox! ax? ax® ax?

M_[a d aHa 9 9

Where replacing the items below:

axrl I -V
ox* VK’
ax,4 oy L

v
ox! CQ\/E c?

c?

ot _ 1 (1+v2 vule_ ot _ 1 (1+ﬁ+v’u’x’lJ

ox* «/E Tt \/E

3
ox'! ox'? ax'd aw'? | ax_zo

M:] ox'! —0 ox'! —0 ox'! -
ox! ox’ ox’ ox?
. M:O ox'? -7 ox'? -0 ox'? —0
d ox! ox’ ox’ ox?
ox'3 _ ox'3 -7 ox'? -0

ox! ox? x> ox?

ox'? __ =V ox'? _ ox'? _ ox'? _

| ox!  2JK ox? ox’> ox* \/?\

2 C2

Observation: this last relation shows that the time varies in an equal form between the referentials.

We get:
ox'! -7 ox'! -0 o'’ -0 ! v
ox! ox? ox? ant VK
. ox'? -0 ox'? —7 ox'? _ ox'? -0
9 |9 9 9 o || 3 9 9 o |a R TR
ax/ L ax! ox? axd ax? | Lo’ ax? ax? aw? | ox”’ -0 o’ _ o7 _ X7
ox! ox? o> ox?
ox'? _-v ox'? -0 o't -0 ox'? _ 1 (1' ) vu'x'!
L ox! ¢ ox? o’ o \/Fk c?

That is the group 8.2 plus 8.4 from the table 9, differential operators in the matrix form.

Applying 8.5 in 8.3 and in 8.4 we simplify these equations in the following way:
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Table 9B, differential operators with the equations 8.3 and 8.4 simplified:

d _ 0 LV 0 d _d v 0

dx'' dx! c¢2odx* 8.1 dx!' oJx'l c¢2ox'4 8.2
Jd _ d_ Jd _d

ox'2 Ox2 81.1 | ox2 0x"2 8.2.1
Jd _ d Jd _ 0

ox'3 ox3 81.2 | ox3 ox'3 8.2.2
-0 _ —d -0 _ /. —0

cox'4 _Rcax4 8.3B | cox* _J_cax'4 8.4B
%+—sz21 824 =zero |85 8_2'1 +”’C)§’1 8)?'4 =zero |85

The table 9B, in the matrix form becomes:

15.23

1
[888—8}[888—8_0
- 0

ox' ox'? 9x'? cox'* B ox' 9x? ax® cox* |

15.24

1
[aaa—a}:[aaa—a'o
ox' 9x'? 9x"? cox'* | 3

ax' ax? ax® cox*

The squared matrices of the transformations above are transposed of the matrices A and A’.

Invariance of the Total Differential

In the observer O referential the total differential of a function ¢(x") is equal to:

dx’'
dglct )=22 it =99 41, 99 42, 00 0, 00 dx4—[a¢ 99 99 09 } dx; 15.25
X

ox* ) ox> " ox ox " ox! ox? ax cax? | dx’
cdx*

Where the coordinates correlate with the ones from the observer O’ according to x* =x* (x'l ) replacing the
transformations 15.24 and 15.18 and without presenting the function ¢ we have:

5 1 00 0 [[100v/c] dx"
09 ., | d 9 d 0 0 10 0 |010 O dx'?
d¢_8x_kdx Tl ox! ax'? ox'® cox' 0 01 0 001 O dx"” 15.26
—'/¢00VK |000VK' | cdr*
The multiplication of the middle matrices supplies:
1 00 0 J100v/c 100 Ve
0o 100 [o10o0 || O 49 © 507
0 01 0 001 0 | ! :
/004K 000K | | =v'/c00 145
Cc ax
Result that can be divided in two matrices:
1 00 Vv/c 0 00 v/c
0 10 0 (1)‘1)88 0 00 O
0 01 0 = + 0 00 O 15.28
2vvdxrl 00 1 0 2V’dx,l
—v'/c001+ 0001 —'/¢c00
Czdx'4 Czdxv4
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That applied to the total differential supplies:

1000 dx'
0 00 O >
d¢ aa¢k )C |:aa,1 88!288& aaf4:| 8(1)(1)8 + O OO 0 1 ZTC'% 1529
O 0001 |—v/e00 2B g
cdx'
Executing the operations of the second term we have:
0 00 v/c m
0 00 0 |&
|: a a a a :l 0 00 0 der -V VI a ,1 a a dx,4
ox'' ox'? 9x'* cox'* 2 dx’! dx”? c?ox ax c 2 det ot
—V'/c00=—— ” cdx’4
cldx'
Where applying 8.5 we have:
V' 0 dy'! [ 1.dxt 9 20 dx'Y 9 o,
—————dx'+v x4 4 dx'4=zero
c? ox'4 \ 2 dx't 9x'4 c? dx'4 ox'*
Then we have:
0 00 V/c 't
0 00 O 12
ox'' dx'? 9x"> cax’ , wdy! | .
Vv/c00=—F—"— 2d 2 cdx’'
With this result we have in 15.29 the invariance of the total differential:
8¢ 3 3 3 5 1000 dx’; 2
0100 dx o ,
S = 15.31
9= uk @' [8x’1 8x’28x’3cax’4}0010 dx’’ ax”dx 9 >3
0001 | cdx®

In the observer O’ referential the total differential of a function ¢(x'i) is equal to:

dx! 1

d¢/(xvi): a¢! d a¢ d vl+ a¢ d v2+ a¢ d /3 a¢ d 14 |:a¢’ a¢, a¢; a¢’ :| dx:i 1532
ox'' oy ox'? ox'? 8 4 ox'' ox'? ox'* cox'* ‘?,4
cax

Where the coordinates correlate with the ones from the observer O referential according to x"=x" (xf),
replacing the transformations 15.23 and 15.15 and without presenting the function ¢ we have:

; 1000 J100=v/c]| dx'
90, [2 9 2 2] 0100 J0l10 o di2

dg'= W 0010 [001 3 15.33
ox'! a Vox? ox? cox? dx
i v/c00K oooJ_ cdx’

The multiplication of the middle matrices supplies:

1000 J100-v/c] | L 00 —v/e
0010|001 0 |7 . :
v/c00JK [000 VK | |v/c001- o

Cc ax

Result that can be divided in two matrices:
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1 00 —v/c 0 00 —v/c

1000
010 0 0 00 O
001 o [=0100011 600 o
2vdx! 0010 2vdx’
v/c001- 0001 v/c00—
2 4.4 2 ;5 4
cdx cdx

That applied to the total differential supplies:

0 00 —v/c

1000 dx!
, 000 0 5
d¢’=a—¢dx'f=[iliz% 34} 01001 0 00 o0 || 4
ox" ox' 9x? ox® cox* |[0010 et |l dx
0001 v/c00-— 2 n Cdx4
cdx
Executing the operations of the second term we have:
0 00 —v/c dx!
2 9.9 9000 0 o5 d 9 .4 vdx D
{——— } 000 O dx3 —l—dx‘—v—dx“——;’d—x4—4 xt
ox' dx? 9x* cox* v/cOO—zrdxi CCZ'C)& c?ox? ox' ¢ dx* ox
Where applying 8.5 we have:
1 1
v d dxl—v( Ldx! 9 |4 2vdx! 0 dxt=zero

c? ox* \ 2 dx# ox4 c? dx* ox*
Then we have:

0 00 —v/c

000 0 )
EEERELE DT -
X OX 0OX COx V/cOO—Zde 4

4
cldx

With this result we have in 15.36 the invariance of the total differential:

36 N 1000 dx; 39

' i 0100 dx i

do=—"—dx'" =| ———— =—"dx’ =d

/ ox'’ " [axl ox? ox® c@x‘i 0010 ax’ | gy’ /
0001 | cdx?

Invariance of the Wave Equation

The wave equation to the observer O is equal to:

vig L 09" _0¢° 09’ 99’ 1 99’ =[a d 9 a}
T a(x4)2 a(xl)2 Ia(x2)2 Ia(x3)2 c’ a(x4)2 ox! 9x? 9x? cox*

coor
coro
o~oo
I,l_ooo
V|
x|x
%} 0~

Where applying 15.24 and the transposed from 15.24 we have:
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B
1o
100 0 Ty g00 VT
2 109> [3 9 9 9 1910005100 Sl IPE
V‘/’z 2 1 23 4 001 0 OOO0100
c a(x4) dx" dx'* dx"* cox’ _V'OOx/F 00(1) oot o J
— - Y3
c 000VK'} %
| cox'*
The multiplication of the three middle matrices supplies:
_v’
1 00 0O 10007 100=2 1 00 -
010046700 cl1lo10 0
0,000 Tootolgs) o [ 001 o
__V, ! — _ o !l
00K [000-1 000YK | | =L 001220
Result that can be divided in two matrices:
100 c 1000 000 c
010 0 10100 000 0
001 0 1 10010 000 0 1
VOQ 1_2"— 000-1 100_2"—2
c? c c
That applied in the wave equation supplies:
R
V’ ] xrl
, 000 |2 = J
V2A1a¢_aaaa 01001 000 0 ox'?
14 o2 8()64)2_ o' ox'? ox'? cox'? 0010 000 0 . i
000-1 100—2\/ o'’
c c’ | 0
cox'* |
Executing the operations of the second term we have
R
' T 11
000 =~ S
Cc —
[aaaa}oooo w2 l__v 9 9 v 9 9 ux
ox ox2ox caxt | 0 00 0 J crox ax*t crox'axt ¢ CF 8(x’4)2
-V’ —2v'u' X" 3
00— | ox
N
| cox'* |

Executing the operations we have:

2v' 9 9 Wu'x'! 92
c2 dx'lox'* 2 ¢ g(x'4)

Where applying 8.5 we have:
2v’( u'x'' 9 \8 2V'u'x'l! 9?2
2\ c2 ox'tlox't ¢ ¢? a(x'4)?

=Zzero

Then we have:
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' 1

000 —~ 5
C
0 0 d0 0 000 0 o2 |
ax!l afo axr3 cax!4 000 0 8 —zero

' 1ol

— — 3
1% 00 2\/1;[ X axr
Cc C

cox'* |

With this result we have in 15.43 the invariance of the wave equation:

"
; 10007 _9_ ,
S {a 9 9 9 }0100 o’ |y ! a¢’
v c2 a(x4)2 ax;l ax;Z axl3 cax!4 0010 a c a(xl4)2
000-1] PYRE
_d
cox'* |

The wave equation to the observer O’ is equal to:

d

1 a¢12 _ a¢12 I I _

Vi 997 9¢° 1 3¢” _[a 9 9
T AT T o T ke T

Where applying 15.23 and the transposed from 15.23 we have:

ox'' 9x'? 9x"® cox'*

9

4 ox!

i (1)(1)8 8 10007100 % 9

V2¢' 12 a¢ 2=|: al a2 a% 84}001 0 8(1)(1)8 010 0 %’
c a(x'4) ox ox” dx” cox VOO\/} 000-1 001 0O i

c 000K | 933

cox

A%
100 0 Tuonafion 2 [1o0 2
001 0 8(1)(1’8 010 0 |=239 0
v 01001 0 1
200K [000-1] J 00 o %00—“%?
C

v v

100 ¢ 10007 200 ¢
010 0 10100 +000 0
001 0 10010 000 O
200_1+2v142x 000-1 XOOZvux

c c c

That applied in the wave equation supplies:
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v ] ox'
) 100071299 ¢ 9
vegL 9¢° [0 9 9 9 ]10100(]000 0 |} 5
c*a(w*f Lox'ax? o’ cax® ] |001 0171000 0 1 9
000-1 Y00 2vux' o’
c c? P
| cox” |

Executing the operations of the second term we have:

v ax

000 o o
[iiia}ooo 0 |ox?|_v 0 9 v o d 2vw' 9
ox'ax? axPcaxt 000 0 9 | 2o ax* c?ax'oxt ¢ ¢ y(t)

XOOZVWCl o

0%

Lox* |

Executing the operations we have:

2v d 0 L 2vux! 02
c2dx! ox* c? ¢? g(x4)’

Where applying 8.5 we have:

2v(—ux1 d \8 L 2vux' 92

c2\ ¢ oxtloxt c? ¢2 a(x+)? —ero
Then we have:
Fa T
T 1
000 X ag
c ||_9_
9.9 9 27000 0 |ar|
ox' ax2 ox® cox* | 000 0 I
200_2‘”?1 o’
¢ e )
Lox* |

9
| ox!
i 10007 9 ,
vig L 20 :[a 9 9 9 }0100 ox’ |_y2g L 99
cza(x,4)z ox' ax? ax? cox* 88(1)_01 i} c 8(x4)2
J ox
d
cox* |

Invariance of the equations 8.5 of linear propagation

Replacing 2.4, 8.2, 8.4B in 8.5 we have:

d ,uxt @ _ 9 v 9 ,1Wx'+v) — 9 _
dx!l ¢? dx* ox'!l c2dx'* 2 JK' \/?ax"‘ —Lero

Executing the operations we have:

0 yux! d _d v 9  ux'' d v 0
ox!  ¢2 dx* ox'' c2ox'* % Jx'4 c?ox'4
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That simplified supplies the invariance of the equation 8.5:

J ,ux' o 0 .u'x' o

T = T =Zero
ox!  ¢2 ox* oJx'' 2 ox'4

Replacing 2.3, 8.1, 8.3B in 8.5 we have:

0 ,ux' 9 _ 9 . v 9  1(—v) =3 _
ax'l 2 ox'4 dx' c2dx* 2 JK ‘/Eax“_zem

Executing the operations we have:

Jd  u'x' o d ,v 0 ,ux' d v d

T = T T
ox'' ¢?2 ox'4 ox! c20x* c¢? dx* c?ox*

=Z€ero

That simplified supplies the invariance of the equation 8.5:

Jd , u'x' d J ,ux' o

T = T
ox'' " ¢c2 ox'4 ox' 2 ox*

=Zzero

The table 4 in a matrix from becomes:

'l 1

px 100—v/c| PX
px’2 _ 010 O px2
3171001 0 3
px px
E'/c 000 \/E E/c
px' | [100v/c] px"
px|_ 010 O px'2
-1001 0 3
px - || PX
_E/c 000\/? E'/c

]')c'1 100-v/c Jx1
72 (010 0 |2
7’71001 0 I
o' | 1000 VK | cp
[ ] [100v/e] grxt
Jx2 _ O 1 O O err2
211001 0 J'x?
cp | |000VK | cpr

Invariance of the Continuity Equation

The continuity equation to the observer O is equal to:

Jx!
=~ dp oJx' dJx* AP Ip [ 0 0 J0 0 } Jx?
V.J+ = f f } =——— =zero
ot ox' ax?  ax® axt | ax' ax? ax® cox* | Jx
cp
Where replacing 15.24 and 15.56 we have:
N 1 00 0 [100v/c| Jx"
=<z, 0p | d 0 9 0 0 10 0 (010 O |Jyx?|_
V.J+ ax4 _|:axv1 ' dx'® cox't 0 01 O 001 O J'x’3 =zero
—1'"/c00VK'  |000VK' | cp'
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The product of the transformation matrices is given in 15.27 and 15.28 with this:

10001 | o 50 VoC |[ax

Wlap{a 9 9 0 } 0100 0 00 0 J'x'?
oax* Lox" 9x'? 9x'® cox'* 2 ! J'x?
0001] |—v'/c002X {7y

2
C

Executing the operations of the second term we have:

0 00 v/c L

0 00 o |[/x
|: a a a a :| 0 00 0 J’x’Q — V' a]x’l lv’ap,szrl/l’le ap,
ox' ox'? ox'* cax'* 2 ! J'X'f c?ox't ox" ¢t ox't

—'/c00
o cp

Where replacing Jx''=p'u’x"" and 8.5 we have:

yu'x'l 9p" '( wx'l 9 ). 2vu'x' op
V'L — o' —=zero
c? ox'4 c? ox'4 c?  ox'*
Then we have:

0 00 v/c 7y
0 00 0 ,'

{3 9 _d_ } 0 00 0 | |=zero
ox'' ox'? 9x"? cox'* wu 't | Ix”
/e 00X

With this result we have in 15.59 the invariance of the continuity equation:

) d 9 9 0 0100 J’x’; 9

= = dp 0100 J'x' <7, 0p

V.J+ = =V

/ ax* {ax’l ax'* ox"? cax"‘} 0010 jx? / ox'*
0001 | cp

The continuity equation to the observer O’ is equal to:

1l
dp' _oJ'x" oJ'x? dJ'x” p’ _{ o d Jd } J'x?

J' f . — 5 |=zero
ox'' 9x'? ax? coxt || J'x

<

ax/4 axvl axvz axr3 ' ax/4 -
Where replacing 15.23 and 15.55 we have:

00 J100-v/c Jx'
00 010 0 |2
10
0

001 0 | g0 |%ere
VK000 VK || cp

ox™ | ox' 9x2 ox® cox?

1
/

The product of the transformation matrices is given in 15.34 and 15.35 then we have:

. 10007 | 0 08 7We Jx!
P02 0900|0100k 0 00 0 []4
001

't [ ax' 9x? ox® cax’ !
X X dx” dx” cox v/cOO—zwéx o
c

Executing the operations of the second term we have:
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0 00 —v/c !

[a 2 9 a} 000 O v vap 2w’ dp

' ax? ax® cox’ 0/c00 Ivux! JJ; Tt w2 ot
LN
c

~
=

Where replacing Jx!'=pux' and 8.5 we have:

vux! 0P (ux' 9 ) vux! 9P

=Zzero

c? ox* ' ¢2 ox* c? ox*
Then we have:

0 00 —v/c 7y

0 00 O
{iii J } 0 00 0 in =zero
ox' ox? ox’ cox* v’ || IX

v/c00-— cp

c

With this result we have in 15.64 the invariance of the continuity equation:

) d 9 9 0 0100 Jx; )

- 0100] Jx* |_g 7, %

V.J'+ = =V.J+—

ax'* {axl ox* ax® caxJ 0010 jx’ ax*
0001 ¢p

Invariance of the line differential element:

That to the observer O is written this way:

10007 dx’
(as) =(dx1 )2 +(d)c2 )2 +(d)c3 )2 —(cdx4 )2 = [dx1 dx® dx’ cdx4] 8 (1) (1) 8 jzg
000-1] | cax*

100 O 100 v i
X 010 0 o999 c | &
(ds) =[ax av?av*eax*[ 001 0 [9395 010 0 ar,
YooK |000-1] 001 O | T

c 000K’

100 0 000100 2 ] [100 =

0100 157090 ¢ lo10 0

001 0 010 0 |=

Voo dE 0010007 ¢ [Floor o

OO0 000k ] [LooThE
Cc ax

Result that can be divided in two matrices:

1 v v
00 c 1000 000 c
010 0 0100|000 0
001 0 “loo1o0|7000 O
Yoo_mvdx | [000-1] |y o =2vidx"
c cdv't c i

That applied in the line differential element supplies:
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10007 9099 V? dx'!
A 342 4110100 000 0 2
(ds)2=[dxldx2dx3cdx4 0010000 o | dx,g
— ! — ! ! 14

c codx'

Executing the operations of the second term we have:

000 - "
Cc dx . 4
A g , 41000 0 dx’? vdx' cdx'
[d)cld)czd)c3cci)c4 000 0 d);’3 =
' _ ' /1 14
Y00 22v dX4 cdx
c c” dx'
Then we have:
VV
000 - !
12
[dx’1 dx'? dx’® cdx'* 8 88 8 zi,g =zero
v 00 _22"' ’dx: cdx'
c c” dx'

+edx'™ [de'l -
c

2y dx'!
¢ dx'*

cdx'® ) =zero

With this result we have in 15.71 the invariance of the line differential element:

(ds)’ = [d)c’1 dx'* dx'? cdx'*

Where replacing 15.15 and the transposed from 15.15 we have:

i 0100 5700 ¢ |G
(as') =lar'ariaricar’] 0 01 0 5400 010 0 | 4
= oo04K | 000-1]00L O |

c 000K L4

(1)(1’88 1000 100_7” oo =
0010 [00%0 010 0 | 919 0
=Yook |000-1]00L O dvdyx!
c 000K T,Voo—1+ zvdx4
C X

-V v
100 c 1000 000 c
010 0 {0100 + 000 O
001 0 1 ~10010 000 O 1
_—VOO—1+2de 000-1 —_vOO2vdx
c cldx* c cldx*

53/128

00
001 | Felaw2 f e ~leaxf =(as)
0

15.71

15.72

15.73

15.74

15.75

15.76

15.77



That applied in the line differential element supplies:

1000 000 _TV dx'
2 0100 000 O dx*
(ds') =[d)cld)czd)c%dx4 0010000 o dfc3 15.78
000-1] | v 2vdx’ || cax*
c cldx?

Executing the operations of the second term we have:

—v
000 - di! o 1
2 _ —
[ax' dx2dx’eax 888 8 Z; ——vdx cdx +cdx4[—vdxl+2—;%cdx4j=zero
c c cTdx
__Vooﬁd_xl cdx*
¢ c* dx*
Then we have:
-v
000 - i
1;2,3 5,41 000 O dx? |
[dx e 1 o |ero 15.79
Vo 2rdx cdx*
¢ ¢ dx*

With this result we have in 15.78 the invariance of the line differential element:

1000 dx;
(ds’)Qz[dxldxzdeCdx4 8(1)(1) 8 Z);; z(dx1)2+(dx2 )2+(dx3)2 —(cdx4)2=(ds)2 15.80
000-1| cax*

In §7 as a consequence of 5.3 we had the invariance of E.ii=E'ii' where now applying 7.3.1, 7.3.2, 7.4.1,

7.4.2 and the velocity transformation formulae from table 2 we have new relations between Ex and E'x’
distinct from 7.3 and 7.4 and with them we rewrite the table 7 in the form below:

Table 7B
g EWK Eee EXVEK
(1_V) 7.38 (1+ v’ ) 7.4B
ux u'x'
E'y'=EyJK 731 | BY=EYyNK 7.4.1
E'z'= EzNK 732 | Ez=EZNK 7.4.2
B'x'=Bx 7.5 Bx=B'x' 7.6
1 1 v 1 1 v' 1 ’
1 1 v ’ 1 v, ’ ’
B'z'=B=7Ey 752 | Be=BTH By 7.6.2
ux L u'x' .,
By=-—Ez 29 B'y'=-——E'z 7.10
C ' C '
Uux L, _u'xt
Bz=—73Ly 791 | BE=TEY 7.10.1

With the tables 7B and 9B we can have the invariance of all Maxwell's equations.

54/128



Invariance of the Gauss’ Law for the electrical field:

OE'xY' OE'Y' OE'Z_p' 8.14
ox  dy  dZ g '

Where applying the tables 6, 7B and 9B we have:

( v ) ExVK | IEyK | ExNK _pJVK
ox c20t)(1—v/ux) 9y ' 0z £,

Where simplifying and replacing 8.5 we have:

[a (—18)1 Ex aEy Ez_p
ox \uxox)|(1 —v/ux) dy 0z &,

That reordered supplies:

[i(l v)—| Ex aEy Ez ﬁ
ox X J(l—v/ux) dy 0z &,

That simplified supplies the invariance of the Gauss’ Law for the electrical field.
Invariance of the Gauss’ Law for the magnetic field:

3By OBy 9Bz
ox' 9y 07

=zero 8.16

Where applying the tables 7B and 9B we have:

(aaxlczaij 'aay(By' ZEZJ az(BZ cszy):O

That reordered supplies:

OBx 0By 0Bz v (0Ez OEy 0Bx -0
dx dy 9z c2\dy o9z ot

Where the term in parenthesis is the Faraday-Henry’s Law (8.19) that is equal to zero from where we have
the invariance of the Gauss’ Law for the magnetic field.

Invariance of the Faraday-Henry’s Law:

JE'y'" OE'x' _ 0B'7
= 8.18
ox' 9y or’

Where applying the tables 7B and 9B we have:

d0,vad 0 ExVK %
(ax c? ot )E J__ay (1-v/ux) __J__(BZ7Eyj

That simplified and multiplied by (1-v/ux) we have:

aEy( v ) _OEx_ 8Bzf )
\ ux) oy at\ ux

Where executing the products and replacing 7.9.1 we have:

55/128



OEy OEx_ 0Bz v (OEy  uxOEy
ox 9y of ux\ ox c¢? ot

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Faraday-Henry’s Law.

Invariance of the Faraday-Henry’s Law:

OE'z OE'Yy' _ 9OB'x'

= 8.20
dy’ 0z or’

Where applying the tables 7B and 9B we have:

oE

JoEz B2 = «/Ean
dy 0z ot

That simplified supplies the invariance of the Faraday-Henry’s Law.

Invariance of the Faraday-Henry’s Law:

oE'x' aE'z’: OB'y’
07 ox' ot'

8.22

Where applying the tables 7B and 9B we have:

0 ExWK (9, v o 9 v
9z (1-v/ux) \ox ¢2 atjEZR_ Rat(By—’_c? EZ)

That simplified and multiplied by (1-v/ux) we have:

oEx aEz(l v ) vaEz(l v): aBy(l v ) vaEz(l v)
9z ox\ ux) c? ot \ ux ot U ux) ¢? ot U ux

That simplifying and making the operations we have:

OEx OEz__ 0By v (0Ez OBy
dz Ox ot ux\ ox or

Where applying 7.9 we have:

0Ex_O0Ez__ OBy v (0Ez, uxaEz)
0z ox ot ux\ ox ¢2 ot )

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Faraday-Henry’s Law.

Invariance of the Ampere-Maxwell’s Law:

dB'y' 9dB'x' oE'7

=u J'7'+€ 8.24
axv ayv Il'l() < ()Il'l() atv

Where applying the tables 6, 7B and 9B we have:

ox 2ot ) 9

That simplifying and making the operations we have:

(a - a)(By: CV2 Ez| aByx:ﬂOJHeoyoJ?%Ezﬁ
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@ 0Bx

1 v20Ez 1 2vuxdEz v 0Ez v 0By 1 v20Ez
ox T)’::UOJZ"‘EOIUO + . - .

"c2c¢2 9t ¢2 ¢ Of c?ox ¢ ot c2c? ot

oEz
ot
Where simplifying and applying 7.9 we have:

oB _
a_;’ agx:ﬂo Jo+E J0Ez 1 2vuxdEz v dEz v ( uxaEZ)

0703 ¢2 ¢z 9t ¢ dx c2\ c? ot

That reorganized supplies

0By 0Bx
WT})—,UO Jz+€

oEz v(uxaEzLaEZ)
oo ot c2\c? ot ox

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law:

Invariance of the Ampere-Maxwell’s Law:

0B’z 0B’y OE'x'
= J'X'+E 1 —— 8.26
ayr aZr Il'lo X oll'lo atr

Where applying the tables 6, 7B and 9B we have:

9, v\ 0 p Vv j_ B 0 ExJK
ay(Bz - Ey) aABy.C2 Ez |=u,(Jx pv)+€0/10\/?—at(l_v/ux)

Making the operations we have:

0Bz 0By _ v (OEy 0Ez s ( v2 2vux \oEx 1
dy 0z ~Ho 2 dy oz HoC™P JTEoky 1'cz c? ) or (1-v/ux)

Replacing in the first parenthesis the Gauss’ Law and multiplying by (1—Lj we have:
ux

@_aBy =U,Jx+E

OEx v 0Bz OBy Y\ v OEx v2( 1 9Ex), 1v20Ex 1 2vuxdEx
ay aZ 0 ()Jx

o5 ‘ux\ dy 0z ) c? ox c2\ux dx ) c2c? ot ¢ 2 ot

Where replacing Jx=pux, 7.9.1, 7.9 and 8.5 we have:

9Bz 9By _ OEx v
ay aZ _ﬂo‘lx+goﬂ0 +

ot  ux

That simplified supplies:

ux 9Ey  ux dEz ) v 0Ex v3(—-19Ex), 1 v’ 9Ex 1 2vuxoEx
2 T2 Hopux 2 T2l 2 T2 2 2 2
c ay c 0z } c ox c kc ot c’c ot c’ ¢ ot

0Bz OBy i Jere, 0Ex , v (OEy 0Ez

0Bz \ v 0Ex 1 2vuxoEx
dy 0z

or c2\ dy 0z ,u0c2p) €t ox c¢? c2 ot

Replacing in the first parenthesis the Gauss’ Law we have:

0Bz aBy: Trte 0Ex v dEx v 0Ex 1 2vuxodEx
dy 0z Ho o T  ax 2 ax 2 ¢ o

That reorganized makes:

0Bz OBy 0Ex 2v( dEx  ux aEx)

9y oz Ho ety or c2\ ox ¢2 ot
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As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law:

Invariance of the Ampere-Maxwell’s Law:

OB'x' OB'z oE"y'
% o y+E M, e 8.28

Where applying the tables 6, 7B and 9B we have:

dBx (d v d v o) 9
o \ax'czat)(BZ czEyj—,quy+£o,uox/f atEyJE

Making the operations we have:

0Bx 0Bz 1,y e, O0Ey 1v20Ey 1 2vuxdEy v JEy v 0Bz 1 v?OEy
9z ox 070 3t "¢2¢2 It ¢ ¢* Ot ¢ dx 2 Ot cic? ot

Where simplifying and applying 7.9.1 we have:

0Bx 0Bz
9z oOx

— 1 Jy+E, g 0Ey 1 2vuxdEy v dEy v ( uxaEyj

of ¢ ¢ o c2ox c2\c? or
That reorganized makes:

0Bx 0Bz _
07 ox

8Ey Vv (ux aEy | aEy
=HoJyrenty o c2\c? o ox

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law:

Invariance of the Gauss’ Law for the electrical field without electrical charge:

OE'x' OE'Y' OE'7
ox' 9y 97

=zero 8.30

Where applying the tables 7B and 9B we have:

( v ) Ev/K OEyWK ExVK _
ox c20t)(1-v/ux) 9y ' 0z

=Zzero

Where simplifying and replacing 8.5 we have:

[a,v(—laj1 Ex OEy Ez
ox  \uxox)|(1-v/ux) 9y oz

=Zzero

That reorganized makes:

d(, v\| Ex | OEy Ez_
[ax(l uxjj(l—v/ux)' dy 0z —rero.

That simplified supplies the Gauss’ Law for the electrical field without electrical charge.
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Invariance of the Ampere-Maxwell’s Law without electrical charge:

B OBY g, 0L
ox'  dy ot

8.40

Where applying the tables 7B and 9B we have:

Jd vJd LV ) 9Bx_ 9
(8)( 2 at)(By 2 EZ} dy —80,uox/?ath«/?

Making the operations we have:

dBy 8Bx_€ OEz , 1 v20Ez 1 2vuxdEz v 0Ez v 0By 1 v20Ez

dx 9y 09 ¢2¢2 dr 2 ¢ O 2 9x c¢2 of c2c? o

Where simplifying and applying 7.9 we have:

9By 8Bx:€ JdEz 1 2vuxdEz v dEz v ( —uxaEZ)
ox dy 0 T 2 ot 2 ox 2\ ¢2 ot

That reorganized makes:

9By dBx_. , Oz v(uxaEzLaEZ)
ox dy 75 c2\c2 ot  ox

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

Invariance of the Ampere-Maxwell’s Law without electrical charge:

0Bz OBY __  JEX

& 8.42
ayr aZr oll'lo atr

Where applying the tables 7B and 9B we have:

9, V) 9,V )_ 0 ExVK
ay(BZ c? Ey) az\By'cz Ez _go'uoﬁat(l—v/ux)

Making the operations we have:

dy 0z

0Bz 0By v 8Ey+8Ez e (1' v2 2vux \oEx 1

dy dz «c? 0T\ ez 2 ) ot (1-v/ux)

Replacing in the first parenthesis the Gauss’ Law without electrical charge and multiplying by (1 - v/ux) we
have:

0Bz OBy OEx , v(0Bz 0By v 0Ex v2( 10Ex), 1 v20Ex 1 2vuxdEx

dy 0z ~Eoth ot ux\ dy 9z ) ¢ ox c>\ux ox ) c2¢? ot c¢? 2 ot

Where replacing 7.9, 7.9.1 and 8.5 we have:

0Bz aBy:g OEx , v (uxOEy uxdEz\ v 0Ex v?(—-10Ex\, 1 v20Ex 1 2vuxdEx
dy 0z oo™, ‘ux\c2 dy 2 9z ) ¢2 dx c2\¢* ot ) c2c? ot 2 ¢* ot

That simplified supplies:
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0Bz aBy_g O0Ex v (OEy 0Ez)\ v 0Ex 1 2vuxdEx
dy 0z ooy, 2\ dy 9z ) ¢ dx ¢ 2 o

Replacing in the first parenthesis the Gauss’ Law without electrical charge we have:

0Bz aBy: c J0Ex v dEx v 0Ex 1 2vuxodEx
dy 0z Moo Ter ax ¢ ox @ 2 o

That reorganized makes:

3Bz By _
dy 0z

0Ex 2v( 0Ex ux dEx
Hol ol 52 ar e o j

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

Invariance of the Ampere-Maxwell’s Law without electrical charge:

anxv aB(szg aEryr

8.44
aZ! axr o/’lo at!

Where applying the tables 6, 7B and 9B we have:

dBx (d v d v oo\ 9
% \ox e at)(BZ 2B )‘SO“ORazEy*/E

Making the operations we have:

dBx aBz_g JEy 1 v20Ey 1 2vuxdEy v JEy v 0Bz 1 v20Ey

0z ax_O”O ot c2c? ot c¢2 ¢2 Ot c¢2 dx 2 Ot c2c? ot

Where simplifying and applying 7.9.1 we have:

0Bx aBz:g JEy 1 2vux0Ey v 0Ey v (uxOEy
oz ax Y T e o o ax el ar

That reorganized makes:

@—@:g aEy 1% (uxaEy | 8Ey
2 ox My Terler ar ¢ ax

As the term in parenthesis is the equation 8.5 that is equal to zero then we have the invariance of the
Ampere-Maxwell’s Law without electrical charge:

§15 Invariance (continuation)
A function f(6)= f(kr—wt) 2.19
Where the phase is equal to € = (kr - wt) 15.81

In order to represent an undulating movement that goes on in one arbitrary direction must comply with the
wave equation and because of this we have:

= zero 15.82

r? r 200 r’ 06* 00?

i{3r_(x2+y2+Z2)}af(l9)+£(x2+y2+zz)azf(l9)_k2 azf(e)

That doesn’t meet with the wave equation because the two last elements get nule but the first one doesn’t.
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In order to overcome this problem we reformulate the phase @ of the function in the following way.

A unitary vector such as

i = cosi +cosaj +cos Pk 15.83
X X

where cosp=—=—, cosa=2=>, cos,Bzzzi 15.84
roct r ct r ct

has the module equalto n = |ﬁ| =+/n.n = \/cos2 P+cos> a+cos> B =1. 15.85

Making the product

2 2 2 2
= - - “\ - = - +vy +
n.Rz(cos +cosoj +cos Pk )()Cl +yj+zk )=c0s¢x+cosay+cos,[)’z:u:r—:r 15.86
r r

we have r=7i.R = cos x + cosay + cos [Fz that applied to the phase € supplies a new phase
o= (kr - wt) = (kﬁﬁ - wt)z (k cos@x+kcosay+kcos fz — wt) 15.87

with the same meaning of the previous phase 8= .

L= w
Replacing r =7.R = cos@x+cosay + cos fz e k=— in the phase @ multiplied by —1 we also get another
c

phase in the form

® :(_1)(kr-wt):(wz_kr):[w[z_iﬂ :[W[z_c‘”@“ “‘”“y“osﬂzﬂ (5.8

C C

with the same meaning of the previous phase (— 1)49 =,

Thus we can write a new function as:

f(@)=f [W(t cosp+cosay+cos Zﬂ 15.89

c

That replaced in the wave equation with the director cosine considered constant supplies:

2 2 2 2 2 2
0s’ ¢+af—(cmw—cos2 0{+af—(cmw—cos2 ﬁ_af—(CMW_Z = zero 15.90

9’ f(®) w*
¢ ob? ¢? odb? ¢? ob? ¢

0P’ ¢’
that simplified meets the wave equation.
The positive result of the phase @ in the wave equation is an exclusive consequence of the director cosines
being constant in the partial derivatives showing that the wave equation demands the propagation to have

one steady direction in the space (plane wave).

For the observer O a source located in the origin of its referential produces in a random point located at the
distance r:ct:w/x2+y2+z2 of the origin, an electrical field E described by:

E=Exi +Eyj + Ezk 15.91
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Where the components are described as:

Ex=E_.f(®)
Ey=E,.f(®) 15.92
Ez=E_.f(®)

That applied in E supplies:

E=E,f(@F +E,f(®)j+E,f(@K=[E,i +E,j+E,]/(®)=E,r(@) 15.93
with module equalto E=\J(E,, ) +(E, J +(E, ) .f (@)= E=E,.f (@) 15.94
Being E,=E i+E j+E_k 15.95
The maximum amplitude vector Constant with the components E,q, E,o, Eo 15.96
And module E, =\/(Em Ve, P+E, ) 15.97

Being f(d)) a function with the phase @ equal to15.87 or 15.88.

Deriving the component E, in relation to x and t we have:

OEx _ . af(cb)acb:E af(cb)a(kr—wt):E af(CID)kx:E of (®) kx 1508
ox Y obd ox ¥ 0D ox Y od r Y od ct

OEx_p (@0, of(@)lkr—wr)_, ¥@)_ ) 15.99

d oD o  od o P

that applied in 8.5 supplies

OEx x/1dEx_ . of(®)9® x/i, (@) _ . M[aﬁﬂ_ﬂaﬁjzm

— } =
i o 0T ax v b ot 0T o Lox o or
af(cb)(ad) x/tadbj oD x/tdd
E ——+ = — = 15.100
© 9d (ax ¢ or wero= ax+62 ot cero

demonstrating that it is the phase & that must comply with 8.5.

=Z€I’0:>—+—2 =zero=—

5 zero=> 5
ox c¢° ot ox c ot ct ¢ ct

o  x/tod a(kr—wt)+x_/ta(kr—wt) kx x/t(_w) x(k_ﬁj_zem
c

w o
as k =— then E, complies with 8.5.
c

As the phase is the same for the components E, and E, then they also comply with 8.5.

As the phases for the observers O and O’ are equal (kr—wt)z(k’r’—w’t') then the components of the
observer O’ also comply with 8.5.

a(kr—wt)+ x/t d(kr—wt) _ E)(k’r’—w’t’)+ X'/t (k' r—w't') — ero 15.101
ox c’ ot ox’ c’ or'
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The components relatively to the observer O of the electrical field are transformed for the referential of the
observer O’ according to the tables 7, 7B and 8.

Applying in 8.5 a wave function written in the form:

W =) = o™ = cos(kx — wi )+ i sin(kx — wt) = cos @ + i sin D 15.102

where [ = \/—_1

Deriving we have:

a—Tz—ksen®+kicos® end aa—\PzwsenCD—wicosdD 15.103
X t
or a—\P:keiq) and a—\Pz—we@ 15.104
ox ot

That applied in 8.5 supplies:

oY oY
a—+x—/2t¥ = zero = (—ksenCI)+kic0sCI>)+x—/2t(wsenCI>—wicos@)z zero
X ¢ c

that is equal to:

(—k+ﬂjsin¢+(ki—mjcoscb = zero

2 2

c’t c’t
r a_‘P+x_/2t8_‘P: zero = (keiq’)+x—/2t(— weiq’)z zero
ox c* ot c

where we must have the coefficients equal to zero so that we get na identity, then:

xw xw
—k+—=zero=> k=—
2
c't c't

. xwi xw
kl——2:Z€I’0:>k:—2
c't c't

; x/t ; xw
(ke’CI> )+—2(— we'® )z zero =k =—-
c c’t

Where applying w = ck we have:

xw  xck X
k=—=—=—=c
c’t ¢t t

Then to meet with the equation 8.5 we must have a wave propagation along the axis x with the speed c.

X
If we apply w=uk and v =—we have:
t

xw  vuk
k=—=—-=u=

2
C

2 2 ’

ct C 1%

A result also gotten from the Louis de Broglie’s wave equation.
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§16 Time and Frequency
Considering the Doppler effect as a law of physics.

We can define a clock as any device that produces a frequency of identical events in a series possible to be
enlisted and added in such a way that a random event n of a device will be identical to any event in the
series of events produced by a replica of this device when the events are compared in a relative resting
position.

The cyclical movement of a clock in a resting position according to the observer O referential sets the time in
this referential and the cyclical movement of the arms of a clock in a resting position according to the
observer O’ sets the time in this referential. The formulas of time transformation 1.7 and 1.8 relate the times
between the referentials in relative movement thus, relate movements in relative movement.

The relative movement between the inertial referentials produces the Doppler effect that proves that the
frequency varies with velocity and as the frequency can be interpreted as being the frequency of the cyclical
movement of the arms of a clock then the time varies in the same proportion that varies the frequency with
the relative movement that is, it is enough to replace the time t and t’ in the formulas 1.7 and 1.8 by the
frequencies y and y’ to get the formulas of frequency transformation, then:

r=tJK = y'= y\/f 1.7 becomes 2.22

t=tJK = y= y’\/F 1.8 becomes 2.22

The Galileo’s transformation of velocities u'=1 —V between two inertial referentials presents intrinsically
three defects that can be described this way:

a) The Galileo’s transformation of velocity to the axis x is u#' x'=ux—v. In that one if we have ux =c then
u'x'=c—vandif we have u’'x'=c then ux = c+v. As both results are not simultaneously possible or else

we have ux=c or u'x'=c then the transformation doesn't allow that a ray of light be simultaneously
observed by the observers O and O’ what shows the privilege of an observer in relation to the other because
each observer can only see the ray of light running in its own referential (intrinsic defect to the classic
analysis of the Sagnac’s effect).

b) It cannot also comply to Newton’s first law of inertia because a ray of light emitted parallel to the axis x
from the origin of the respective inertial referentials at the moment that the origins are coincident and at the
moment in which t = t' = zero will have by the Galileo’s transformation the velocity ¢ of light altered by v to
the referentials, on the contrary of the inertial law that wouldn’t allow the existence of a variation in velocity
because there is no external action acting on the ray of light and because of this both observers should see
the ray of light with velocity c.

c) As it considers the time as a constant between the referentials it doesn’t produce the temporal variation
between the referentials in movement as it is required by the Doppler effect.

The principle of constancy of light velocity is nothing but a requirement of the Newton’s first law, the inertia
law.

Newton’s first law, the inertia law, is introduced in Galileo’s transformation when the principle of constancy of
light velocity is applied in Galileo’s transformation providing the equation of tables 1 and 2 of the Undulating
Relativity that doesn’t have the three defects described.

The time and velocity equations of tables 1 and 2 can be written as:

2
t'=t 1+V—2—&cos¢ 1.7
C &
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2 ’
' 2
t=t’\/l+v—2+—vcos¢' 1.8
C &

V= 1.20
2 . /
c2 c

1+

cos¢'

The distance d between the referentials is equal to the product of velocity by time this way:

d=vt=v't' 1.9

It doesn’t depend on the propagation angle of the ray of light, being exclusively a function of velocity and
time, that is, the propagation angle of the ray of light, only alters between the inertial referential the
proportion between time and velocity, keeping the distance constant in each moment, to any propagation
angle.

The equations above in a function form are written as:

d=elv,r)=¢(v,1) 1.9
'=f(vt,9) 1.7
vV=g(v.0) 1.15
t=f'(v.r'¢) 1.8
v=g'(.9) 120

Then we have that the distance is a function of two variables, the time a function of three variables and the
velocity a function of two variables.

From the definition of moment 4.1 and energy 4.6 we have:

E _

p=—i 16.1
c

The elevated to the power of two supplies:

2 2

u C 2
uw_c 16.2
CZ EZ

Elevating to the power of two the energy formula we have:
2

m,c 2
E'=| == | 2E -E "=mc’
- ¢
2
c
Where applying 16.2 we have:
2 2
EZ—Ezu—2=m§c4:>E2—EZ%p2=m§c4:>E=c\/p2+mgc2 4.8
c

From where we conclude that if the mass in resting position of a particle is null m_ = zero the particle
energyisequalto E=cp. 16.3
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That applied in 16.2 supplies:

2 2 2 2
U € p’=U - € ploy=c 16.4

¢’ (cp)

From where we conclude that the movement of a particle with a null mass in resting position m_ = zero will

always be at the velocity of light u =c.

Applying in E =c p the relations E=yh and c=yA we have:

h
yh=y\p= p=% and in the same way p'=— 16.5

ﬂ/v
Equation that relates the moment of a particle with a null mass in resting position with its own way length.

Elevating to the power of two the formula of moment transformation (4.9) we have:

2

p=p-Li=p’=p’+

2
E HE
C C C

= Vpx

Where applying E =c p and px:pcos(b:pﬂ we find:
c

2 2
/ 2
p'2=p2+(6p4) vz—ngpﬂz p'=p l+v—2— v?x:>p’=p\/K 16.6
c c c c c

Where applying 16.5 results in:

p'=px/?:>%=%\/E:>/l’=i or inverted /lzL 2.21

JK JK'

Where applying ¢ = yA and ¢ = y'A" we have:

y'=yvK orinverted y=y'vK' 2.22
In § 2 we have the equations 2.21 and 2.22 applying the principle of relativity to the wave phase.
17 Transformation of H. Lorentz

For two observers in a relative movement, the equation that represents the principle of constancy of light
speed for a random point A is:

X'2+y'2+Z'2—CZt'2=X2+y2 +z2 —c?t? 17.01

In this equation canceling the symmetric terms we have:
Nesta cancelando os termos simétricos obtemos:

x"? el = x? P2 17.02
That we can write as:
(x’—ct’)(x’+ct’):(x—ct)(x+ct) 17.03

If in this equation we define the proportion factors 77 and (4 as:
(x'—ct')zﬂ(x—ct) A
(X'+ct')=,u(x+ct) B

17.04
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where we must have 7.4 =1 to comply 17.03.

The equations 17.04 where first gotten by Albert Einstein.

When a ray of light moves in the plane y'z’ to the observer O’ we have x’ = zero and x = vt and such
conditions applied to the equation 17.02 supplies:

2
0-c*t?=(vt) —’t? » =t |[1-V 17.05
C

This result will also be supplied by the equations A and B of the group 17.04 under the same conditions:

2
(0—ct J—V—ijn(vt—ct) A

C

17.06
2
(0+ct‘/I—Z—ZJ=,u(vt+ct) B
From those we have:
17.07
Where we have proven that n.u=1.
From the group 17.04 we have the Transformations of H. Lorentz:
x'= (";”)x+(”;77)ct 17.08
ct'= (’u;n)x+(n—|2—'u)ct 17.09
x:(";ﬂ)x'+(77;ﬂ)ct' 17.10
ct= (”;ﬂ)x'+(”;ﬂ)ct' 17.11
: ntu u-n n-u.
Indexes equations 5 5 and 5 ¢
1+ 1-Y 1+ Y4+ 1-Y
ntp=|—C4|—c-_c _c _ 2 j”;“: ! 17.12
-2 \1+7 \/I—V\/HV \/l_vz v’
c c c o2 o2
1-v |+ vV 2V L7 _v
U-n= - |—<=—=c < = < = 5 = = 17.13
1+ \1-7 \/1+V\/1—V \/ _v’ v
C C C 2 2
c c
1+ 1-Y 1+ Y -1+Y 2Y _ v
n—i= c c _ c _ c__ n—u c 17.14
v v v v 2 2 2 '
== \1+= 1-Y 1+Y |;_v" _v_
c c c c o2
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Sagnac effect

When both observers’ origins are equal the time is zeroed (t = t' = zero) in both referentials and two rays of
light are emitted from the common origin, one in the positive direction (clockwise index c) of the axis x and x’
with a wave front A; and another in the negative direction (counter-clockwise index u) of the axis x and x’
with a wave front A,.

The propagation conditions above applied to the Lorentz equations supply the tables A and B below:

Table A
Equation Clockwise ray (c) | Equation Counter-clockwise ray (u) | Sum of rays
Result Result
Condition x,=cCt, Condition x,=—ct,
17.08 x'.=Uct, 17.08 x' =-Tct,
X’C = ll'lXC X’u = nXu X'C +X'u = ﬂxc +77Xu
17.09 ct'.=pct, 17.09 ct',=nct, ct' +ct',=uct_ +nct,
x'.=ct', x' =—ct',
Table B
Equation Clockwise ray (c) Equation Counter-clockwise ray (u) | Sum of rays
Result Result
Condition x' =ct', Condition x' =—ct',
17.10 x, =1ct', 17.10 x, =—pMct',
XC = nX'C Xu = lLlX'u XC + Xu = ﬂx'c +ﬂx'u
7.1 ct,=nct', 7.1 ct,=Muct', ct,+ct, =nct' +uct',
X, =ct, x,=—ct

We observe that the tables A and B are inverse one to another.

When we form the group of the sum equations of the two rays from tables A and B:

D'=ct'_+ct',=puct_+nct A
{ ° © ! 17.15

D=ct_+ct,=nct'_+uct', B

Where to the observer O’ D'=A , <> A_ is the distance between the front waves A, and A; and where to the
observer O D=A, <> A_ is the distance between the front waves A, and A..

In the equations 17.15 above, due to the isotropy of space and time and the front waves A, <> A_ of the

two rays of light being the same for both observers, the sum of rays of light e times must be invariable
between the observers, which we can express by:

D'=D=ct' +ct',=ct_+ct,=>2t'=>t 17.16

This result that generates an equation of isotropy of space and time can be called as the conservation of
space and time principle.

The three hypothesis of propagation defined as follows will be applied in 17.15 and tested to prove the
conservation of space and time principle given by 17.16:
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Hypothesis A:

If the space and time are isotropic and there is no movement with no privilege of one observer considered
over the other in an empty space then the propagation geometry of rays of light can be given by:

et |=|ct’,| and |ct,|=|ct’,| 17.17
This hypothesis applied to the equation A or B of the group 17.15 complies to the space and time
conservation principle given by 17.16.

The hypothesis 17.17 applied to the tables A and B results in:

ct'.=puct' A
Quadro A c !
ct',=nct’, B 718
ct_,=n1nct C .
Quadro B c !
ct,=MUct, D

Hypothesis B:

If the space and time are isotropic but the observer O is in an absolute resting position in an empty space
then the geometry of propagation of the rays of light is given by:

et |=|et,|=let] 17.19
That applied to the table A and B results in:

ct'.=puct A
Quadro A
ct',=nct B
17.20
t=nct' C
Quadro B ©
t=puct', D
2
ct'.=u-ct' A
c ! 17.21
ct'u:ﬂzct'c B
Summing A and B in 17.20 we have:
+
ct'_+ct' —2ct(772’uj:>D'=D(77 ’uj:>D'— 17.22

=) t'=
F F

This result doesn’t comply with the conservation of space and time principle given by 17.16 and as D'#D it
results in a situation of four rays of light, two to each observer, and each ray of light with its respective
independent front wave from the others.

Hypothesis C:

If the space and time are isotropic but the observer O’ is in an absolute resting position in an empty space
then the propagation geometry of the rays of light is given:

et |=let,|=let] 17.23

That applied to the tables A and B results in:

ct'=uct A
Quadro A c
ct'=nct, B
17.24
ct_ =nct' C
Quadro B c
ct,=uct’ D
ct, =772ctu A
{ =,uzctc . 17.25
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Summing C and D in 17.24 we have:

tl
ct_ +ct, =2ct'(77+7’uj:>D=D'(ﬂ+’u Z— 17.26

D'
—j:>D=—:>Zt:
2 V2 V2
- -
C C

This result doesn’t comply with the conservation of space and time principle exactly the same way as
hypothesis B given by 17.16 and as D'#D D'#D it results in a situation of four rays of light, two to each
observer and each ray of light with its respective independent front wave from the others.

Conclusion

The hypothesis A, B and C are completely compatible with the demand of isotropy of space and time as we
can conclude with the geometry of propagations.

The result of hypothesis A is contrary to the result of hypothesis B and C despite of the relative movement of
the observers not changing the front wave A, relatively to the front wave A; because the front waves have
independent movement one from the other and from the observers.

The hypothesis A applied in the transformations of H. Lorentz complies with the conservation of space and
time principle given by 17.16 showing the compatibility with the transformations of H. Lorentz with the
hypothesis A. The application of hypothesis B and C in the transformations of H. Lorentz supplies the space
and time deformations given by 17.22 and 17.26 because the transformations of H. Lorentz are not
compatible with the hypothesis B and C.

For us to obtain the Sagnac effect we must consider that the observer O’ is in an absolute resting position,
hypothesis C above and that the path of the rays of light be of 27R:

ct' . =ct',=ct'=27R 17.27

For the observer O the Sagnac effect is given by the time difference between the clockwise ray of light and
the counter-clock ray of light At =t_—t, that can be obtained using 17.24 (C-D), 17.27 and 17.14:

2V
ZxR( c 4RV
At=t_ -t =t'(n-p)= = 17.28
c L ]_Vz o /C2_v2
2
C

§9 The Sagnac Effect (continuation)

The moment the origins are the same the time is zeroed (t = t' = zero) at both sides of the referential and the
rays of light are emitted from the common origin, one in the positive way (clockwise index c) of the axis x and
x’ with a wave front A; and the other one in the negative way (counter clockwise index u) of the axis x and x’
with wave front A,.

The projected ray of light in the positive way (clockwise index c¢) of the axis x and x’ is equationed by
x.=ct_ and x'_=ct'_ that applied to the Table | supplies:

r — VC r — — ’ V'C — r r
ct'.=ct,_| I— = =ct'.=ct K. (1.7) ct_=ct' | I+ = =ct.=ct'_K', (1.8) 9.11
VC VC V'C V'C
V. ==V = (1.15) V,=——<—=>V_.=—— (1.20) 9.12

) 1 _Ye Ke ) 1+ v'e ° K
c c
From those we deduct that the distance between the observers is given by:

d.=v_ t. =v'_t', 9.13
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Where we have:

(J—EJ(HVC}KCK'C:J
C C

The ray of light project in the negative way (counter clockwise index u) of the axis x and x’ is equationed by

x,=—ct, and x' =—ct', :that applied to the Table I gives:

u

t' =ct ]+£:>t’=tK 1.7
ct',=ct, - ct',=ct,K, (1.7)

v o=

1

v
ct,=ct', (]—T”

1
v = Vu

=V

u []_V'uj u Ku
C

):>ctu =ct' K", (1.8) 9.15

r

v
=—'u (1.20)

From those we deduct that the distance between the observers is given by:

— — T
du_vutu_vutu

Where we have:

(EA A
C C

We must observe that at first there is no relationship between the equations 9.11 to 9.14 with the equations
9.15109.18.

With the propagation conditions described we form the following Tables A and B:

Table A
Equation %?}f@;ise ray of Equation l(i;thir}tue)r clockwise ray of Sum of the rays of light
Result Result
Condition |x_.=ct,_ Condition |x,=—Ct,
1.2 x'.=ct K, 1.2 x',=—Cct, K,
x'.=x_K_ x' =x,K, x'+x' =x_K_+x,K,
1.7 ct'.=ct_K_ 1.7 ct',=ct, K, ct' +ct',=ct_K_+ct, K,
x'.=ct', x' =—ct',
Table B
Equation %?}f@;ise ray of Equation l(i;thir}tue)r clockwise ray of Sum of the rays of light
Result Result
Condition |x'.=ct', Condition |x',=—ct',
1.4 x, =ct'_K', 1.4 x,=—ct' K',
x. =x'_K', x,=x" K', X +x,=x'_K'_+x',K',
1.8 ct.=ct'_K', 1.8 ct,=ct' K', ct.+ct,=ct'_K'_+ct' K',

X, =cCct_

We observe that for the rays of light with the same direction the Tables A and B are inverse from each other.
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Forming the equations group of the sum of the rays of light of the Tables A and B:

{D’=ct’c+ct'u=cthc +ct K, A 016

D=ct_+ct,=ct'_K'_+ct' K', B

Where for the observer O’ D'=A <> A_ is the distance between the wave fronts A, and A; and where for
the observer O D=A, <> A_ is the distance between the wave fronts A, and A..

In the equations above 9.19 due to the isotropy of the space and time and the wave fronts A <> A_ of the

rays of light being the same for both observers, the sumo of the rays of light and of times must be invariable
between the observers, which is expressed by:

D'=D=ct' +ct' ,=ct_+ct,=>2t'=>¢t 9.20

This result that equations the isotropy of space and time can be called as the space and time conservation
principle.

The three hypothesis of propagations defined next will be applied in 9.19 and tested to prove the compliance
of the conservation of space and time principle given by 9.20. With these hypotheses we create a bond
between the equations 9.11 to 9.14 with the equations 9.15 to 9.18.

Hypothesis A:

If the space and time are isotropic and there is movement with any privilege of any observer over each other
in the empty space then the propagation geometry of the rays of light is equationed by:

{ctc=ct’u:>tc=t'uz>vc=v'u:>Kc=K'u A o1
ct,=ct' . =>t,=t'.=>v,=v =K, =K', B

With those we deduct that the distance between the observers is given by:

d.=d,=v it =v'_t'_=v,t, =v t', 9.22

Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.

Hypothesis B:

If the space and time are isotropic but the observer O is in an absolute resting position in the empty space
then the propagation geometry of the rays of light is equationed by:

ct_=ct,=ct

V.=V, =V B 9.23
v.it.=v,t,=vt C
With those we deduct that the distance between the observers is given by:
d.=d,=vt=v'_t' =v' t', 9.24
Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and

time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.
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Hypothesis C:

If the space and time are isotropic but the observer O is in an absolute resting position in the empty space
then the propagation geometry of the rays of light is equationed by:

ct'.,=ct',=ct' A
vo=v' =V B 9.25
v' t'.=v' t =v't c

With those we deduct that the distance between the observers is given by:

d.=d,=v't'=v_t_ =v,t, 9.26

c u

Results that applied in the equations A or B of the group 9.19 complies with the conservation of space and
time principle given by 9.20, showing that the Doppler effect in the clockwise and counter clockwise rays of
light are compensated in the referentials.

In order to obtain the Sagnac effect we consider that the observer O’ is in an absolute resting position,
hypothesis C above and that the rays of light course must be of 27R:

ct' =ct',=ct'=27R 9.27

Applying the hypothesis C in 9.11 and 9.15 we have:

v'
t,=t' K'.=t, =t'(]+?) 9.28

V'
t, =t K',=t, =t'(1—Fj 9.29

For the observer O the Sagnac effect is given by the time difference between course of the clockwise ray of
light and the counter clock ray of At =t_—t that can be obtained making (9.28 — 9.29) and applying 9.27

making:

At=t,_-t, =t'(1+1)—t'(1—1j =2Vt ARy 9.30
c c c c

2vie  2v t, 2vt

c—Cc __ u-u
c c
the propagation of the clockwise and counter clockwise rays of light in a circumference showing the
coherence of the hypothesis adopted by the Undulating Relativity.

In 9.30 applying 9.12 and 9.16 we have the final result due to v, and v ,:

The equation At = is exactly the result obtained from the geometry analysis of

_2vt'_4aRrv'_ 47Rv,  47Rv,

At=t_-t = 9.31
© Y e c’ —CV, c’ +cv,
The classic formula of the Sagnac effect is given as:
At=t_—t, =RV 9.32
c’-v
From the propagation geometry we have:
Ar=2VE 9.33

(&}

The classic times would be given by:
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t=—"— 9.34
c

o _27R 9.35
c—v

g, =228 9.36
ct+v

Applying 9.34, 9.35 and 9.36 in 9.33 we have:

At:ZV 27ZR:47ZJZQV 937

C C c
Atc:2v 27R _ 427Z'RV 938
c (C—V) c’—cv
At _2v 27R _ 47Rv 939

Yoc (C"‘V)_cz +cv

The results 9.37, 9.38 and 9.39 are completely different from 9.32.
§18 The Michelson & Morley experience

The traditional analysis that supplies the solution for the null result of this experience considers a device in a
resting position at the referential of the observer O’ that emits two rays of light, one horizontal in the x’
direction (clockwise index c) and another vertical in the direction y’. The horizontal ray of light (clockwise
index c) runs until a mirror placed in X’ = L at this point the ray of light reflects (counter clockwise index u)
and returns to the origin of the referential where X’ = zero. The vertical ray of light runs until a mirror placed in
y’ = L reflects and returns to the origin of the referential where y’ = zero.

In the traditional analysis according to the speed of light constancy principle for the observer O’ the rays of
light track is given by:

ct'.=ct',=L 18.01
For the observer O’ the sum of times of the track of both rays of light along the x’ axis is:

St =t’c+t’u=£+£=2—L 18.02

In the traditional analysis for the observer O’ the sum of times of the track of both rays of light along the y’
axis is:

St =t 4t =Ly L-2D

= 18.03
c ¢ c¢

As we have Xt'. =>t', =2?L there is no interference fringe and it is applied the null result of the
Michelson & Morley experience.

In this traditional analysis the identical track of the clockwise and counter clockwise rays of light in the
equation 18.01 that originates the null result of the Michelson & Morley experience contradicts the Sagnac
effect that is exactly the time difference existing between the track of the clockwise and counter clockwise

rays of light.

Based on the Undulating Relativity we make a deeper analysis of the Michelson & Morley experience
obtaining a result that complies completely with the Sagnac effect.

Observing that the equation 18.01 corresponds to the hypothesis C of the paragraph §9.
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Applying 18.01 in 9.19 we have:

D'=ct'_+ct',=ct K. +ct,K,=D'=L+L=ct_K_+ct,K,
18.04
D=ct_+ct,=ct'_K'_+ct' K',=>D=ct_+ct,=LK'_+LK',=L(K'_+K',) B
From 18.04 A we have:
D=2L=ct_|I-"= 1+ '=20= 18.05
= =ct, —? +ct, +? =>D'=ZL=ct_—v t_+ct,+v,t, .
Where applying 9.26 we have:
Ay _ _2L
D'=2L=ct.+ct, =Xt =t +t, == 18.06

In 18.04 B we have:

v’ v’
D=ctc+ctu=LK1+ Cj+(]— ”ﬂ 18.07
c c

Where applying 9.25 B we have:

D=ct_+ct,=2L=>Y¢, =tc+tu=%L 18.08

The equations 18.06 and 18.08 demonstrate that the Doppler effect in the clockwise and counter clockwise
rays of light compensate itself in the referential of the observer O resulting in:

St =3t =3, :Z?L 18.09

Because of this, according to the Undulating Relativity in the Michelson & Morley experience we can predict
that the clockwise ray of light has a different track from the counter clockwise ray of light according to the
formula 18.08 obtaining also the null result for the experience and matching then with the Sagnac effect. This
supposition cannot be made based on the Einstein’s Special Relativity because according to 17.26 we have:

St #ESE, 18.10
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§19 Regression of the perihelion of Mercury of 7,13”

Let us imagine the Sun located in the focus of an ellipse that coincides with the origin of a system of
coordinates (x,y,z) with no movement in relation to denominated fixed stars and that the planet Mercury is in
a movement governed by the force of gravitational attraction with the Sun describing an elliptic orbit in the
plan (x,y) according to the laws of Kepler and the formula of the Newton's gravitational attraction law:

- —GM m . —\667.10"\198.10°°)328.107), —k
F=—OMm, g ! %8 \ )r:—fr 19.01
r r r

The sub index "o" indicating mass in relative rest to the observer.

To describe the movement we will use the known formulas:

Fpf 19.02
g:ﬂ_d(r r )zﬂﬂr@& 19.03
t dt dr dt
2 2
Lﬁ;g_g:(ﬂj +(r@j 19.04
dt dt
— 2= 32( A 2 2
R B 19.05
t dft  dt dt dt dt dt  df

The formula of the relativity force is given by:

- d| mu m, m, udu m, [ w’ ). (.di\u
F=— = a-+ = sl I—— et u— | 19.06
dt\/ u’ \/] u’ 2) L c dt )c

c dt
ol e ey (1 -
C CZ C

C2
In this the first term corresponds to the variation of the mass with the speed and the second as we will see
later in 19.22 corresponds to the variation of the energy with the time.

With this and the previous formulas we obtain:

2
(e ot
c dt dt dr dt

Fe "M 19.07

+£d_2r_(¢] ¢drd¢ d¢ 1(
di| ar* \dt dt dt dt c?

{(1__](12 r(d¢j2]+{ﬂ[d_22r } drd¢ 49 ¢J 1 dr} .
ar’ dt dt| dt dt dt dr’ )| dt
d

(l—uz/cz)m drdg  d%¢) |dr| d*r drdg._ d |
(1—-}(2 rdg ., ¢J+{ r[ ( ¢” (/’( rdg ¢J rdg|;
drdt  df dr| dr? dt d dt dt dt A dt

19.08
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In this we have the transverse and radial component given by:

. om, L& (dg 2\ arla®r (aeY | dg ,drdg  d’¢)| 1dr|,
Fee—"<3\ 1= =" | [TV =" T2+t 5
(J_MZ /62)’ c” )| dt dt dt| dt dt de\ dtdt dr” )|c”dt

2 2 2 2
G Mo |, W, drdg  d’0) |dr\d’r_ [(doY'| déf drdo d°¢ rd¢¢
O a2 ENdrdear ) | di e a“arar "l )| ar

19.09

19.10

As the gravitational force is central we should have to null the traverse component Ii}:zero so we have:

fom |, W’ drdp d’p drd_zr_r(@jz L, 49 drdg, d’¢ rd¢ b=zero
¢ (1 uz/c /2 Tadr " | arla? a\“drar a2 ar

From where we have:

dt dt dt 2 didi dr dt di’ | ¢ dt dr dt

|

From the radial component ﬁr we have:

(49 ydrdg  d*9
P M, d’r (d¢j ]_u_2 LJdr, di didi de’ )| 1dr )
" (1-ws) | ar ) |dt o [ar (dﬂ ¢ dt
ar’ \ dt
That applying 19.12 we have:
d¢(rdrd¢j
Ao M, d’r [d(/?j J W), Jdrdi\cCdidi)| 1dr|,
" (1—wr)” arr dr ) lar 1(dr\V] [ dt

That simplifying results in:
[dz (d¢”
- ar’ dt
F=—r
e
¢’ dt

r

This equaled to Newton's gravitational force results in the relativistic gravitational force:

)
am a \dt) | —GMm,, —k,

P r=
\/1—”2 1 drY o
c dr

77/128

19.11

19.12

19.13

19.14

19.15

19.16



As the gravitational force is central it should assist the theory of conservation of the energy (E) that is written
as:

E=E +E, = constant. 19.17

Where the kinetic energy (Ey) is given by:

-1 19.18

And the potential energy (E,) gravitational by:

_—GM_m, —k

E - 19.19
4 r r
Resulting in:
E=mc’ L__||-k=constant. 19.20
U
C2

As the total energy (E) it is constant we should have:

dE_dE, dE,
i St F 19.21

dr dt dr

Then we have:

= — 19.22
dt 3 Edt
u
1=
c
dE, kdr
= 19.23
dt rdt
Resulting in:
dE _dE, dE, mu du kdr mu du —kdr
—=——+—=zero= 7t =zero= TS 19.24
dt dt dt ngt rodt ngt ro dt
u u
I——2 1_7
c c
This applied in the relativistic force 19.06 and equaled to the gravitational force 19.01 results in:
-~ m _ 1 kdr_. —k,
F= Z =7 19.25

a U
2 2 2

uwooccrdt r

1=

c

In this substituting the previous variables we get:
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2 2 2 _
pen e a0V, [pirds, SOl 1 ki, dog)
]_u: dt dt dt dt dt A r7di\dt dt r

2
C

From this we obtain the radial component ﬁr equals to:

. d’r (doY | 1k(drY —k
F=—"% —Z—r—¢ -5 = = 19.27
/] u’| dt dt ¢ ri\dt r
CZ
That easily becomes the relativistic gravitational force 19.16.

From 19.26 we obtain the traverse component 17;3 equals to:

2
Fo=—" (zdrd¢+rd? ]zkdrd(b:zem 19.28
¢ \/ W\ dtdt df’ ) Crdtadt
c2
From this last one we have:
2
21ﬁﬂ@+r2d—§/j 2
dt dt dt :] k_dr Ji u 19.29
rz@ m i dt\ ¢ '
dt

As the gravitational force is central it should also assist the theory of conservation of the angular moment
that is written as:

L=rXp=constant. 19.30
L=rxp=rx—rl = ppx— e (ﬂﬂr%éj: ™, r2%(f”><é): m,_,2d9p 19.31
\/ ; u? \/] W\dt dt W dt ; W’ dt
c c’ ¢’ c’

- dé—~  »
= r2—¢k=Lk=constant. 19.32

u dt

1=
c

A

dL_d(tk)_a()  rLalk)_a(w)

dt dt dt  dt

d\L
=zero—>——-=zero 19.33
dt

Resulting in L that is constant.

A

dk
In 19.33 we had ?:zem because the movement is in the plane (x,y).
t
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Deriving L we find:

dr_d| _m, Zrzﬂ :]2 miu__du dp, _m, 2( rdg ?zzero 19.34
di di| [ W’ dr| ¢y oNddroodr u\ dr di - di
1—— u 1——
N .
C
From that we have:
drdg ,d’¢
dt dt dr’ —u dul
19.35

- 2 2
r2i¢ (]_u) dt c
dt 2

Equaling 19.12 originating from the theory of the central force with 19.29 originating from the theory of
conservation of the energy and 19.35 originating from the theory of conservation of the angular moment we
have:

drd¢+r2 d’¢| —ldr d*r (d¢j

dr di | dr? ) di|df "\ ar k dr [ W —u dul

_ == I—= 19.36
/2 d¢ ; 1 (drj mcr dt c (

From the last two equality we obtain 19.24 and from the two of the middle we obtain 19.16.

For solution of the differential equations we will use the same method used in the Newton's theory.

1
Let us assume w=— 19.37
r

ow -1
The differential total of this is dWZa—dr:>dw=—2dr 19.38
r r

dw —1dr dw —1dr
From where we have — = e —=—— 19.39

d¢ 2 de - di P dr

2
ff): L oi-e 19.40
t mr’ c
dr_ L dr
From where we have —= -— 19.41
dt myr d¢
-L u’
Where applying 19.39 we have ﬂz—j—; 11— 19.42
dt m
That derived supplies ; dg di d( Ldw 1 19.43
de’ dr dpdi| m, d¢\/
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Where applying 19.40 and deriving we have:

—de ] _dzw uw dwd ( u’ H
— I——+——| [I—— 19.44
a’ mr \/ d¢Lm d¢\/ \/ ldg " ¢ dpdy V&

In this with 19.36 the radical derived is obtained this way:

2 —
d /I u I udu_ k dr(] : kdw( : 1045
dt \/] —u?/ctc’ dr mc dtk ¢’ ) me dtk c

d u2 -1 udu  k dr( uz) —k dw( ]
el Y 19.46
dg\ | V=2 dd mer d¢\ mc d¢k

That applied in 19.44 supplies:

d’r -I w’| d’w uw ok (dw u’
—=— 1 > > 1 3 1- — 19.47
dt” m)r c’| do ¢ mgc kd¢ c
Simplified results:
3
dr Pk (, i Yfdw) I ([, \dw
2 322 I__z o 2.2 19.48
dt” mc’r c do) m)r k c )d¢

Let us find the second derived of the angle deriving 19.40:

2 2\
d ?Zi L i uz 2L dr / u2 B / 19.49
dt” dt\myr ) omy’dt mr dtk

In this applying 19.42 and 19.45 and simplifying we have:

%)

2 2 2 >
d’p_ 22Ljdw(] u 3L12<4dw(] i’ 16,50
dt© mr d¢\ me'r d¢\ c’

Applying in 19.04 the equations 19.40 and 19.42 and simplifying we have:

Sl
== 1- + 19.51
m, dp) r

The equation of the relativistic gravitational force 19.16 remodeled is:

ﬂ—{dﬂ - iy (drﬂ —k 19.52
C

a’ '\ dt dt) |mr’

In this applying the formulas above we have:

3
Lk I u’ 2 dw r (I uﬂdzw | L ] u? 2_ ] u? ] ](—de /I u’ 2—‘ —k
mjczrz d¢ mfrzk cz)d¢2 mr’ Al c’ czkmo do c’ Jmor2

o
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322]_u_2 SRR | Rrye A==
mcr ¢ \d¢) mr do° m'r ¢ myr
r ] wd'w I ] u2_—k
mfrz c’ dq)2 mfr3 c’ mor2
d’w 1 mk
d¢2Tr_ 2 u’
L I—?
d’w 1_ mk
@ r :
m, 2@ ]_u:
u2 dt C2
=z
2
dzwi]:m"k ]_?
d¢’ r m2r4(d¢j2
? t

d¢2 Ird¢2Tr2 ) 8(d¢J4
2\ dt
K’ B
(dZWJZ 2dw 1 K 2"
d¢’) rd¢’ (d;ﬁj ) (w}
o\ dt >\ dt

)42
(dZWJZ 2d°w 1 K’ |\t dt

d&’ v 2 2 4 4
¢ rdg- r mzrs(ﬂwj mzrs(ﬁwj
>\ dt  \dt
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i K(drY K[ doY
(dsz ¢2d2wLI: k? A\dr AU dt

rdg’ r’ mzrg[‘wI m2r8(d¢J4 mzrg[wI
o \dt o \dt o \dt

K(arY
, k| dr
(dsz L2dw 1 K A\ dg k?

A& 272 4 2 2
¢ rd¢- r mzrs(wJ m2r8(d¢J m2C2r6(d¢J
o\ dt o \dt ’ dt

K[ adw ’
, K| _2aw
d’w L2a’2wLI k’ ¢’ do k’
d¢2 Ird¢2lr2: d¢4 d¢2 d¢2
mjﬁ(j mfrg(j mfc2r6(j
dt dt dt
K (awY
, K| aw
(dsz 2dw 1K \dg K

d¢2 rd¢2 r? mfr8(d¢j4 m5r4(d¢j2 m3c2r6(d¢j2
dt dt dt

In this we will consider constant the Newton's angular moment in the form:

L=+’ @
dt

That it is really the known theoretical angular moment.

dwY 2dw 1 KK (aw) K
d¢’ | rd¢2Tr2 m’l! mjc2L2Kd¢ m’c’r’L

2. \? 2 2 2 2 2
dV;’ +2d_v:2W+W2: kz 7 zkz 2(@ zkz 2W2
dg dg m’l mL\dg) mcL

2. \2 2 2
d v;z +2d v;w+w2=B—A @ —Aw’
d¢ d¢ d¢

2. \? 2 2
(Z;;] +22¢VZVW+A(%J +(A+1w*—B=zero

Where we have:

k2
2 272
mc'L

o

A=

k2

2714
mL

[

B=
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The equation 19.54 has as solution:
w:iD [] —8c0s(¢\/ 1 +A+¢o)]:> w:iD[] —8c0s(¢Q)] 19.57
&l &l

Where we consider @ =zero.

It is denominated in 19.57 Q°=I+A . 19.58

The equation 19.58 is function only of A demonstrating the intrinsic union between the variation of the mass
with the variation of the energy in the time, because both as already described, participate in the relativistic
force 19.06 in this relies the essential difference between the mass and the electric charge that is invariable
and indivisible in the electromagnetic theory.

From 19.57 we obtain the ray of a conical:

&D &D

]—Scos(¢\/ ]+A):>r:]—8c0s(¢Q) 19.59

Where & is the eccentricity and D the directory distance of the focus.

1
==
w

Deriving 19.57 we have @=QSLW 19.60
d D
2 2
That derived results in d v;:Q COS(¢Q) 19.61
dg D
Applying in 19.54 the variables we have:
2 g 2 g
d_vzv +2d—v2Vw+A dw +(A+])w2 —B=zero.
de de de
Q4COS2 (¢Q)+2chos(¢Q)|_I—&‘cos(¢Q) +AQ2sen2(¢Q)+(A+I{I—Ecos(¢Q)T _B=zero 19.62
D’ D | e D’ ))
0'cos’lo0), ,0%coslo0) ,0°cos’lo0), 0 0% cos’00), ., ,{I—ecos(m)T_ e
D’ D’ D’ D D D
0" co’ 00), 0 corlo0) ,07cos’0), 07O cos’l00) (a+1) (asikosloo) (a+ikos’o0)
D’ D’ D’ D’ D’ e’D’ D’ D’
(Q4—2Q2—AQ2+A+1\“’52(¢Q)+(2Q2 24_2 )C"S@’Q):AQ; % (é”z) B=zero 19.63
) p? eD €D eDJ p D D

In this applying in the first parenthesis Q°=1+A we have:

(0'—20" -AQ” + A+ 1)=|1+ AY 21+ A)- A1+ A)+ A+ 1]=(1+2A+ A’ —2-2A— A- A + A+ 1)=zero
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In 19.63 applying in the second parenthesis Q°=I+A we have:

20° 24 2 ) [2(1+A) 24 2
= =zero
eD &D &D eD eD &b

The rest of the equation 19.63 is therefore:

AQ? +(A+I)

D Tep TR

The data of the elliptic orbit of the planet Mercury is [1]:

Eccentricity of the orbit £€=0,206 .

Larger semi-axis = a = 5,79.10"m.

Smaller semi-axis b=av I—& =579.10"°\[1-0,206% =56.658.160.305,80m .
eD=all-£7)=579.10"(1-0,206> }=55.442.955.600,00m .

,_ali=¢?)_579.10"(1-0,206°)
e 0,206

=269.140.561.165,00m .

The orbital period of the Earth (PT) and Mercury (PM) around the Sun in seconds are:
PT=3,16.10"s.

PM=7,60.10°s.
The number of turns that Mercury (m,) makes around the Sun (M,) in one century is, therefore:

7
N=]00M=415,79.
7,60.10

7
Theoretical angular moment of Mercury:

2
r =(r2 %J =GM0a(]—82 )=6,67.10‘“ 1,98.10°579.10" (1—0,2062 ):7,32212937427.1030

(GMym,) (M) (6:67.107F (1.98.10F

_ -8
er T er (0.10%f 7,32.10) memdn

11y 2
s (GMom, Y (M, (567107 P (198107 _ 325.10-2

m; L’ L (.52.10f

Q=+ 1+A=41+2,63.10"° =1,000.000.013.23

Applying the numeric data with several decimal numbers to the rest of the equation 19.63 we have:

AQ? (A+]) B_2,65.10‘8(1,000.000.0]3.23)2I 2651078 +1

=22 _ =30
TR S ~—3,25.107%=8,976.10
D* &°D (269.140.561.165,00) (55.442.955.600,00)

Result that we can consider null.
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We will obtain the relativistic angular moment of the rest of the equation 19.63 in this applying the variables
we have:

AQ*  (A+1) (Gm,)[ ;
D2

+

(GMO)Z} ! [l+(GM0)2} (GM0)2=zer0 19.71

£’D?> _c2L2D2L 212 'gZDZL 212 I

2 2
e1’(GM,) {H (Gji/ILOZ) }+L4c{]+ (GQ/ILOZ) }czgzlf (GM, )’ =zero
C C

2 2
(GMO) +L'c*+L¢? (GMO) —czezDz(GM0)2=Zer0

e'L’(GM,) +&°L(GM, )’ e Iz

(GMm,)’

2
C

e’ (GM, ) +&° +L'+ 1 (GM, ) —c*e’D* (GM ) ) =zero

4
c'L"+\U+e“ \GM ) L+ ——————c“€“D“\GM , )" =zero 19.72
2.4 ( ZX 0)2 2 Z(GMzO) 2¢2p2( 0)2
c

—(1+e’\om, ) + \/ (1+e2 X, ) | —4c?| &2 (GMZ" ) _cterp? (GM,)

[’ = ¢

2¢?

o —(1+e2Yom, ) (1+e? Y (GM, ) ~4€* (GM, )’ +4'e*D* (GM, )

- 2¢?

. —(1+e?)om, ) £\ (1+267 +e* NGMm, ) ~4€*(GM,))' +4¢* €’ D (GM,
B 2¢?

. (1+e?)om, P (M, ) +2¢*(GM,)' +€* (GM,, )’ ~4€7(GM )’ +4c*€* D* (GM )
B 2¢?

(1+e2 oM, ) +y(GM, )’ +&*(GM, )’ 27 (GM,, )’ +4c*€* D* (GM,
2¢?

2__

2 2 2 4 4 2 2 2
r'= [ree’om,) +‘/(] e'f (Gm,) +ic'e’D’ (G, —7.32212927328.10% 19.73

2

2c

This last equation has the exclusive property of relating the speed c to the denominated relativistic angular
moment that is smaller than the theoretical angular moment 19.66.

The variation of the relativistic angular moment in relation to the theoretical angular moment is very small
and given by:

-1

g 732212927328, 107-7,32212937427.10" B
72.503.509,00

=—138.10"°
7.32212937427.10"°

19.74

That demonstrates the accuracy of the principle of constancy of the speed of the light.
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In reality, the equation 19.06 provides a secular retrocession perihelion of Mercury, which is given by in
Ap=2741 5,79(é—]j:27r4 15 79(—0,000. 000.01 3.23):—3,46. 107rad. 19.75

Converting for the second we have:

-5
A= 346.10 .]80,00.3.600,002_7’]3,,. 19.76
T

This retrocession, is not expected in Newtonian theory is due to relativistic variation of mass and energy and
is shrouded in total observed precession of 5599. "
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§§19 Advance of Mercury’s perihelion of 42.79”

If we write the equation for the gravitational relativity energy Eg covering the terms for the kinetic energy, the
potential energy E, and the resting energy:

_ 5 1 2 moc2
E,=m | —=——-1|+E +m " =—=—+E_. 19.77

2 2

u u

e e

Being the conservative the gravitational force its energy is constant. Assuming then that in 19.77 when the
radius tends to infinite, the speed and potential energy tends to zero, resulting then:

moc 2
E,=——+E_=m_cC 19.78
R u2 P o
1-—=
C

Writing the equation to the Newton’s gravitation energy Ey having the correspondent Newton’s terms to the
19.77:

mou2 k 5 5
Ey,= ——+m.c’=m.C 19.79
2 r
m_u’ -
Where —2 is the kinetic energy, — the potential energy and moc2 the resting energy or better saying
r

the inertial energy.

From this 19.79 we have:

mou2 k 2 2 mou2 k ; 2k 2GM m ,  2GM,
——+mc'=mc = =—=u = = u” = 19.80
2 r 2 r m.r m.r r
Deriving 19.79 we have:
dE, d(mu® k
=— ——+mo” [=zero
dt dtl 2 r
m 2udu k dr
—+——=zero
2 dt r-dt
pdu__—k dr_=CMo dr
dt myr®dt r’ dt
du_—6M; dr
dt r’ dt
du —-GM,
L= 19.81
dr r
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Making the relativity energy 19.78 equal to the Newton’s energy 19.79 we have:

E,=E,=>————+E =—2—-—+4m_c 19.82
u? 2 r
e
2 2 2
m,c +E_p: m,u”  GMgm, | mgC 19.83
m 1_L2 My me2 mer Mg
O C2

E
(p:_P 19.84
mO
We have:
2 2 GM
C =8 _—T0o4?
1_1)_2 2 r
2
c
2 GM 2
U Tt & 19.85
2 r l_u2
o2

1 u’
=1+— 19.86
u? 2c
1=-=3
c
We have
2 GM 2
p=" "o 4c? —cz(l+u—2j
2 r 2c

That simplified results in the Newton’s potential:

u®  GM, , u® —GM,

(0:?— +c’—c —7: 19.87
r r

Replacing 19.84 and the relativity potential 19.85 in the relativity energy 19.78:

GM, c
E,=—F/F—+m_ | —— tc——— 19.88

c
o
\)
=
-

1—— 1——
c? c
We have the Newton’s energy 19.79:
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Deriving the relativity potential 19.85 we have the relativity gravitational acceleration modulus exactly as in
the Newton’s theory:

—-d
a= 4
dr

= = R S 4t —

dr dr| 2 r u?
1-=

c

Lo—dfu’ eM, | _df <

dr{ 2 r dr u?
1-—=%

c

Where we have:

-d{u®* 6M, ,| -d[E, Lo
— = +cC :d_ — |=zero. Because the term to be derived is the Newton’s energy
r

dr{ 2 r m,
o B, u® &M, , _ _
divided by m, that is — = 7——+ c’ that is constant, resulting then in:
m r

u? gdr
1-—=
< 1

In this one applying 19.81 we have:

-1 GM,
a= - 19.89

B
1-—=
C

The vector acceleration is given by 19.05:

2
2 IR
5= ﬂ_r(d_?’j f+{2@d_¢+rd_¢j|¢
dt? dt dt dt  dt?
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The relativity gravitational acceleration modulus 19.89 is equal to the component of the vector radius (r

thus we have:

d’r  (d¢Y’ -1 GM,
a= PR ol B 3 2
dt dt 2\3 r

u

1-—

C

Being null the transversal acceleration we have:

dt dt dt

249

That is equal to the derivative of the constant angular momentum L=r gt

=zero

dL d d drd d?
e e
dt dt dt dt dt dt

Rewriting some equations already described we have:

ow -1
dw=—-dr=dw= —2dr
Jor r

dw _ —ldr dr 2o'lw ddw —-1dr

dp ridg C dp  ag T ar o at

dr d¢dtdr Ldr_ -L dw dr dw

dt dtdgdt r’dg r’ d¢ dt de

dzr_i(er dgdt d_  dw) L d( dw -1’ d’w
dt® dtldt) dtdedt d¢ ) r? d¢ d¢) r° d¢’

From 19.90 we have:

LS d2r_r(d_¢)2 _—GM,
2¢” ) dt? dt r’

In this one we 19.94 the speed of 19.80 and the angular momentum we have:

[ 3 (2em | -1?a*w (L) | oM,
1- 2 2 PR =T
| 2c r r° de¢ r r

L 36M, 1) d’w PEAECE
c? d¢® r 17

91/128

19.90

19.91

19.92

19.93

19.94

)



36M, 1\d*w 3Gm, 1)1 GM,
1= 7 R el
c” r)de¢ c” r)r L

d’w 36M_d’wl 1 3GM_, 1 GM
2 2 ot T T
d¢ c® d¢°r r ¢ r L

=Zero

d’w _d'wl 1
2—A 2—+——A—2—B=zero
de d¢°r r r

d’w d’w 5

5 —A 2w+w—Aw —B=zero
de d¢
d’w d’w B

—A wW—Aw +w—B=zero

de¢’ de’
Where we have:

3GM, GM
A= B

c L

The solution to the differential equation 19.95 is:

w :L[l—€COS(¢Q+¢O)]2W =L[l—é‘cos(¢Q)].
ED &ED

Where we consider ¢ =zero
Then the radius is given by:

1 D éD
r——o—moo-——— > r=-—
w 1—é&cos(¢Q) 1—£cos(¢Q)

Where € is the eccentricity and D the focus distance to the directory.

d 2 2
Deriving 19.97 we have d_W: Qsen(¢Q) and d’w = 9 COS((’])Q)

D de¢’ D

Applying the derivatives in 19.95 we have:

d’w d’w 5
2—A 2W—Aw +w—B=zero
d¢~  d¢
chos(¢Q)_Achos(¢Q)i
D D &ED

Q" cosl) AQ” cosléo) [1—ecos(¢e)1—gz%[1—zecos(¢Q)+eZcosz(@H

D D’
chos(¢Q)_ AQ2COS(¢Q)+ AQ° COS(¢Q)€COS(¢Q)—

D &’ &’

A A A, 1 1
— +——2€cos — E°cos +———&cos —B=zero
eD* €D’ (90) £°D’ (90) & & (90)
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19.95

19.96

19.97

19.98

19.99

[1-ecos(@0)]- 8:‘32 [1-ecos(@)f +8—1D[1—€cos(¢Q)]—B= Zero

}—B:zero



2 2 2 2
cos(¢Q) Qz_AQ _|_2_A_1 +AQ cos (¢Q)_Acos (¢Q)_ A + 2 Besero
D £ €D D? D’ £D° €D
2 2 2 2
cos(@)(@z_AQ +2_A_1]+AQ COSZ (¢Q)_A0052(¢Q)_ A; _+ 1 2 —sero
AD &ED &ED AD AD AED AED A
2 2 2 2 2
D A & & A D D €D AED A
2 2 2
cos2(¢Q)(Q2_1)+COS(¢Q)(Q__Q_+£_£J_%+L_E:zero 19.100
D D A & & A ED AED A

The coefficient of the squared co-cosine can be considered null because Q=1 and D? is a very large
number:

2
—Cosz(m)(Q2—1)=ZerO 19.101
D

Resulting from the equation 19.100:

B
—+— +————=zero 19.102
D A & & A

cos(¢) Q2_Q2+2 1) 1 1
eD’ neD A
Due to the unicity of the equation 19.102 we must have the only solution that makes it null simultaneously

the parenthesis and the rest of the equation, that is, we must have a unique solution for both the following
equations:

0> 9* 2 1 1 1 B
———+———=zero and ———+————=zero 19.103
A & & A ED AED A

These equations can be written as:

1 1 1(1 2

[azb]:>———=—2 -z 19.104
A & Q°\A &b
1 1 ¢DB

[a=c]>=-—="FZ 19.105
A & A

In these ones the common term a =——— must have a single solution then we have

A &

1(1 2 DB

[bzc]:>—2 ——— | = 19.106
Q"\A &b A

With 19.96 and the theoretical momentum we have:

3GM, GM, EDGM,
A==—2¢ B= L’ = £DGM, £DB = =

c 17 L

1 19.107
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It is applied in 19.105 and 19.106 resulting in:

1 1 1
[a=c]lm - — ==

A & A

1(1 2 1
el {122

o°\aA &b A
From 19.108 we have the mistake made in 19.105:
1 1 1
———=—=——=7ero
A & A &ED

1 -1

- = =-1,80.10"" =zero
ED 55.442.955.600,00

From 19.109 we have Q:

1(1 2) 1 2A 2 3GM
—(———J:—:Q2=1——:>Q2:1—— °

A D & ¢

It is applied in 19.104 resulting in 19.110:

1 1 1(1 2)_1 1 1 (1 2Y .1 1 1
A & Q'\A & AgD(l_ZAjAgD A & A
£
From 19.112 we have:
oo 8o _ |- 6(6,67.107)1,98.10%)
enc’ (55.442.955.600,00)3.10°)

That corresponds to the advance of Mercury’s perihelion in one century of:
ZA(I):A(I). 415,79 =[L— ] 1.296.000,00.415,79=42,79
Q

Calculated in this way:

In one trigonometric turn we have 36 0X60x60=1.296.000,00" seconds.

The angle ¢ in seconds ran by the planet in one trigonometric turn is given by:

1.296.000,00
Q

$0=1.296.000,00=¢=

If ©>1,00 we have a regression. $<1.296.000,00.

If 0<1,00 we have an advance. ¢ >1.296.000,00.
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=0,999.999.920.599

19.108

19.109

19.110
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19.112

19.113

19.114



The angular variation in seconds in one turn is given by:

_1.296.000,00
Q

Ag —1.296.000,00=(£—1J1.296.000,00.

Q
If Ap<zero we have a regression.

If Ap>zero we have an advance.

In one century we have 415,79 turns that supply a total angular variation of:

ZA(])ZA(]). 415,79=(l—1} 1.296.000,00.415,79=42,79”
Q

If ZA(]) <zero we have a regression.

If ZAd) >zero we have an advance.

§20 Inertia

Imagine in an infinite universe totally empty, a point O' which is the beginning of the coordinates of
the observer O'. In the cases of the observer O’ being at rest or in uniform motion the law of inertia requires
that the spherical electromagnetic waves with speed ¢ issued by a source located at point O' is always
observed by O', regardless of time, with spherical speed ¢ and therefore the uniform motion and rest are
indistinguishable from each other remain valid in both cases the law of inertia. To the observer O’ the
equations of electromagnetic theory describe the spread just like a spherical wave. The image of an object
located in O’ will always be centered on the object itself and a beam of light emitted from O" will always
remain straight and perpendicular to the spherical waves.

Imagine another point O what will be the beginning of the coordinates of the observer which has the
same properties as described for the inertial observer O'.

Obviously two imaginary points without any form of interaction between them remain individually and
together perfectly meeting the law of inertia even though there is a uniform motion between them only
detectable due to the presence of two observers who will be considered individually in rest, setting in motion
the other referential.

The intrinsic properties of these two observers are described by the equations of relativistic
transformations.

Note: the infinite universe is one in which any point can be considered the central point of this
universe.

(§ 20 electronic translation)
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§21 Advance of Mercury’s perihelion of 42.79” calculated with the Undulating Relativity

Assuming ux=v
ux—v _ V—V

2 B 2
v°  2vux ve 2vv
\/1+2_ 2 \/1+2_ 2
c c c c

(2.3) u'x'= =ux'=zero

Ux=v Ux'=zero

(1.17) dt'=dt ZVUX_dt‘/ 2VV s gpr= 1/1——
2
(1.22) dt = dt’\/lJrVZ 2R g |17 2000 g
C C C
VZ V,2
dt'=dt,[1-L dt=dt" |1+
C C

v _
1-Z 1+% =1
c c
V:L V=V
1477 |1 v’
c? c?
dt>dt' v<v' vdt=v'dt'
. _‘7! _‘7! . _‘7!
(1.33) v= = —v=
\/1+V'2+ 2V'U X' \/1_’_‘/'2 ZV'(O) 1+V7'2
c? c? c c? c?
(1.34) ¥'= — = = = Pl=——
v°  2vux ve 2vv v
\/1+2 2 \/1+2_ 2 \/1—2
c c c c c
s —p=— ¥
v Ve
1+ 1-v
c c
dr=drr+rdr=—dr dr'=—drr—rdr=—dr
rdr=drrr+rrdr=dr rdr'=—drrr—rrdr=—dr
- A . 2 2
‘7:_1’:M:@f+rd_¢¢ V2:‘7‘7:(ﬂj +(rd_¢j
dt dt dt dt dt dt
. o A A 2 2
pedl oCrd)_(dr,, d0g vimg=(2) (- 22)
dt’ dt' dt' dt' dt' dt'
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z_dv _dr_dlef)_ {dr (d_¢j2}f+(2£d_¢ d¢j¢

dt dt’ dt* |dt? \dt dtdt dt’
2 ~
é‘ dV dl; d > 2 - 2dr d¢+rd¢2 ¢
dt' dt' dt' dt' dt'dt' dt'
o ¥
2
1-V_
2
_~,_d(—V’)_ d ( v dt d( v _ l+v_'2£ v
dat' ozt'ul_v2 dt'dt \/_‘,2 ¢’ dt| || v
C2 C2 c2
_ dv V'2 1 VZ av - V2
a' o = +—2 > l——z——v— ]___2
c (v c” dt dt c
c’)
[ 121
S AV ve 1 1_vedv_c1(, v 2 2(-2vdv
Toar 2 2 2 2 >
c (1_vj codt 2 c c” dt
2t
2 2
= _dv' _ 1+V2 1 _ l_v_zﬂ 1 VdVV2
dt' ¢ [V c” dt v dtc
c’ =2
c
- 12 2 -
~3=-9V - 1+ L 1—— 1-v-dv, 1 ,dvi
dt' c (1_vj c” dt _v? dtc
¢’ ol

—ma= —moé' _ —-m, dv'_ 1, lr(l Vzwdﬁ_i_vdv{/:
\/1+V-2 \/vaz dt' ( szzi_ c?)dt  dtc?
2 2 11—
C C 2
C
F'=—m'3'= _moa' T dv'
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B, =[F(aw)=| ﬁ.df:j‘—];fdf
r

Ek=ff' -(—df')=j§.dfzj —o @(_df.)zj m,

, 2 dt'
V'
1+ 5
C

_ \/sz_ (1—V§TL

1 1
B, jmvdv _J’ mvdv —k myv'dv' _ mvdv -k

2 3
2 c 2
; c
v2
E, mc 1+ ﬁ=—+constant

12 m CZ
ER:mocz,/l-l-V— ~X_constant ER=°——£=constant
c? r v: r
11—
2
2 2 2
mc myv mcC
ER:o—Z_EZmOCZ_Fo__E ER=O—2_£=mDC
v: T 2 r (f oo
1-— 1YL
2 2
c c
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2
1 V dV dVV dr= I—rdr
dt dt c?

21.16

21.17

21.18

21.19
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E GM GM
1 _ ER + k21 H: R2 A: k O‘m >
\/l—vz mc® mcr mc mc”  mcC c
2
c
3
L__gial 1 3-(H+Aij
1_L2 = ( V2)2 r
C2 1—72
c

L=rXv= rrx(—r+r d¢¢j:r2d_¢(fx¢3):r2d_¢];
dt dt dt

L=PXV=Fx—YL _=r#x (dr + d—¢¢) 1 rzd—¢(f><¢A)=r2d—¢]2
/1+v'2 / v'2 dt'  dt' 14v”  dt! dt
2 2
c
L=r ¢k Lk = constant L:rzd—¢
dt dt
1 1
dEkszV av' _ mOVdV3 =—]2<dr—_—]2<rdr
\/1+V'2 Ve d
C2 1—?
ﬂ:ﬁﬁ: m, 3——dV_—_]2{f.dr_—_]2<f‘7
dt 2\, dt r° dt
v
%)
c
F=—Ta __-kp

= m d’r d_¢2 A £d¢ d¢ K2
AP 3{dt2 r(dtj }{2& g de? }D} =

dg 1, dr__.dw d’r _—I’ d’w d’ _2r dw
dt r? dt d¢ dt? r? d¢? dt? r’ d¢
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21.29
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2
= _  m —I7 d’w L) |a_—k=x
Ff_ o 3 > - —2) ——2r 21.33
2\, | ¥ d¢” \r r

2
M
;{MJA} , 21.34

30 2
M
(H+Al) dw, 1|5 21.35
r)\d r L
2
(H+3AA) dw, 1)|_GM,
rAd r L
2 2
Hd—Vg+Hl+3Ad—V§i+3Ai2= GDfO
dg r d¢” r r° L
2 2
Hd—pg+Hw+3Ad—T’gw+3Aw2— GD;'[O =zero
d¢g d¢ L
H= ERZ A= k2=GMOIZO=GD§° B=—GD§O 21.36
mc mc mc c L
O @) O
o d°w T H d°w 2
— w+3A—2w+3Aw —B=zero 21.37
de d¢
_ 2 _ "2
w=l=L [ tecos(po) dw _=0sen(¢0) d’w _—0’cod¢0) o138
r &D de D d¢f D
2 2 2
H_QC—OS(¢Q)+HL[1+€COs(¢Q)]+3A_QC—OS(¢Q)L[1+€cos(¢Q)]+3A{L[1+€cos(¢Q)]} —B=zero 21.39
D £D D £D £D

—QZH%@@+H$+H$£CO s(@)—%%@@h +&£co s(¢Q)]+% +2ecos(g0)+ £co sZ(¢Q)]—B =zero

2 2
_geosld) 1 | cosld0) 30%acoslpo) 302 coslgD) .. (s0)+
D &ED D &ED D &ED D
32 . 3A
+—=2
D’ €D’

2ecos(p0)+ 832‘22 g cos(¢0)-B=zero
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_gcoslfQ) 1 codgo) 30°Acodgo) ;n,cospo)
D D?

D &D D &D
+ 32A2+6A COS(¢Q)+3ACOS (¢Q)—B=zero
&ED” e D D’

_rgcostp0) , ,coslen) 30% coslgn) , 6a coslgd)

D D & D & D
2
_30?4C0S (¢Q)+3AC052(¢Q) 1, 34
D’ D D &D°
30%A , 6A \cos(#o) 2 )cos(¢Q) 1,34 o
—Q°H+H-— +2£ +-30°a+34 +H—= —B=zero
( &0 e) D ( D? 0 e

2
(_3Q2A+3A)%[()¢2@ ( Orin_ 302 eacoslgO) 1 3a B .

e D) 3aD 3AeD 3A£D* 3A

(1—o?)cos ), ( o’H,H_0* 2)cosg0), H 1 B

=Zero
D? 34 3A F5ib) 8D ) D 34D  €°D? 3A
2
2 2\cos (o) _
o =1 (l—Q )T—Zero
A2 2
( OH,H _Q*,2)coslgo), H , 1 _B_, .,
3 3A &b €D ) D 3AeD €°D° 3A
—COS(¢Q)=Zero: H + 212 B =zero
D 3AeD &£D° 3A
2 2
&@Q)izero: QH H_o +——zero
D 34 3A &D €D
A2 2
QH_}_i Q +i=zero —H +—l —£=Zero
34 3A & &b 3AeD €°D? 3A
[a b]:>_+L:%(H+L) [a C’]:> +L—@
34 & Q ED 34 &0 3A
2
EDGM  EDGM
?=1 =2 =1 epB="—"e="""o=]
mc” mgcC L €DGM0
[a b]:>—+L:;(H+ 2j:>i—zero [a C]S—-I-L:LSL—ZGIO
34 & 1\3A éD D 34 & 3A €D

EDGM_ _ €DGM
EDB= 2= o=1
L'  €DGM,
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[b:c]ji(i+i):L
0°\34a &D/) 3A

Q2:H+6_A

&ED

Q=Q(H) The regression is a function of positive energy that governs the movement.

E
H= R2=moc2—l 0?=1+54 Regression
mc® mgc ED
[a:b]:gi:;(LjLi):Lzzem
34 €D (l+6Aj 34 ep)  eD
&D
_ "2 2
3A8D(ﬂ+i—Q—+L)zzero 3A82D2(L+ 1 —ijzzero
34 3A &D €D 3AeD €°D? 3A
M
H=Ee 2= CM, p=Cl
mc c? I

—Q°HED+HED—Q?3A+6A=zero
—QX~3A+€D)-3A+€D—-03A+6A=zero
0%3A—0%€D+ED—Q3A+3A=zero

—Q%€D+ED+3A=zero

HeD+3A—€eD(eDB)=zero

HED=-3A+&D

Q2:1+3_A

&ED

This regression is not governed by the positive energy
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2
C

- 2 / 2 - 2
-_dv _ \% -1 v dv' -, d \s
a—g— 1_?—‘2{ 2 dt'_vg( l+ 2]
14V c c

_ ( - |_ /1 vi d| =¥
2 il 2 2 il 2
dt dt \/1+V'2 dt dt L\/va c? dt \/HVV

5.dv_ v -1 /1+v_ﬁd_x?_§';(1+v_@)2 27(@@)
dt ¢’ (1+v'2j ¢’ dt' 2 ¢’ ¢’ dt'

s_dv_ [ vi  —1 /l+v_'2dx7" 1 adv' v
dt CZ( v'zj c” dt' \/1+v'2 de' ¢

52dP_ v -1 |1 2\/1+v_'2d_x7'\/1+v_'2 1 av'd
V'

2 2 2 > V2
dt c (14“72) \/1+2 c \/1+v‘2 dt'c
c c c
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B, =[FdF=[F" (-dF)= I—r_J;f(_ )

b= [Fa=[F far)-| \/lmovz ggdf-j( -m;jﬂ(l: LR ) [hsar
"2 Y

C

e V2 o |
B = [T g df o[ T (1+V—2jdx7'd—r—v'd ! IﬁAdr
2 dt 2\ c dt' dt’
1-= (1+Vj
C C2

\4

2
C

2 g >
Ek:Iﬁdvvzj%Kl+c jdv v'—v dVV;/:| I—dr
1= "2
o2 (1-% j

2 2
Ek:J- mOVdV_ o 3 (1+ 'Zjdv’v'—v’dv’v—'z}z —_];dr
2 1+
C c2

B, J'mvdv myv'dv' (1+V—'2—V—'2j: _—kdr
\/1_V '2
2 1+c

B, IdeV_I mv'dv' _ =k 4y dEk:monV: mOVdVB:_—];dr
2

2
1— v ,2 2 r \/l_v '2 r
\/ e (1+ 7 j 2 1+

C

2 —mcC
E.=-mc’ 1-¥ K —constant ERZ—O—ﬁzconstant
c? r v? r
1+
2
2 2 2
g= ko o2 MV k po_—MC _k__ 2
R o2 T > - R (0)2 o )
I+ 1+32-
c c
- E
1 —= B k2 1
v' mc mc r
P+
E GM_m, GM
H=—" A= k2: =
mc mc mc c
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=H+A=

3
1+V7‘2 - (1+V12j2 r

f,'=f'><x7=—rf>{ (drf+ 95 j} 2d¢(r><¢) A

dt' dt' dt'
D= xt'=—rix——Y dr r (i) =1 rzd—q)(f’xa)):r2 df k
V v dt dt’
e e
f,':rzd—¢]2=L‘]2 L':rzd—¢
at' at'
1 1
dE, = movdx; __mv cZV3 ——J;dr—%rdr
v 2\, T r
\/1_2 (1+V'2j2
c c
E, = ~dr ~os
d ]j:F'V': dls §v'dv:=£2J:dr::£2rv'
dt 2\, dt' r° dt' r
v
(1+C2j
L
r

Fr= M, - dl;_r(d_¢j ~_ Zdr d¢ ¢2 ¢ 2r
S22 dt' dt' dt' dt' dt' r

—I¥ d’w d’¢ _ 21 dw

d¢ _ 1 dr __.,dw d’r _
=L -2 P 2 3
r° d¢ dt' r- d¢

dt' r dt' d¢ dt”
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g W g= Ly3pdw wl +3Ai2=—_GMo
d¢ r d¢” r r
2

d' °=zero
d¢’

E GM

H=—" >
mc

d’w

HJ+Hw+3A—w+3AW +B=zero

ag

wzl:L[l+Ecos(¢Q)]

&ED

H%+H6‘%h+&‘co S(¢Q)]+3A%€LD[1+8CO S(¢Q)]+3A{$[l+8co s(¢Q)]}

—Q2H cos((/?Q)_’_HL

D

—-O°H
D
3A 3A
424 28
ep’ ep?

&D

dw_~0sen(go)
d¢ D

+HL eco s(m)—ﬂ&()[l +ecos(go)] +
€D &D D

_GM

i

d’w _—0 cod¢0)

dg’

&ED

—2_2ecos(@o)

D
3A

&ED D &ED
(p0)+B=zero
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5 cos(¢Q)+HL+HcOS(¢Q)_3Q2A COS(¢Q)_3Q2A COS((/jQ)gcos(quH

D

D

2

21.70

21.71

21.72

21.73

21.38

21.74

L+2€cos(¢Q)+6‘ cos ¢Q)]+B zero



_pcosd), 1, codd) xiacodtsn)_yz,costoa),
D &ED D &D D D?

3A +6A cos(¢Q)+3Acos (¢Q)
SD ED D D

+B=zero

_QzHcos(¢Q)+Hcos(¢Q) 30°A cos(¢Q)+6A cos(po)

D D &ED D & D

_3gaC0S#0) 35 c050) 1 | 38
D’ D’ & €D

2 2
(—Q2H+H 3QA+6—A\COS(¢Q)+(—BQ2A+3A)&2(¢Q)+HL+ A B=zero

ep &) D D e &D°

2
(—3QZA+3A)%¥Q) ( OPrin_ 302 6acosleD) , 1 . 3 B .

e D) 3AD 3AeD 3A£D* 3A
b Qz\cos(¢Q)+( O°H, H_Q* 2)\cosl), H . 1 B _zero 21.75
A 3a e &) D a0’ 3a

2
0*=1 (1—92)%2(@:2@0 21.76

D
2 2
(_QH+i 0, 2 |coslgd), m L +B —zero 21.77
34 34 &b &) D  3AeD €D° 3A
COS@Q)_Zero:> H--+ 1 +£i=zero
D 3AeD €D 3A
2 2
—(:()S(¢Q);«'&zel”o:>_QH+i O 42 —zero
D 34 3A &D €D
2 2
—OH H_O 42 cero S +£—Zero 21.78
34 3A & &D 346D €°D* 3A
[a=p]= L+ —1(H+i) [a=c]=> L+ 1 =_£€DB 21.79
3A ED Q 3A &D 3A &D 3A
2
- DGM_ _€DGM
0?=1 =2 =TMC epp=PCM, _EDCH, _,
me®  mg I  €DGM,
a=pl=LL L‘l([” ZJSL—ZHO b=cs 2+ t=L ol zero
34 & 1\3A &D) &D 34 & 3A D
[b= c]z_(iJrL):__SDB 21.80
0°\3a D 34

EDGM, EDGM
EDB= = °=1 21.81

I  &DGM,
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[b:c]:g(i+i):_L .
0°\34 &D 34 &D

Q=Q(H) The advance is a function of negative energy that governs the movement

E. —mc?
H=—"E =0 =1 QZ:—(—l)—6—A:>Q2:1—6—A Advance
mc*  mc? &D &D
o= b]j—_1+L:;(—_1+i)jizzero
34 &D (1_6Aj 3a &)  ep
£D
. 5N, 5_CGM,
moc2 c? ®
A2 2
QH.*.i Q +i:zero A + i +£:Zero
34 3A €D &D 3AED €£%D? 3A
Y 2
3A€D( OH,H 0 +¥i)=zero BAEQY(—iL—+—j;—+£ij:zero
34 3A €D &D 3AeD €£°D? 3A
—O°HED+HED—Q?3A+6A=zero HED+3A+&£D(eDB)=zero
EDGM_  €DGM
EDB= 0= °0=1 HED=—3A—€D

¥  &DGM,
—QX~3A—€D)-3A—€D-Q3A+6A=zero

O BA+0’€D—ED—0O?3A+3A=zero

Q’€D—€D+3A=zero 0?=1-34

eD
This advance is not governed by negative energy
—QO’HED+HED—Q*3A+6A=zero
—QX~3A—€D)+HED—QBA+6A=zero
Q°3A+Q%€D+HED—QO?3A+6A=zero
Q’€D+HED+6A=zero O?=—H _i_zg

+—=zero

_ "2 2
(ﬂ+i_Q_+L\COS(¢Q)+ H , 1 ,B
34 3A &D eD) D 3AeD €£°D° 3A

2 2
3A82D2( QH_|_£_Q_+L\\COS(¢Q)+ H 1 Bl sero
34 34 &b &) D 346D £2D° 3A

_ "2 2 212 212 212
€D( O’H3AED | H3AeD _ Q°3A€D +2.3AgD\cos(¢Q) L H3AED?  3A£D? | B3AE’D

34 34 &b D ) D 3A€&D £°D?
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eD(-0*HeD + HeD—0%3A +6A COS(¢Q)+H€D+3A+8D(€DB)=zero
D

DGM, DGM E —mgc
epp =26, _ €DCM, _, H=—F =""0 =]
¥  &DGM, mc®  mc

eD(-0?HeD + HED—0%3A +6A coslf) .1\ 3atep=zero
D

(~o?HeD + HED—0%3A +6A)S° s¢0) 38 _,0r0
D e

0° :1_3_A
&ED

H€D+H8D (1—3—A)3A+6A cosl@0),3a_,
D D D

H8D+H8D—+H8D 3443232 +6AJM+3—A:zero
D

D £D
—HeD+H3A+ HED—3A +2 +6A\COS¢Q 38 _ero
eo ) D e
H3A+ +3A\COS¢Q)+3—A=zero
) b e
2
= ERZ =—_moc2’ :—1
mc®  mc
2
(_3A+9A +3A\cos(¢Q)+3—A=zero
eo ) D ep
2
9i—COS'1(¢Q)+3—‘ZX=zero —COS(¢Q)+L=zero
& D £D D 34
(-0?HED+HED-0%3A+6A cos(g0) 38 _ .,
D £D
Q2:1_6_A
£D
(1—— H8D+H8D (1 6A)3A+6A}&(¢@+3—A:zero
£D D £D
H8D+H8D +H8D —3a+3a04 +6AJCOS(¢Q) 28— sero
£D D eD
2
_Hep+H6A+HED 324+ L8 yoa)c0S00) 3A
e ) D e
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(H6A +18a? +3A) cos(¢o) , 3

22 —zero
ED D ED
2
H= E?:—mp -1
moc2 moc2
2
(_6A+18A +3A\cos(¢Q)+3—A=zero
ep ) D e

LH—Z&A +&AZJ—COS(¢Q) +3—A} =zero

3A &ED D &ED

(_1+6_AJM+L

=zero
ED D &ED
&ED D &ED D &ED
(-0?HED+HED-0%3A+6A coslg0) 34 _ ., 21.91
D &ED
2
Q2:l H= ER :m—OC:—l
mc*  mc?
(8D—€D—3A+6A)&(¢Q)+3—A=zero
D &ED
(3A)—COS(¢Q)+3—A=zero M+L:zero 21.94
D &ED D &ED
Q2:1_6_A Q2:l Q2:1_3_A
&D

D
D &D D 3A

‘—QZM-F 1 <<
D ED
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Energy Newtonian (Ey)

> =Zero
dt r° m,r m,
d9_1 dr__;dw d’r _—I d’w
dt r? dt de dt?  r? d¢

2E
dw | 4 12 ——2k2 1_ N2 =zero
dg) r° mIL r mL
’ 2
dw | 4 12 ——2k2 1_ N2 =zero
dg) r° mIL r mL
’ 2
dw +w? 2k2 w— Nz =zero
de¢ m,L m,L
2k 2E
x=—5 y=—2>;
m,L m,L
2
dw | 4,2 —XW—y=Zzero
d¢
wzizL[1+8cos(¢Q)] ﬂZ——Qsen@Q)
r &D de D

d’¢ _2r* dw

dt?

[_QLH@Q)T+{8%[1+€cos(¢Q)]}2—xg%[l+€cos(m)]—y:zero

D

r3 de

dsw _ —0*cos(go)
ae¢’? D

Q—i[l—co sz(¢Q)]+%[l+2€co s(¢0)+£%co sz((bQ)]—xL—xLe‘co s(@0)-y=zero
D E°D D

&ED
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Q—Z—Q—Zcosz(¢Q)+ 1,1 2ecos(@0)+ 12€2cosz(¢Q)—A—x—cos(¢Q)—

p* D? D> €7 €D €p P
2 2 3
Q__Q2cos(¢Q)+ 1 .2 cos(¢Q)+COS(@)_i_x&@@_yzzero
D? D>  £€D’ e D D & b
cosz(¢Q)_chosz(¢Q)+ 2 COS(¢Q)—XCOS(¢Q)+Q—2+_1 ——-—y=zero
D? D? ED D D D* £D* €D
2 2
1_Q2)COS (¢Q)+(L_XJM+Q_+L—A— =zZero
( D? D D DP &nf e °
2
2 yeos(60) _
0 =1 (l_Q )T—zero
(L_X\COS@Q)_,_L_F 1 X _o—zero
ep ) D D* EDP ep
(L_ j:ZGI‘O L.,.L_i_y:zero
<D D* €D* €D
2E
x= 2k2 y:—Nz
moL mOL

GM
i—x:zerozxzi:&:>L=—Om°:>L2:€DGMO
&D & mI & mI
272 2772 2712
&D  &D° _&D X—gzDZy:zero
D*  &D* D
£2+1—-€eDx—€°D*y=zero
2F 2F 26DE

EDx=ED-2 = eDx=2 £ D’y =g’ p*—L =¢g’p? N = N

&D mI? meEeDGM,  k

2EDE
£4+1-2— L=zero EN=L(82—1)

2eD

1_1 2 —k
==—\l-¢ E,=—
a €D( ) Yo2a
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§22 Spatial deformation

t:% £>t
1-V_
C,2
t:t1+t2: L + L :2L l |:2L'
c—v c+v c(l_vz) c
c2
2L|
2
g=2L 1 - ¢ —r=p(1-¥ '>1
c 2 2 c?
- \/1—V2
c

This is the spatial deformation.

The length L' at rest in the reference frame of the observer O' is greater than the length L that is moving with
velocity relative v on reference frame the observer O.

Now compute to the observer O' the distance d'=vt' between O <> O':
2L|

'=vt'=vet
c

Thus we obtain the velocity v: d'=v4L = v = czd“ .
c

Now compute to the observer O the distance d =vt between O <> 0':

d=vt=vit,+t,)=vL 1
1=

2
Thus we obtain the velocity v: d = VL% =>v =@(1—12) :
c (l—v) 2L C
C,2
The speed v is the same to both observers so we have:
V:cd':ﬂ[l_v )
21! 2L c’
2
Where applying the relation L=1' l—% we obtain:
c
od!~_cd 2(1—V—j):>d':d .t d>d .
2L'\/1—V2 c <
c

Where the distance d and d’ varies inversely with the distances L and L.
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In general, we obtain (14.2, 14.4):

d(l_ VLZX)
g=—c /

2

1_7
CZ

<

uUx'=zero

ux=v

ux=c

ux=zero

. vi0
1430
2

-z

d'(l'i‘ vu'x'
d= c
2
1=V
CZ
d=—<
2
I~z
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§23 Space and Time Bend

Variables with line t',v', x', yv', ' etc ...They are used in §21.

Geometry of space and time in the plan xy—>y 1l x.

y=£(x)

x=ct' yzjds':Im
Ids’zf(ct')

dx=cdt' dy=ds'=+/dr' .dr'
f=x£+y3=ct'£+'[ds'3 Fl=x'i+y']
df=dxi+dyj=cdt'i+ds'J dr'=dx'i+dy"

dr=L-9L =X g4 ¥ gy

r r r
s_df _dx:, dy}zc‘jt'i: ds' 5_ 7y si_dr' _dx'z Ay 3
dt' dt' dt' dt' dt' dt' dt' dt'
ax ﬂz@zv’ c=vcos@ v'=vsen@
dt' dt' dt'
dy ds' ,
tgq):ﬂ:dt':dt':lds' dy_d(dyv\_1 d(lds’)zldzs'
dx dx ¢ cdt' dx* dx\dx) cdt'\cdt') & atr”
dt’
G=C+7' G=ci F=v']
z=dv_dc  dv' dC _,cro v _dv' 5z
dt' dt' dt' dt’ dt' dt'

ds’=dr.dr=(dxi+dyNdxi+dyj)=(cat'i+ds Nedt'i+ds' J)=dx’ +dy’ =c’dt’*+ds"

ds=+/c’dt'*+ds" ds'=+/ds’—c*dt'
2 2
v=-dS — cz+(—dsy) =vJc’+v'? >c yr=ds (_ds) —c?=Alv’=c’
dt' dt’ at’ at’
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|9 —-p=Z theoretical curve
|ds
d’y 1d’s
2 2 )2
dx dx dx dy Y’ 1
1+ — +2(
(dx) c
+L(ds
c
1d’s
c’ dt"
ap .1 (ds) 1.d’s'
_de_dx_~ SA\dt') . cFdt”?
“ds ds 2 J
dx \/1+12(d5:) 1+l (ds] ’
c-\dt dt’
lds'd’s’  1gdv
ds'y _ds' d(P_V, =v’ﬂ= c’dt'dt” _ c* dt’
dt'  dt'ds s 2T 2 \2
l+1(dsj (1+V2j
dat’ c
- 1 =, dv’ ) 149"
SR 9@ atr g99__c’av
S 12 % S 12 %
(1+sz (1+V2J
c c
d 'dv' .
dEksz Vo TVav k2 dr=-K £dz
1 v'? )2 = =
o? 1+ 2
C _’ydﬁ'
m ==V
dE; _pr V= et at’ :Lfdflzi“”r
dt' 2\ r? dt' r?
(%)
c
9E, _ V'=m czv'd—(T): K g
dt' ° ds r?
¢ A = d@ A
F'-m{pzﬂ: k K="=k Z%r
ds r ds mc'r

§ 23 electronic translation

116/128

21.56



§24 Variational Principle

m_ ¢
E, == =Kt constant 21.21
vt
o2
2 2
m,v 2 mgc
E, =" 4m 2 [1-Y = =Kiconstant
-V v
c? c?
2
m_v 2 2 m_ v
o — —mocz‘/l—v—2+k =m,_c? =df_mc2 1 ===
1Y ¢t r dv C 1_v2
c? c?
2
L=—m?, {1—V—2+k Lagrangeana.
¢t r
m,v? ) . - ,
> —L=m_c* What is the initial energy of the particle of mass mo.
v
s
2
pv—L=m_c? L=pv-mc?=—m_c? 1—Z—2+%
Variational Principle
t2
Acdo=S=|L[x(t),x(t),t]dt X:d—xzux This is the velocity component in x axis.
¢

" dt
t2
SS:SJ.L(X,X,t)dtzzero Variation of the action along the X axis.
tl
Building the variable X'=Xx+€N in the range t;<t<t, we have seen this when €—>zero=>x'=x and
where €#zero we will have the conditions:

%:zero n:n(t) n(tl ):zero T'I(tz )zzero %=Zero n:%
X X=xren %:n %:ﬁ %:Zero %:zero

t, t,
Then we have a new function I(S)=JG(X+8n,X+8ﬁ,t)dt=JF(X',X',t)dt and where:

L t

t2 t2
€=7zero—Xx'=x—X'=x —>F=L:>_[F(X',X',t)dt:JL(X,X,t)dt

& &

t2 t2
8¢ZCI’O—)X'-‘#X—>X'¢X—>F¢L:>JF(X',X',t)dt¢IL(X,X,t)dt
t1 tl
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So we have I IF[X t]dt that provides derived:

Sl(e) xxth anxth
P tf e j 0 g j ndt+ ndt zer0

df dF \_d(dF),, oFdn ﬁ'_i(ﬁ )_Q(ﬁ)
dt(E)X'n)_dt(E)X')n+8X' at ox\dtlax ) “aelax !

dl(e)_oF [[m:) [mj} _
. a ,ndt+ ndt J ndt+J it axn 3 1 |[dt=zero

BI(e)_taF, 1. fyf O\ (d(OF )
s —t ax'”d”!d(ax'”) ;[ dt(aX,jndt—zero
Jd[ ) ax

8lle)_foF, 4. Fd( g ((9F_d(aFY]
de —tax,ndt !dt(aX')ndt_I[ax' dt[&)’('ﬂndt_mm

t

_dF. JF ( \—
aX (t ) ax|n(tl)_zer0

3l(e)_{ToF_d(9F OF _d( JF
.[[ax dt[ax ﬂndt zero:m;tzero—)ax, dt(a ) Zero

€=zero—x'=x—x'=x—F= L:>aL d[aLj Zero
ox dt\ox

2
aL d (BL) This is the X axis component L=—moc2 1—V—+K
ox dt\d V' 2 r

2 2
— 2 1= k|_d|d 2 1M k
Mo® cz+rj dt{ax ~MoC \ cz+r

/ 2
%):%{a‘g—x(—mocz 1—‘C’—2ﬂ This is the X axis component

%j:ki(r—l)=k( DO LX_ X

ox ox r2r 3
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ax( m,c”,[1 C2j Zero K\t Zero \4 dt +dt dt X +y“+z
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c
i.(—moc2 1-v j: ¥ | L(z2452452) 2x} o' X —oZ
ox c 1_\,72_2 \/_Vz \/X2+y 17 \/1 v2
c? c? c?
dl_Mmex | m dx [|_v dl 1y ||= Mo [dx 1— V 1(1 v jz ( 2vdvj
de [y (I—sz de 2 dt 2 (1 v )Ldt\/ e 2 dt
c c? c?
. [dx V2 v
df _meX | m, |dx | X (VdV) __m, tV 2V 2, % (Vdv)
di 72 (1_\/2j /1_7Kc2 dt 2) V2 —y2\cdt
c c? 2 c2 2
1- V
d|_mex | m, V V (Vdvj m, r(l )dx V@x}
2 2 3
dt 1_L22 (1_\/2) 1_72 1_2KC dt (1_\]2)2L dt dtC
c c c c o2
xi_ my [( v dv x |¢
—kr—1— ;L(l . )X+V dtc_z}l X axis

119/128



v? dv x dv y dv x ¢ |_—k»
(1 jx1+v die? 1+(1 ij+V dt 2]+(1 . jzk+vd (e k}—r—z

Mo [( Czj(x1+y]+zk)+Vdv(xi++y3+2f<)}:;—%(f

(-2)

a=xi+yj+zﬁ=%(xi+yj+z1&)=% V=gi+yieak
z m, [(, v2\dv, 6 dv¥ } —ka
F= 1 +v =X =21.16
(1_\]2); L( 2 )dt dt C rz
C2
F= Mo () V2)d—V+vdv v |==k; _21.19
A e Jdt die? ] r? '

(-2)

§ 24 electronic translation

§24 Variational Principle continuacion

By =m,c’ 1+ = =X +constan te 21.21
c 1_L2 r
c
2 m,v> 2 m,c*
By =m,c’ |1+ =——=—— 4+ m,c*,[1 - Y == =K | constante
C 1_L2 C 1_L2 r
c c
k 2 [ v? ko myv? > [ _v? k- me®  k_k_k
Ey—==m," [l+-—F-== +myc, [l-—F5 == ——==-=-—=+constante
r C r 1_L2 c r l—V—Z r r r
2
c c
k 2 [ vk myv > [ _v2 Kk
E,—==mg 1+—2——: —| —myC 1——2+ m,c” =constante
r c r v2 c r
1_7
o2
2 2 m.v>2
T'=m,c’ [1+ Y- T=-m> [1-¥- E,=-X pv=—-=
2 2 P >
C C r v
1_7
i)
m v , mv ” B ' v2
pv= =V=V ==Vp p=p'\| 1+ pP=py/l—5
\/_V \/1+v c c
c? c?
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E, =T Ey=pv-T T=pv-T T=p'v-T
L'=T+E, L=T-E

ER =Ek +Ep:L':pV_L

L'=pv—L L=p'v'-L' L+L'=pv=p'V'
pvzﬂzi moc? 1+ﬁ _ MoV =myV p:d—T:i —myc? l—V—2 = oV =myV'
dv'  dv' c2 o2 dv dv c2 v2
1 5 1—0—2
df'=dx'1+dy'j+dz'k =—dxi—dyj-dzk=—dF 21.08
godi'dxe dys drp o1 (dxg dys dag) ol dF
dtde’ - de?) e \dt dt’" dt y2 dt V2
1_7 =Y
c c
1 dX -1 dX —Vx
YT T / dt / /
1_7
. _dT'_ d 2 _omx' dT _ d 2 [ _v? meX -,
P'x w4 (moc 1+ CZJ N mgX Px Y x( myc”, |1 CZJ > mgX
1+ 1=
C C
f‘=x'f+y'j+z'lA<:—xiA—yj—zlA<:—f 21.07
X':_X y':—y Z':_Z
X' »_ 9z
ox ady 0z
a—L—i[a—szzero
ox dt\ox
oL d(BLj_Bx'aL dt'd(BL)_ T AL _aT .
ey el L= -L =Px ="Mg
ox df\ox ) oxox dtdtlox) P ox ok Px T Mt
ax'aL_dt'd[aLj 9 ) W S WA
oxox' dtdt\ox)  ox' VL) v'2 dt'( m,X')=zero
+Y
C

a (plvv Lv , mo dX'_ vap' aV aL' mO dX'

X' crdr Vo Poxtox T gede
1+ 1+Y
c c
' , 2
a—p=zero V' _sero L'=mc2, [1+¥-K
ox' ox' ¢ r
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aL'L mO dX' 2 UL (_

o = it T P).(=7F)=x+y 4z =x +y* +2°
X 1
[1+Y
)

1 ’2 1 1
o' _ 9 m,c’ 1+V_2_K :i(_Kj:_ i(r—l):_k(_l)r—l—li:k%L:k%
ox' ox' c r) ox'\ r ox' ox' r°r r
3L.' S > ((11): X3' o ==7010

X 1 I' 1
1+V 1+Y
c? c?
m X' ' A 'A ' A A A A
of — X kX kL kL k="K(x+yjrzk =K==k
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§25 Logarithmic spiral
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§25 Logarithmic Spiral (Continuation)
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The presence of Q in the formula r=1((Q)= , allows it to also describe a spiral.
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"Although nobody can return behind and perform a new beginning,
any one can begin now and create a new end"
(Chico Xavier)
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